复杂网络聚类系数和平均路径长度计算的MATLAB源代码(知识浅析)

合集下载

度,聚类系数,平均路径长度程序

度,聚类系数,平均路径长度程序

function [DeD,aver_DeD]=Degree_Distribution(A)%% 求网络图中各节点的度及度的分布曲线%% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k)%A————————网络图的邻接矩阵%DeD————————网络图各节点的度分布%aver_DeD———————网络图的平均度N=size(A,2);DeD=zeros(1,N);for i=1:N% DeD(i)=length(find((A(i,:)==1)));DeD(i)=sum(A(i,:));endaver_DeD=mean(DeD);if sum(DeD)==0disp('该网络图只是由一些孤立点组成');return;elsefigure;bar([1:N],DeD);xlabel('节点编号n');ylabel('各节点的度数K');title('网络图中各节点的度的大小分布图');endfigure;M=max(DeD);for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性N_DeD(i)=length(find(DeD==i-1));endP_DeD=zeros(1,M+1);P_DeD(:)=N_DeD(:)./sum(N_DeD);bar([0:M],P_DeD,'r');xlabel('节点的度K');ylabel('节点度为K的概率P(K)');title('网络图中节点度的概率分布图');function [C,aver_C]=Clustering_Coefficient(A)%% 求网络图中各节点的聚类系数及整个网络的聚类系数%% 求解算法:求解每个节点的聚类系数,找某节点的所有邻居,这些邻居节点构成一个子图%% 从A中抽出该子图的邻接矩阵,计算子图的边数,再根据聚类系数的定义,即可算出该节点的聚类系数%A————————网络图的邻接矩阵%C————————网络图各节点的聚类系数%aver———————整个网络图的聚类系数N=size(A,2);C=zeros(1,N);for i=1:Naa=find(A(i,:)==1); %寻找子图的邻居节点if isempty(aa)disp(['节点',int2str(i),'为孤立节点,其聚类系数赋值为0']);C(i)=0;elsem=length(aa);if m==1disp(['节点',int2str(i),'只有一个邻居节点,其聚类系数赋值为0']);C(i)=0;elseB=A(aa,aa); % 抽取子图的邻接矩阵C(i)=length(find(B==1))/(m*(m-1));endendendaver_C=mean(C);function [D,aver_D]=Aver_Path_Length(A)%% 求复杂网络中两节点的距离以及平均路径长度%% 求解算法:首先利用Floyd算法求解出任意两节点的距离,再求距离的平均值得平均路径长度% A————————网络图的邻接矩阵% D————————返回值:网络图的距离矩阵% aver_D———————返回值:网络图的平均路径长度N=size(A,2);D=A;D(find(D==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:ND(i,i)=0;endfor k=1:N %Floyd算法求解任意两点的最短距离for i=1:Nfor j=1:Nif D(i,j)>D(i,k)+D(k,j)D(i,j)=D(i,k)+D(k,j);endendendendaver_D=sum(sum(D))/(N*(N-1)); %平均路径长度if aver_D==infdisp('该网络图不是连通图');end%% 算法2:用时间量级O(MN)的广度优先算法求解一个含N个节点和M条边的网络图的平均路径长度。

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MATLAB源代码复杂网络的聚类系数和平均路径长度是度量网络结构特征的重要指标。

下面是MATLAB源代码,用于计算复杂网络的聚类系数和平均路径长度。

首先,我们需要定义一个函数,用于计算节点的聚集系数。

这个函数的输入参数是邻接矩阵和节点的索引,输出参数是节点的聚类系数。

```matlabfunction cc = clustering_coefficient(adj_matrix, node_index) neighbors = find(adj_matrix(node_index, :));k = length(neighbors);if k < 2cc = 0;elseconnected_count = 0;for i = 1:k-1for j = i+1:kif adj_matrix(neighbors(i), neighbors(j))connected_count = connected_count + 1;endendendcc = 2 * connected_count / (k * (k - 1));endend```接下来,我们定义一个函数,用于计算整个网络的平均聚合系数。

```matlabfunction avg_cc = average_clustering_coefficient(adj_matrix) n = size(adj_matrix, 1);cc = zeros(n, 1);for i = 1:ncc(i) = clustering_coefficient(adj_matrix, i);endavg_cc = sum(cc) / n;end```然后,我们需要计算网络的平均最短路径长度。

这里我们使用了Floyd算法来计算每对节点之间的最短路径。

```matlabfunction avg_path_length =average_shortest_path_length(adj_matrix)n = size(adj_matrix, 1);dist_matrix =graphallshortestpaths(sparse(double(adj_matrix)));avg_path_length = sum(dist_matrix(:)) / (n^2 - n);end```最后,我们可以使用这些函数来计算一个复杂网络的聚类系数和平均路径长度。

网络分析(聚类系数、最短路径、效率)matlab代码汇总

网络分析(聚类系数、最短路径、效率)matlab代码汇总
D=eye(length(G)); n=1;
nPATH=G; L=(nPATH~=0);
while find(L,1); D=D+n.*L; n=n+1; nPATH=nPATH*G; L=(nPATH~=0).*(D==0);
end
D(~D)=inf; D=D-eye(length(G));
%n-path matrix %shortest n-path matrix
% %Mika Rubinov, UNSW, 2007 (last modified July 2008)
%See comments for clustering_coef_bd %The weighted modification is as follows: %- The numerator: adjacency matrix is replaced with weights matrix ^ 1/3 %- The denominator: no changes from the binary version % %The above reduces to symmetric and/or binary versions of the % clustering coefficient for respective graphs.
function C=clustering_coef_bu(G) %C=clustering_coef_bu(G); clustering coefficient C, for binary undirected graph G % %Reference: Watts and Strogatz, 1998, Nature 393:440-442 % %Mika Rubinov, UNSW, 2007 (last modified September 2008)

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现导语:在数据科学和机器学习领域,聚类分析和分类算法是两个重要的主题。

数据的聚类能够将数据集中相似的观测值归为一类,而分类算法则是用于预测未知样本的类别标签。

在Matlab这一强大的数学计算工具中,我们可以利用其丰富的函数库和灵活的编程环境来实现聚类分析和分类算法。

一、聚类分析算法的实现1. K-means聚类算法K-means是最常用的聚类算法之一,它将数据集划分为k个簇,使得同一个簇内的数据点之间的距离最小化,并且不同簇之间的距离最大化。

在Matlab中,我们可以使用kmeans函数来实现K-means聚类算法。

该函数需要输入样本数据矩阵和簇数k,然后返回每个样本点所属的簇标签。

2. 层次聚类算法层次聚类是一种基于距离度量的聚类算法,它将样本逐步合并成越来越大的簇,直到所有样本都被分为一个簇。

在Matlab中,我们可以使用linkage函数来计算样本之间的距离,然后使用cluster函数进行层次聚类。

该函数可以根据指定的距离度量方法(如欧氏距离或曼哈顿距离)和链接方法(如单链接、完全链接或平均链接)对样本进行聚类。

3. DBSCAN聚类算法DBSCAN是一种基于密度的聚类算法,它可以发现任意形状的簇,并且对噪声数据有较高的鲁棒性。

在Matlab中,我们可以使用DBSCAN函数来实现DBSCAN聚类算法。

该函数需要输入样本数据矩阵、密度阈值和邻近距离等参数,然后返回每个样本点所属的簇标签。

二、分类算法的实现1. 决策树分类算法决策树是一种基于判断树结构的分类算法,它通过一系列的决策节点将样本逐步分类到不同的叶节点中。

在Matlab中,我们可以使用fitctree函数来建立决策树分类模型。

该函数需要输入训练数据矩阵和对应的类别标签,然后返回一个可以用于预测的决策树模型。

2. 支持向量机分类算法支持向量机是一种基于间隔最大化的分类算法,它通过在特征空间中找到一个最优超平面来进行分类。

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码(实用版)目录1.引言2.加权聚类系数和加权平均路径长度的定义和意义3.Matlab 代码实现4.结论正文一、引言在网络科学中,聚类系数和平均路径长度是两个重要的参数,用于描述网络的结构特性。

加权聚类系数和加权平均路径长度是在此基础上,对这两个参数进行加权处理,使得分析结果更加精确。

本文将介绍如何使用Matlab 代码实现加权聚类系数和加权平均路径长度的计算。

二、加权聚类系数和加权平均路径长度的定义和意义1.加权聚类系数加权聚类系数是用来衡量网络中节点之间联系紧密程度的参数。

其计算公式为:加权聚类系数 = (∑(权重^2)) / (∑(权重))其中,权重代表连接两个节点的边的权重。

2.加权平均路径长度加权平均路径长度是用来衡量网络中节点之间平均距离的参数。

其计算公式为:加权平均路径长度 = ∑(路径长度 * 权重) / ∑(权重)其中,路径长度代表从源节点到目标节点经过的边的权重之和,权重代表连接两个节点的边的权重。

三、Matlab 代码实现假设我们有一个邻接矩阵表示的网络,邻接矩阵如下:```A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];```我们可以使用以下 Matlab 代码实现加权聚类系数和加权平均路径长度的计算:```matlab% 邻接矩阵A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];% 计算加权聚类系数weight = A; % 假设权重与邻接矩阵相同clustering_coefficient = sum(weight.^2) / sum(weight);% 计算加权平均路径长度path_length = sum(sum(weight, 2) * weight) / sum(weight);```四、结论通过 Matlab 代码,我们可以方便地实现加权聚类系数和加权平均路径长度的计算。

matlab kmeans聚类算法代码

matlab kmeans聚类算法代码

一、引言在机器学习和数据分析中,聚类是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

而k均值(k-means)聚类算法作为一种经典的聚类方法,被广泛应用于各种领域的数据分析和模式识别中。

本文将介绍matlab中k均值聚类算法的实现和代码编写。

二、k均值(k-means)聚类算法简介k均值聚类算法是一种基于距离的聚类算法,它通过迭代的方式将数据集划分为k个簇,每个簇内的数据点与该簇的中心点的距离之和最小。

其基本思想是通过不断调整簇的中心点,使得簇内的数据点与中心点的距离最小化,从而实现数据的聚类分布。

三、matlab实现k均值聚类算法步骤在matlab中,实现k均值聚类算法的步骤如下:1. 初始化k个簇的中心点,可以随机选择数据集中的k个点作为初始中心点。

2. 根据每个数据点与各个簇中心点的距离,将数据点分配给距离最近的簇。

3. 根据每个簇的数据点重新计算该簇的中心点。

4. 重复步骤2和步骤3,直到簇的中心点不再发生变化或者达到预定的迭代次数。

在matlab中,可以通过以下代码实现k均值聚类算法:```matlab设置参数k = 3; 设置簇的个数max_iter = 100; 最大迭代次数初始化k个簇的中心点centroids = datasample(data, k, 'Replace', false);for iter = 1:max_iterStep 1: 计算每个数据点与簇中心点的距离distances = pdist2(data, centroids);Step 2: 分配数据点给距离最近的簇[~, cluster_idx] = min(distances, [], 2);Step 3: 重新计算每个簇的中心点for i = 1:kcentroids(i, :) = mean(data(cluster_idx == i, :)); endend得到最终的聚类结果cluster_result = cluster_idx;```四、代码解释上述代码实现了k均值聚类算法的基本步骤,其中包括了参数设置、簇中心点的初始化、迭代过程中的数据点分配和中心点更新。

聚类分析matlab代码

聚类分析matlab代码

聚类分析matlab代码聚类分析是一种机器学习方法,用于对数据进行分类,将相似的数据聚合在一起,产生有用的洞察和结论。

MATLAB是一个常用的数学计算软件,也可以用于聚类分析。

本文将介绍MATLAB中的聚类分析代码。

1. 数据准备首先,需要准备聚类分析所需的数据。

可以使用MATLAB内置的示例数据集,如鸢尾花数据集、手写数字数据集等。

也可以导入自己的数据集,例如Excel文件。

2. 数据前处理接下来,需要对数据进行前处理以便于聚类分析。

这可能包括数据清理、数据转换和特征提取。

例如,对于鸢尾花数据集,可以将花的特征信息(花瓣长度、花瓣宽度、花萼长度、花萼宽度)作为每个样本的特征。

3. 选择聚类算法MATLAB提供了多种聚类算法,可以根据数据类型和问题选择合适的算法。

常用的聚类算法包括K均值聚类、层次聚类、谱聚类等。

例如,对于鸢尾花数据集,可以使用K均值聚类算法。

4. 聚类分析一旦选择好算法,就可以开始聚类分析。

使用MATLAB的聚类算法函数进行聚类,例如kmeans函数进行K均值聚类。

函数需要输入样本数据、聚类数目等参数,并返回聚类结果。

5. 结果可视化最后,可以将聚类结果可视化,以便于理解和解释。

使用MATLAB的绘图函数,例如scatter函数或plot函数,将聚类结果表示在二维或三维图形上。

可以使用不同的颜色或符号表示不同的聚类簇。

下面是一个简单的MATLAB聚类分析代码,用于对鸢尾花数据集进行K均值聚类:% 导入鸢尾花数据集load fisheriris% 提取特征向量X = meas;% K均值聚类[idx, C] = kmeans(X, 3);% 绘制聚类结果figuregscatter(X(:,1),X(:,2),idx)hold onplot(C(:,1),C(:,2),'kx','LineWidth',2,'MarkerSize',10)legend('Cluster 1','Cluster 2','Cluster 3','Centroids','Location','NW') xlabel 'Sepal length';ylabel 'Sepal width';title 'K-means Clustering';。

聚类分析matlab程序设计代码

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin)% LLJULEIFENXI MATLAB code for lljuleifenxi.fig% LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing% singleton*.%% H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to% the existing singleton*.%% LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in LLJULEIFENXI.M with the given input arguments.%% LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the% existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. %% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help lljuleifenxi% Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ...'gui_OutputFcn', @lljuleifenxi_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before lljuleifenxi is made visible.function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to lljuleifenxi (see VARARGIN)% Choose default command line output for lljuleifenxihandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes lljuleifenxi wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line.function varargout = lljuleifenxi_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes during object creation, after setting all properties. function edit6_CreateFcn(hObject, eventdata, handles)% hObject handle to edit6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called function input_data_Callback(hObject, eventdata, handles)% hObject handle to input_data (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of input_data as text% str2double(get(hObject,'String')) returns contents of input_data as a double% --- Executes during object creation, after setting all properties. function input_data_CreateFcn(hObject, eventdata, handles)% hObject handle to input_data (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');endfunction input_obj_num_Callback(hObject, eventdata, handles)% hObject handle to input_obj_num (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of input_obj_num as text % str2double(get(hObject,'String')) returns contents ofinput_obj_num as a double% --- Executes during object creation, after setting all properties. function input_obj_num_CreateFcn(hObject, eventdata, handles)% hObject handle to input_obj_num (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');endfunction input_var_num_Callback(hObject, eventdata, handles)% hObject handle to input_var_num (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of input_var_num as text % str2double(get(hObject,'String')) returns contents ofinput_var_num as a double% --- Executes during object creation, after setting all properties. function input_var_num_CreateFcn(hObject, eventdata, handles)% hObject handle to input_var_num (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end% --- Executes on selection change in popm_class_method.function popm_class_method_Callback(hObject, eventdata, handles)% hObject handle to popm_class_method (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returnspopm_class_method contents as cell array% contents{get(hObject,'Value')} returns selected item frompopm_class_method% --- Executes during object creation, after setting all properties. function popm_class_method_CreateFcn(hObject, eventdata, handles)% hObject handle to popm_class_method (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end% --- Executes on selection change in popm_cluster_method.function popm_cluster_method_Callback(hObject, eventdata, handles)% hObject handle to popm_cluster_method (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returnspopm_cluster_method contents as cell array% contents{get(hObject,'Value')} returns selected item frompopm_cluster_method% --- Executes during object creation, after setting all properties. function popm_cluster_method_CreateFcn(hObject, eventdata, handles)% hObject handle to popm_cluster_method (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end% --- Executes on mouse press over axes background.function axes_ButtonDownFcn(hObject, eventdata, handles)% hObject handle to axes (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object deletion, before destroying properties. function axes_DeleteFcn(hObject, eventdata, handles)% hObject handle to axes (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in btn_start.function btn_start_Callback(hObject, eventdata, handles)% hObject handle to btn_start (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)str_num_obj = get(handles.input_obj_num,'String');str_num_var = get(handles.input_var_num,'String');exp = '\D+';isNum =(isempty(regexp(str_num_obj,exp))&&isempty(regexp(str_num_obj,exp)));if(isNum)num_obj = str2num(str_num_obj);num_var = str2num(str_num_var);trysource_data = str2num(get(handles.input_data,'String'));val_class_method = get(handles.popm_class_method,'Value');% return the selected item from pop_menustr_class_method = get(handles.popm_class_method,'String');% return the contents of the pop_menu% this is the default valuehandles.current_method = 'cityblock';switch str_class_method{val_class_method} % it is the current selected item (String)case'¾ø¶ÔÖµ¾àÀë'handles.current_method = 'cityblock';case'ãÉ¿É·ò˹»ù¾àÀë'handles.current_method = 'minkowski';case'ÂíÊϾàÀë'handles.current_method = 'mahalanobis';case'×Ô¶¨Òå¾àÀë'handles.current_method = 'myDistFun';% alert to user to edit custome function in the myDistFun.m and the% default is use the euclidean distmH = msgbox('you could custom the distance function in the file myDistFun,if not,the default is the City block distance','attention');uiwait(mH);case'¼Ð½ÇÓàÏÒ'handles.current_method = 'cosine';case'Ïà¹ØϵÊý'handles.current_method = 'correlation';endval_cluster_method = get(handles.popm_cluster_method,'Value');% return the selected item from pop_menustr_cluster_method = get(handles.popm_cluster_method,'String');% return the contents of the pop_menu% this is the default valuehandles.current_cluster_method = 'single';switch str_cluster_method{val_cluster_method}case'×î¶Ì¾àÀë·¨ 'handles.current_cluster_method = 'single';case'×¾àÀë·¨'handles.current_cluster_method = 'complete';case'Öмä¾àÀë·¨'handles.current_cluster_method = 'median';case'ÖØÐÄ·¨'handles.current_cluster_method = 'centroid';case'Ààƽ¾ù·¨'handles.current_cluster_method = 'average';case'Àë²îƽ·½ºÍ·¨'handles.current_cluster_method = 'ward';end%% check the datareal_rows = size(source_data,1);real_cols = size(source_data,2);if(real_rows ~= num_obj || real_cols ~= num_var)% alert to user that the data dont't matchingmH = msgbox('the size of your input data is notmatching','attention');uiwait(mH);else%% begin cluster and show the cluster tree on the axespdist_method = handles.current_method;if(strcmp(pdist_method,'myDistFun'))dist_matr = pdist(source_data,@myDistFun);elsedist_matr = pdist(source_data,pdist_method);endlinkage_method = handles.current_cluster_method;cluster_result = linkage(dist_matr,linkage_method);axes(handles.axes);dendrogram(cluster_result);endcatch errmH = msgbox('please input the correct data!');uiwait(mH)endelsemH = msgbox('please input the correct data!');uiwait(mH);end% --- Executes during object creation, after setting all properties. function tittle_CreateFcn(hObject, eventdata, handles)% hObject handle to tittle (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called function Z = myDistFun( X,Y )%the custom distance function% where X is a 1-by-n vector,and Y is an m-by-n matrix,% myDistFun must return an m-by-1 vector of distances Z,% whose kth element is the distance between X and Y(k,:).%% this is the City block distance definitionXX = repmat(X,size(Y,1),1);Z = sum(abs(XX - Y),2);%% you can definite your own distance function hereend。

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MA TLAB源代码申明:文章来自百度用户carrot_hy复杂网络的代码总共是三个m文件,复制如下:第一个文件,CCM_ClusteringCoef.mfunction [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types)% CCM_ClusteringCoef calculates clustering coefficients.% Input:% gMatrix adjacency matrix% Types type of graph:'binary','weighted','directed','all'(default). % Usage:% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types)returns% clustering coefficients for all nodes "Cp_Nodal" and average clustering% coefficient of network "Cp_Global".% Example:% G = CCM_testGraph1('nograph');% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(G);% Note:% 1) one node have vaule 0, while which only has a neighbour or none.% 2) The dircted network termed triplets that fulfill the follow condition % as non-vacuous: j->i->k and k->i-j,if don't satisfy with that as% vacuous, just like: j->i,k->i and i->j,i->k. and the closed triplets% only j->i->k == j->k and k->i->j == k->j.% 3) 'ALL' type network code from Mika Rubinov's BCT toolkit.% Refer:% [1] Barrat et al. (2004) The architecture of the complex weighted networks. % [2] Wasserman,S.,Faust,K.(1994) Social Network Analysis: Methods and% Applications.% [3] Tore Opsahl and Pietro Panzarasa (2009). "Clustering in Weighted% Networks". Social Networks31(2).% See also CCM_Transitivity% Written by Yong Liu, Oct,2007% Center for Computational Medicine (CCM),% National Laboratory of Pattern Recognition (NLPR),% Institute of Automation,Chinese Academy of Sciences (IACAS), China.% Revise by Hu Yong, Nov, 2010% E-mail:% based on Matlab 2006a% $Revision: 1.0, Copywrite (c) 2007error(nargchk(1,2,nargin,'struct'));if(nargin < 2), Types = 'all'; endN = length(gMatrix);gMatrix(1:(N+1):end) = 0;%Clear self-edgesCp_Nodal = zeros(N,1); %Preallocateswitch(upper(Types))case 'BINARY'%Binary networkgMatrix = double(gMatrix > 0);%Ensure binary networkfor i = 1:Nneighbor = (gMatrix(i,:) > 0);Num = sum(neighbor);%number of neighbor nodestemp = gMatrix(neighbor, neighbor);if(Num > 1), Cp_Nodal(i) = sum(temp(:))/Num/(Num-1); end endcase 'WEIGHTED'% Weighted network -- arithmetic meanfor i = 1:Nneighbor = (gMatrix(i,:) > 0);n_weight = gMatrix(i,neighbor);Si = sum(n_weight);Num = sum(neighbor);if(Num > 1),n_weight = ones(Num,1)*n_weight;n_weight = n_weight + n_weight';n_weight = n_weight.*(gMatrix(neighbor, neighbor) > 0); Cp_Nodal(i) = sum(n_weight(:))/(2*Si*(Num-1));endend%case 'WEIGHTED'% Weighted network -- geometric mean% A = (gMatrix~= 0);% G3 = diag((gMatrix.^(1/3) )^3);)% A(A == 0) = inf; %close-triplet no exist,let CpNode=0 (A=inf)% CpNode = G3./(A.*(A-1));case 'DIRECTED', % Directed networkfor i = 1:Ninset = (gMatrix(:,i) > 0); %in-nodes setoutset = (gMatrix(i,:) > 0)'; %out-nodes setif(any(inset & outset))allset = and(inset, outset);% Ensure aji*aik > 0,j belongs to inset,and k belongs to outset total = sum(inset)*sum(outset) - sum(allset);tri = sum(sum(gMatrix(inset, outset)));Cp_Nodal(i) = tri./total;endend%case 'DIRECTED', % Directed network -- clarity format (from Mika Rubinov, UNSW) % G = gMatrix + gMatrix'; %symmetrized% D = sum(G,2); %total degree% g3 = diag(G^3)/2; %number of triplet% D(g3 == 0) = inf; %3-cycles no exist,let Cp=0% c3 = D.*(D-1) - 2*diag(gMatrix^2); %number of all possible 3-cycles% Cp_Nodal = g3./c3;%Note: Directed & weighted network (from Mika Rubinov)case 'ALL',%All typeA = (gMatrix~= 0); %adjacency matrixG = gMatrix.^(1/3) + (gMatrix.').^(1/3);D = sum(A + A.',2); %total degreeg3 = diag(G^3)/2; %number of tripletD(g3 == 0) = inf; %3-cycles no exist,let Cp=0c3 = D.*(D-1) - 2*diag(A^2);Cp_Nodal = g3./c3;otherwise,%Eorr Msgerror('Type only four: "Binary","Weighted","Directed",and "All"');endCp_Global =sum(Cp_Nodal)/N;%%第二个文件:CCM_AvgShortestPath.mfunction [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix, s, t)% CCM_AvgShortestPath generates the shortest distance matrix of source nodes % indice s to the target nodes indice t.% Input:% gMatrix symmetry binary connect matrix or weighted connect matrix % s source nodes, default is 1:N% t target nodes, default is 1:N% Usage:% [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix) returns the mean% shortest-path length of whole network D_Global,and the mean shortest-path % length of each node in the network% Example:% G = CCM_TestGraph1('nograph');% [D_Global, D_Nodal] = CCM_AvgShortestPath(G);% See also dijk, MEAN, SUM% Written by Yong Liu, Oct,2007% Modified by Hu Yong, Nov 2010% Center for Computational Medicine (CCM),% Based on Matlab 2008a% $Revision: 1.0, Copywrite (c) 2007% ###### Input check #########error(nargchk(1,3,nargin,'struct'));N = length(gMatrix);if(nargin < 2 | isempty(s)), s = (1:N)';else s = s(:); endif(nargin < 3 | isempty(t)), t = (1:N)';else t = t(:); end% Calculate the shortest-path from s to all nodeD = dijk(gMatrix,s);%D(isinf(D)) = 0;D = D(:,t); %To target nodesD_Nodal = (sum(D,2)./sum(D>0,2));% D_Nodal(isnan(D_Nodal)) = [];D_Global = mean(D_Nodal);第三个文件: dijk.mfunction D = dijk(A,s,t)%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.% D = dijk(A,s,t)% A = n x n node-node weighted adjacency matrix of arc lengths% (Note: A(i,j) = 0 => Arc (i,j) does not exist;% A(i,j) = NaN => Arc (i,j) exists with 0 weight)% s = FROM node indices% = [] (default), paths from all nodes% t = TO node indices% = [] (default), paths to all nodes% D = |s| x |t| matrix of shortest path distances from 's' to 't' % = [D(i,j)], where D(i,j) = distance from node 'i' to node 'j'%% (If A is a triangular matrix, then computationally intensive node% selection step not needed since graph is acyclic (triangularityis a% sufficient, but not a necessary, condition for a graph to be acyclic)% and A can have non-negative elements)%% (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is now% transposed and P now represents successor indices)%% (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows,% Prentice-Hall, 1993, p. 109.)% Copyright (c) 1998-2000 by Michael G. Kay% Matlog Version 1.3 29-Aug-2000%% Modified by JBT, Dec 2000, to delete paths% Input Error Checking******************************************************error(nargchk(1,3,nargin,'struct'));[n,cA] = size(A);if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end if nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); end if ~any(any(tril(A) ~= 0)) % A is upper triangularisAcyclic = 1;elseif ~any(any(triu(A) ~= 0)) % A is lower triangularisAcyclic = 2;else % Graph may not be acyclicisAcyclic = 0;endif n ~= cAerror('A must be a square matrix');elseif ~isAcyclic & any(any(A < 0))error('A must be non-negative');elseif any(s < 1 | s > n)error(['''s'' must be an integer between 1 and ',num2str(n)]);elseif any(t < 1 | t > n)error(['''t'' must be an integer between 1 and ',num2str(n)]);end% End (Input Error Checking)************************************************ A = A'; % Use transpose to speed-up FIND for sparse AD = zeros(length(s),length(t));P = zeros(length(s),n);for i = 1:length(s)j = s(i);Di = Inf*ones(n,1); Di(j) = 0;isLab = logical(zeros(length(t),1)); if isAcyclic == 1nLab = j - 1;elseif isAcyclic == 2nLab = n - j;elsenLab = 0;UnLab = 1:n;isUnLab = logical(ones(n,1));endwhile nLab < n & ~all(isLab)if isAcyclicDj = Di(j);else % Node selection[Dj,jj] = min(Di(isUnLab));j = UnLab(jj);UnLab(jj) = [];isUnLab(j) = 0;endnLab = nLab + 1;if length(t) < n, isLab = isLab | (j == t); end[jA,kA,Aj] = find(A(:,j));Aj(isnan(Aj)) = 0;if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; endP(i,jA(Dk < Di(jA))) = j;Di(jA) = min(Di(jA),Dk);if isAcyclic == 1 % Increment node index for upper triangular Aj = j + 1;elseif isAcyclic == 2 % Decrement node index for lower triangular A j = j - 1;end%disp( num2str( nLab ));endD(i,:) = Di(t)';end。

复杂网络聚类系数和平均路径长度计算的MATLAB源代码上课讲义

复杂网络聚类系数和平均路径长度计算的MATLAB源代码上课讲义

复杂网络聚类系数和平均路径长度计算的M A T L A B源代码复杂网络聚类系数和平均路径长度计算的MATLAB源代码申明:文章来自百度用户carrot_hy复杂网络的代码总共是三个m文件,复制如下:第一个文件,CCM_ClusteringCoef.mfunction [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types)% CCM_ClusteringCoef calculates clustering coefficients.% Input:% gMatrix adjacency matrix% Types type of graph:'binary','weighted','directed','all'(default).% Usage:% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types) returns% clustering coefficients for all nodes "Cp_Nodal" and average clustering % coefficient of network "Cp_Global".% Example:% G = CCM_TestGraph1('nograph');% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(G);% Note:% 1) one node have vaule 0, while which only has a neighbour or none.% 2) The dircted network termed triplets that fulfill the follow condition % as non-vacuous: j->i->k and k->i-j,if don't satisfy with that as% vacuous, just like: j->i,k->i and i->j,i->k. and the closedtriplets% only j->i->k == j->k and k->i->j == k->j.% 3) 'ALL' type network code from Mika Rubinov's BCT toolkit.% Refer:% [1] Barrat et al. (2004) The architecture of the complex weighted networks. % [2] Wasserman,S.,Faust,K.(1994) Social Network Analysis: Methods and% Applications.% [3] Tore Opsahl and Pietro Panzarasa (2009). "Clustering in Weighted% Networks". Social Networks31(2).% See also CCM_Transitivity% Written by Yong Liu, Oct,2007% Center for Computational Medicine (CCM),% National Laboratory of Pattern Recognition (NLPR),% Institute of Automation,Chinese Academy of Sciences (IACAS), China.% Revise by Hu Yong, Nov, 2010% E-mail:% based on Matlab 2006a% $Revision: 1.0, Copywrite (c) 2007error(nargchk(1,2,nargin,'struct'));if(nargin < 2), Types = 'all'; endN = length(gMatrix);gMatrix(1:(N+1):end) = 0;%Clear self-edgesCp_Nodal = zeros(N,1); %Preallocateswitch(upper(Types))case 'BINARY'%Binary networkgMatrix = double(gMatrix > 0);%Ensure binary networkfor i = 1:Nneighbor = (gMatrix(i,:) > 0);Num = sum(neighbor);%number of neighbor nodestemp = gMatrix(neighbor, neighbor);if(Num > 1), Cp_Nodal(i) = sum(temp(:))/Num/(Num-1); end endcase 'WEIGHTED'% Weighted network -- arithmetic meanfor i = 1:Nneighbor = (gMatrix(i,:) > 0);n_weight = gMatrix(i,neighbor);Si = sum(n_weight);Num = sum(neighbor);if(Num > 1),n_weight = ones(Num,1)*n_weight;n_weight = n_weight + n_weight';n_weight = n_weight.*(gMatrix(neighbor, neighbor) > 0);Cp_Nodal(i) = sum(n_weight(:))/(2*Si*(Num-1));endend%case 'WEIGHTED'% Weighted network -- geometric mean% A = (gMatrix~= 0);% G3 = diag((gMatrix.^(1/3) )^3);)% A(A == 0) = inf; %close-triplet no exist,let CpNode=0 (A=inf)% CpNode = G3./(A.*(A-1));case 'DIRECTED', % Directed networkfor i = 1:Ninset = (gMatrix(:,i) > 0); %in-nodes setoutset = (gMatrix(i,:) > 0)'; %out-nodes setif(any(inset & outset))allset = and(inset, outset);% Ensure aji*aik > 0,j belongs to inset,and k belongs to outsettotal = sum(inset)*sum(outset) - sum(allset);tri = sum(sum(gMatrix(inset, outset)));Cp_Nodal(i) = tri./total;endend%case 'DIRECTED', % Directed network -- clarity format (from Mika Rubinov, UNSW)% G = gMatrix + gMatrix'; %symmetrized% D = sum(G,2); %total degree% g3 = diag(G^3)/2; %number of triplet% D(g3 == 0) = inf; %3-cycles no exist,let Cp=0% c3 = D.*(D-1) - 2*diag(gMatrix^2); %number of all possible 3-cycles% Cp_Nodal = g3./c3;%Note: Directed & weighted network (from Mika Rubinov)case 'ALL',%All typeA = (gMatrix~= 0); %adjacency matrixG = gMatrix.^(1/3) + (gMatrix.').^(1/3);D = sum(A + A.',2); %total degreeg3 = diag(G^3)/2; %number of tripletD(g3 == 0) = inf; %3-cycles no exist,let Cp=0c3 = D.*(D-1) - 2*diag(A^2);Cp_Nodal = g3./c3;otherwise,%Eorr Msgerror('Type only four: "Binary","Weighted","Directed",and "All"');endCp_Global =sum(Cp_Nodal)/N;%%第二个文件:CCM_AvgShortestPath.mfunction [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix, s, t)% CCM_AvgShortestPath generates the shortest distance matrix of source nodes% indice s to the target nodes indice t.% Input:% gMatrix symmetry binary connect matrix or weighted connect matrix% s source nodes, default is 1:N% t target nodes, default is 1:N% Usage:% [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix) returns the mean% shortest-path length of whole network D_Global,and the mean shortest-path % length of each node in the network% Example:% G = CCM_TestGraph1('nograph');% [D_Global, D_Nodal] = CCM_AvgShortestPath(G);% See also dijk, MEAN, SUM% Written by Yong Liu, Oct,2007% Modified by Hu Yong, Nov 2010% Center for Computational Medicine (CCM),% Based on Matlab 2008a% $Revision: 1.0, Copywrite (c) 2007% ###### Input check #########error(nargchk(1,3,nargin,'struct'));N = length(gMatrix);if(nargin < 2 | isempty(s)), s = (1:N)';else s = s(:); endif(nargin < 3 | isempty(t)), t = (1:N)';else t = t(:); end% Calculate the shortest-path from s to all nodeD = dijk(gMatrix,s);%D(isinf(D)) = 0;D = D(:,t); %To target nodesD_Nodal = (sum(D,2)./sum(D>0,2));% D_Nodal(isnan(D_Nodal)) = [];D_Global = mean(D_Nodal);第三个文件: dijk.mfunction D = dijk(A,s,t)%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.% D = dijk(A,s,t)% A = n x n node-node weighted adjacency matrix of arc lengths% (Note: A(i,j) = 0 => Arc (i,j) does not exist;% A(i,j) = NaN => Arc (i,j) exists with 0 weight) % s = FROM node indices% = [] (default), paths from all nodes% t = TO node indices% = [] (default), paths to all nodes% D = |s| x |t| matrix of shortest path distances from 's' to 't'% = [D(i,j)], where D(i,j) = distance from node 'i' to node 'j'%% (If A is a triangular matrix, then computationally intensive node% selection step not needed since graph is acyclic (triangularity is a% sufficient, but not a necessary, condition for a graph to be acyclic)% and A can have non-negative elements)%% (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is now % transposed and P now represents successor indices)%% (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows,% Prentice-Hall, 1993, p. 109.)% Copyright (c) 1998-2000 by Michael G. Kay% Matlog Version 1.3 29-Aug-2000%% Modified by JBT, Dec 2000, to delete paths% Input Error Checking ****************************************************** error(nargchk(1,3,nargin,'struct'));[n,cA] = size(A);if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); endif nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); endif ~any(any(tril(A) ~= 0)) % A is upper triangularisAcyclic = 1;elseif ~any(any(triu(A) ~= 0)) % A is lower triangularisAcyclic = 2;else % Graph may not be acyclicisAcyclic = 0;endif n ~= cAerror('A must be a square matrix');elseif ~isAcyclic & any(any(A < 0))error('A must be non-negative');elseif any(s < 1 | s > n)error(['''s'' must be an integer between 1 and ',num2str(n)]);elseif any(t < 1 | t > n)error(['''t'' must be an integer between 1 and ',num2str(n)]);end% End (Input Error Checking) ************************************************ A = A'; % Use transpose to speed-up FIND for sparse AD = zeros(length(s),length(t));P = zeros(length(s),n);for i = 1:length(s)j = s(i);Di = Inf*ones(n,1); Di(j) = 0;isLab = logical(zeros(length(t),1));if isAcyclic == 1nLab = j - 1;elseif isAcyclic == 2nLab = n - j;elsenLab = 0;UnLab = 1:n;isUnLab = logical(ones(n,1));endwhile nLab < n & ~all(isLab)if isAcyclicDj = Di(j);else % Node selection[Dj,jj] = min(Di(isUnLab));j = UnLab(jj);UnLab(jj) = [];isUnLab(j) = 0;endnLab = nLab + 1;if length(t) < n, isLab = isLab | (j == t); end[jA,kA,Aj] = find(A(:,j));Aj(isnan(Aj)) = 0;if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; endP(i,jA(Dk < Di(jA))) = j;Di(jA) = min(Di(jA),Dk);if isAcyclic == 1 % Increment node index for upper triangular Aj = j + 1;elseif isAcyclic == 2 % Decrement node index for lower triangular Aj = j - 1;end%disp( num2str( nLab ));endD(i,:) = Di(t)';end。

Matlab中的聚类分析与聚类算法

Matlab中的聚类分析与聚类算法

Matlab中的聚类分析与聚类算法一、引言聚类分析是一种将数据根据相似性进行分类的方法,常用于数据挖掘和模式识别领域。

而Matlab作为一种强大的数学计算工具,提供了丰富的聚类算法及函数库,为工程师和研究人员提供了便捷的分析工具。

本文将介绍Matlab中的聚类分析与聚类算法,并探讨其在实际应用中的一些技巧和注意事项。

二、聚类分析概述聚类分析是一种无监督学习算法,其目标是将相似的数据点分组,并将相似性高的数据点放在同一类别中。

聚类分析可以帮助我们发现数据集的内在模式和结构,从而提供对数据的认知和理解,并为后续的数据分析和决策提供支持。

三、Matlab中的聚类函数Matlab提供了多种聚类算法的函数,包括K均值聚类、层次聚类、密度聚类等。

其中,最常用的是K均值聚类算法。

1. K均值聚类算法K均值聚类是一种简单而有效的聚类算法,其基本思想是:将数据点分为K个簇,使得每个数据点与其所属簇的质心之间的距离最小。

在Matlab中,可以使用kmeans函数实现K均值聚类。

该函数需要输入聚类的数据集和聚类的簇数K,并返回每个数据点所属的簇标签和质心位置。

2. 层次聚类算法层次聚类是一种基于数据点之间的相似性或距离进行聚类的方法。

在Matlab中,agglocluster函数提供了层次聚类的实现。

该函数可以根据用户定义的相似性度量和聚类距离计算方法,将数据点逐步合并为越来越大的簇。

3. 密度聚类算法密度聚类是一种将数据点集合划分为具有相似密度的区域的聚类方法。

在Matlab中,dbscan函数可以实现密度聚类。

该函数根据用户定义的半径和密度阈值,将数据点分为核心点、边界点和噪声点,并将核心点连接成簇。

四、聚类算法的应用聚类算法在实际应用中具有广泛的应用,下面将介绍两个典型的聚类算法应用案例。

1. 图像分割聚类算法可以用于图像分割,即将一幅图像按照内容划分为多个区域。

在Matlab中,可以使用kmeans函数将图像像素分为不同的簇,从而实现图像分割。

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。

而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。

本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。

一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。

通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。

1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。

邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。

度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。

1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。

在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。

通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。

1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。

通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。

二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。

通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。

2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。

在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码加权聚类系数和加权平均路径长度是图论中一对重要的指标,用于评价网络图中节点之间的连接密度和通信效率。

在本文中,我将重点介绍加权聚类系数和加权平均路径长度的概念,并提供相应的Matlab代码来计算这些指标。

1. 加权聚类系数加权聚类系数是一种度量网络图中节点局部连接密度的指标。

对于一个节点而言,它的聚类系数定义为该节点的邻居节点之间实际存在的边数与可能存在的边数的比值。

在加权网络图中,我们需要考虑边的权重。

对于给定的节点i,其邻居节点集合定义为Ni,该节点的聚类系数Ci可以通过以下步骤计算得到:1. 对于节点i的每对邻居节点j和k,计算其边的权重wij和wik。

2. 对于每对邻居节点j和k,计算其边的权重的乘积相加,即sum =Σ(wij * wik)。

3. 计算节点i的邻居节点之间可能的边数,即possible_edges = (|Ni| * (|Ni| - 1)) / 2。

4. 计算节点i的加权聚类系数Ci = 2 * sum / possible_edges。

下面是使用Matlab实现计算加权聚类系数的代码:```matlabfunction weighted_clustering_coefficient =compute_weighted_clustering_coefficient(adjacency_matrix) num_nodes = size(adjacency_matrix, 1);weighted_clustering_coefficient = zeros(num_nodes, 1);for i = 1:num_nodesneighbors = find(adjacency_matrix(i, :) > 0);num_neighbors = length(neighbors);if num_neighbors >= 2weights = adjacency_matrix(i, neighbors);weighted_sum = 0;for j = 1:num_neighbors-1for k = j+1:num_neighborsweighted_sum = weighted_sum + (weights(j) * weights(k));endendpossible_edges = (num_neighbors * (num_neighbors - 1)) / 2;weighted_clustering_coefficient(i) = 2 * weighted_sum / possible_edges;endendend```在上述代码中,我们首先根据给定的邻接矩阵的大小确定节点数量。

MATLAB中聚类分类算法中距离计算方法

MATLAB中聚类分类算法中距离计算方法

MATLAB中聚类分类算法中距离计算⽅法样本之间的距离计算⽅法:给定m*n阶数据矩阵X,xs和xt之间的各种距离定义如下:1、欧⽒距离(euclidean):2、标准欧⽒距离(seuclidean):其中,V是n*n阶对⾓矩阵,第j个元素是2S j,S是标准偏差向量。

()3、马⽒距离(mahalanobis):其中,C是X中样品的协⽅差4、绝对值距离(cityblock):5、闵科夫斯基距离(minkowski):P=1时,是绝对值距离;p=2时,是欧⽒距离,p=∞时是契⽐雪夫距离。

6、契⽐雪夫距离(chebychev):7、余弦距离(cosine):8、相关性距离(correlation):其中,9、海明距离(hamming):10、Jaccard距离(jaccard):11、斯⽪尔曼距离(spearman):其中,MATLAB中通过pdist函数计算样本点两两之间的距离,在该函数中可指定距离的计算⽅法类之间距离的计算⽅法:注:类r是由类p和类q合并⽽来,r n是类r中样品的个数,ri x是类r中的第i个样品1、单链(single):也叫最短距离法,定义类与类之间的距离为两类最近样品的距离,即2、全链(complete):也叫最长距离法,类与类之间的距离为两类最远样本间的距离,即3、组平均(average):定义为两类中所有样品对的平均距离,即4、重⼼法(centroid):定义为两类重⼼之间的欧⽒距离,即其中,5、中间距离(median):定义为两类加权重⼼之间的欧⽒距离,即其中,其中, r x , sx 分别是类r 和类s 之间的加权重⼼,如果类r 是由类p 和类q 合并⽽来,那么定义为6、离差法(ward):定义为两类合并时导致的类内平⽅和的增量,类内平⽅和定义为类内所有样本点与类重⼼之间的距离的平⽅和,平⽅和的测量等价于下边的距离公式:其中,是欧⽒距离, r x , sx 是类r 和类s 的重⼼,r n ,s n 是类r 和类s 的元素个数。

(完整word版)模糊c均值聚类+FCM算法的MATLAB代码(word文档良心出品)

(完整word版)模糊c均值聚类+FCM算法的MATLAB代码(word文档良心出品)

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];。

如何利用Matlab进行聚类与分类算法实现

如何利用Matlab进行聚类与分类算法实现

如何利用Matlab进行聚类与分类算法实现一、引言在当今大数据时代,数据分析和机器学习技术的应用日益广泛。

聚类和分类算法是数据分析领域的两个重要研究方向。

Matlab是一种强大的数据分析和科学计算工具,具有丰富的函数库和方便的编程环境,为实现聚类和分类算法提供了便捷的平台。

本文将介绍如何利用Matlab实现聚类和分类算法的过程和技巧。

二、聚类算法的实现聚类算法是将一组数据对象划分为若干个类或簇的过程。

常用的聚类算法包括K-means、层次聚类和DBSCAN等。

下面将以K-means算法为例,介绍如何利用Matlab实现聚类。

1. 数据准备首先,需要准备要进行聚类的数据。

假设我们有一个包含N个样本的数据集,每个样本具有M个特征,可以用一个N行M列的矩阵X表示。

2. 确定聚类数K在应用K-means算法之前,需要确定聚类的数目K。

这一步通常可以通过观察数据的分布情况和经验判断进行选择。

3. 初始化聚类中心K-means算法通过迭代计算,将样本划分到K个聚类中心中。

为了进行迭代计算,需要初始化K个聚类中心。

一种常见的初始化方法是随机选择K个样本作为初始聚类中心。

4. 迭代计算在K-means算法中,迭代计算包括两步:计算每个样本与各个聚类中心的距离,将样本划分到离其最近的聚类中心;更新聚类中心,将每个簇的中心设为该簇内所有样本的平均值。

这两个步骤不断迭代,直到满足停止条件(如达到最大迭代次数或聚类中心不再发生变化)。

5. 结果评估聚类算法的结果通常需要进行评估。

常见的评估指标包括轮廓系数、紧凑度和分离度等。

Matlab提供了一些内置函数可以计算这些指标,方便进行结果的评估和比较。

三、分类算法的实现分类算法是将一组数据对象划分为若干个预定义类别的过程。

常用的分类算法包括决策树、支持向量机和神经网络等。

下面将以决策树算法为例,介绍如何利用Matlab实现分类。

1. 数据准备同样,首先需要准备要进行分类的数据。

(完整)复杂网络模型的matlab实现

(完整)复杂网络模型的matlab实现

(完整)复杂网络模型的 matlab 实现(完整)复杂网络模型的matlab实现编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)复杂网络模型的matlab 实现)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)复杂网络模型的 matlab 实现的全部内容。

(完整)复杂网络模型的 matlab 实现度分布function [DeD,aver_DeD]=Degree_Distribution(A )%%求网络图中各节点的度及度的分布曲线%%求解算法:求解每个节点的度,再按发生频率即为概率,求 P(k)%A-———————网络图的邻接矩阵%DeD-—-——-——网络图各节点的度分布%aver_DeD——-———-网络图的平均度N=size(A,2);DeD=zeros(1,N);for i=1:N% DeD(i)=length(find ((A(i,:)==1)));DeD(i)=sum(A(i,:));endaver_DeD=mean(DeD);if sum(DeD)==0disp('该网络图只是由一些孤立点组成’);return;elsefigure;bar([1:N],DeD);xlabel(’节点编号n’);ylabel(’各节点的度数K');title('网络图中各节点的度的大小分布图');endfigure;M=max(DeD);for i=1:M+1;%网络图中节点的度数最大为 M,但要同时考虑到度为0 的节点的存在性N_DeD(i)=length(find(DeD==i-1) );%DeD=[2 2 2 2 2 2]endP_DeD=zeros(1,M+1);P_DeD(:)=N_DeD(:)。

matlab聚类系数

matlab聚类系数

matlab聚类系数聚类是数据分析中常用的一种方法,通过将相似的对象归为一类,将不相似的对象分开,从而帮助我们理解和分析数据。

在Matlab中,聚类系数是用来评估聚类算法效果的一种指标。

本文将介绍Matlab聚类系数的概念和计算方法,并且提供几个实例来加深理解。

一、聚类系数概述聚类系数是用来度量聚类结果的紧密程度的指标,它可以评估聚类算法的性能。

聚类系数越接近1,表示聚类结果越紧密;聚类系数越接近0,表示聚类结果越松散。

二、聚类系数的计算方法在Matlab中,有多种方法可以计算聚类系数,下面介绍两种常用的方法:Davies-Bouldin Index(DBI)和Calinski-Harabasz Index(CHI)。

1. Davies-Bouldin Index(DBI)DBI是基于样本间距离和类间距离的聚类系数。

它的计算公式如下:DBI = 1/k * sum(max{Rij + Rik}/d(Ci, Cj))其中,Ci表示第i个簇,Cj表示第j个簇,Rij表示两个簇之间的样本间距离,Rik表示第i个簇内样本的平均距离,d(Ci, Cj)表示两个簇中心点之间的距离。

2. Calinski-Harabasz Index(CHI)CHI是基于簇内方差和簇间方差的聚类系数。

它的计算公式如下:CHI = b(k)/(a(k)*(m-k))其中,k表示聚类的簇数,m表示总样本数,a(k)表示簇内方差的平均值,b(k)表示簇间方差的平均值。

三、实例分析为了更好地理解和使用Matlab中的聚类系数计算方法,下面将给出两个实例。

实例一:对Iris数据集进行聚类分析Iris数据集是一个常用的用于分类和聚类的数据集。

我们可以使用DBI和CHI来评估聚类算法在Iris数据集上的表现。

首先,我们加载Iris数据集,并使用K-means算法进行聚类。

```matlabload fisheriris;X = meas;k = 3;[idx, centers] = kmeans(X, k);```然后,我们使用DBI和CHI来计算聚类系数。

谱聚类算法的matlab代码

谱聚类算法的matlab代码

谱聚类算法的matlab代码
谱聚类是一种基于谱理论的无监督聚类算法,可以用于图像分割、文本聚类等领域。

在matlab中,可以使用下述代码实现谱聚类:
1. 数据准备
假设有n个样本,每个样本有d个特征,可以将这些样本组成一个n*d的矩阵X。

2. 构造相似度矩阵
可以通过计算样本之间的欧几里得距离或者高斯核函数来构造
相似度矩阵W。

3. 构造拉普拉斯矩阵
根据相似度矩阵W,可以构造拉普拉斯矩阵L=D-W,其中D是度
数矩阵。

4. 计算特征值和特征向量
可以使用matlab中的eig函数计算拉普拉斯矩阵的特征值和特
征向量。

5. 选择聚类个数
可以通过观察特征值分布图来选择聚类个数。

6. 谱聚类
将特征向量按照特征值从小到大排序,取前k个特征向量组成矩阵U,对U进行归一化,然后对归一化后的矩阵U进行k-means聚类。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂网络聚类系数和平均路径长度计算的MA TLAB源代码申明:文章来自百度用户carrot_hy复杂网络的代码总共是三个m文件,复制如下:第一个文件,CCM_ClusteringCoef.mfunction [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types)% CCM_ClusteringCoef calculates clustering coefficients.% Input:% gMatrix adjacency matrix% Types type of graph:'binary','weighted','directed','all'(default).% Usage:% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types) returns% clustering coefficients for all nodes "Cp_Nodal" and average clustering% coefficient of network "Cp_Global".% Example:% G = CCM_TestGraph1('nograph');% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(G);% Note:% 1) one node have vaule 0, while which only has a neighbour or none.% 2) The dircted network termed triplets that fulfill the follow condition % as non-vacuous: j->i->k and k->i-j,if don't satisfy with that as% vacuous, just like: j->i,k->i and i->j,i->k. and the closed triplets % only j->i->k == j->k and k->i->j == k->j.% 3) 'ALL' type network code from Mika Rubinov's BCT toolkit.% Refer:% [1] Barrat et al. (2004) The architecture of the complex weighted networks. % [2] Wasserman,S.,Faust,K.(1994) Social Network Analysis: Methods and% Applications.% [3] Tore Opsahl and Pietro Panzarasa (2009). "Clustering in Weighted% Networks". Social Networks31(2).% See also CCM_Transitivity% Written by Yong Liu, Oct,2007% Center for Computational Medicine (CCM),% National Laboratory of Pattern Recognition (NLPR),% Institute of Automation,Chinese Academy of Sciences (IACAS), China.% Revise by Hu Yong, Nov, 2010% E-mail:% based on Matlab 2006a% $Revision: 1.0, Copywrite (c) 2007error(nargchk(1,2,nargin,'struct'));if(nargin < 2), Types = 'all'; endN = length(gMatrix);gMatrix(1:(N+1):end) = 0;%Clear self-edgesCp_Nodal = zeros(N,1); %Preallocateswitch(upper(Types))case 'BINARY'%Binary networkgMatrix = double(gMatrix > 0);%Ensure binary networkfor i = 1:Nneighbor = (gMatrix(i,:) > 0);Num = sum(neighbor);%number of neighbor nodestemp = gMatrix(neighbor, neighbor);if(Num > 1), Cp_Nodal(i) = sum(temp(:))/Num/(Num-1); end endcase 'WEIGHTED'% Weighted network -- arithmetic meanfor i = 1:Nneighbor = (gMatrix(i,:) > 0);n_weight = gMatrix(i,neighbor);Si = sum(n_weight);Num = sum(neighbor);if(Num > 1),n_weight = ones(Num,1)*n_weight;n_weight = n_weight + n_weight';n_weight = n_weight.*(gMatrix(neighbor, neighbor) > 0);Cp_Nodal(i) = sum(n_weight(:))/(2*Si*(Num-1));endend%case 'WEIGHTED'% Weighted network -- geometric mean% A = (gMatrix~= 0);% G3 = diag((gMatrix.^(1/3) )^3);)% A(A == 0) = inf; %close-triplet no exist,let CpNode=0 (A=inf)% CpNode = G3./(A.*(A-1));case 'DIRECTED', % Directed networkfor i = 1:Ninset = (gMatrix(:,i) > 0); %in-nodes setoutset = (gMatrix(i,:) > 0)'; %out-nodes setif(any(inset & outset))allset = and(inset, outset);% Ensure aji*aik > 0,j belongs to inset,and k belongs to outsettotal = sum(inset)*sum(outset) - sum(allset);tri = sum(sum(gMatrix(inset, outset)));Cp_Nodal(i) = tri./total;endend%case 'DIRECTED', % Directed network -- clarity format (from Mika Rubinov, UNSW) % G = gMatrix + gMatrix'; %symmetrized% D = sum(G,2); %total degree% g3 = diag(G^3)/2; %number of triplet% D(g3 == 0) = inf; %3-cycles no exist,let Cp=0 % c3 = D.*(D-1) - 2*diag(gMatrix^2); %number of all possible 3-cycles% Cp_Nodal = g3./c3;%Note: Directed & weighted network (from Mika Rubinov)case 'ALL',%All typeA = (gMatrix~= 0); %adjacency matrixG = gMatrix.^(1/3) + (gMatrix.').^(1/3);D = sum(A + A.',2); %total degreeg3 = diag(G^3)/2; %number of tripletD(g3 == 0) = inf; %3-cycles no exist,let Cp=0c3 = D.*(D-1) - 2*diag(A^2);Cp_Nodal = g3./c3;otherwise,%Eorr Msgerror('Type only four: "Binary","Weighted","Directed",and "All"');endCp_Global =sum(Cp_Nodal)/N;%%第二个文件:CCM_AvgShortestPath.mfunction [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix, s, t)% CCM_AvgShortestPath generates the shortest distance matrix of source nodes。

相关文档
最新文档