概率论与数理统计-东北师范大学考试及答案
概率论与数理统计练习题练习题及参考答案(东师)
《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2N 的样本,则ni iXnX 11服从)1,0(N 分布;2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;3.(√)设 <<x x |, 20|<x x A , 31|<x x B ,则B A 表示 10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有 B A B A ;6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB ; 8.(√)已知随机变量X 与Y 相互独立,4)(,8)( Y D X D ,则4)( Y X D ;9.(√)设总体)1,(~ N X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X是 的无偏估计量;10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。
二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则EXDXp 1: 3. ,,,0,1)(其他b x a a b x f 是 均匀 分布的密度函数;4.若事件C B A 、、相互独立,且25.0)( A P ,5.0)( B P ,4.0)( C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为则 a )()(Y D X D ; 6.设随机变量X 的概率分布为则12 X 的概率分布为222)(21x e7.若随机变量X 与Y 相互独立,2)(,)( Y E a X E ,则 )(XY E )()(y f x f Y X8.设1 与2 是未知参数 的两个 0.99 估计,且对任意的 满足)()(21 D D ,则称1 比2有效;9.设n X X X ,,,21 是从正态总体),(2 N 抽得的简单随机样本,已知202,现检验假设0 :H ,则当222121)()(n n Y D X D时,0)( X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平 (10 ),则犯第一类错误的概率是 .三、计算题1.已知随机事件A 的概率5.0)( A P ,事件B 的概率6.0)( B P ,条件概率8.0)|( A B P ,试求事件B A 的概率)(B A P 。
《基础概率论》期末试题全集东北师大
概率论与数理统计B一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 12; (D)以上都不对4.某一随机变量的分布函数为()3xxa be F x e +=+,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = 1.2.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =__5____.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为__9.4_______. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)= πa /4_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; 1/125 (2) 恰有一个盒子有2个球.72/125四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.a=1/ln4 0.5 (3/ln4)-1 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 0.27 1/3七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.36.254八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为____18.66____.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)概率论与数理统计B 答案一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分 四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分(3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为因此,16.310.01011.0811.0509.0417.0203.0139.00)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=⋅ηξE-------10分另解:若ξ与η相互独立,则应有P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2); P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2); 因此,)1()0()2,1()2,0()1,1()1,0(============ξξηξηξηξηξP P P P P P但10.012.003.005.0≠,故ξ与η不相互独立。
2020年春季《概率论与数理统计》离线考核奥鹏东师参考答案
《概率论与数理统计》
2020年春季奥鹏东北师大考核试题标准答案
试读1页答案在最后
满分100分
一、计算题(每题10分,共70分)
1、已知随机事件 的概率 ,事件 的概率 ,条件概率 ,试求事件 的概率 。
解:
因为 , ,所以
。
进而可得 。
2、设随机变量 ,且 ,试求 , 。
解:
因为随机变量 ,所以
5、若随机变量 在区间[0,1]上服从均匀分布,试求它的标准差 。
解:因为随机变量 在区间[0,1]上服从均匀分布,所以它的方差具有形式如下:
;
进而开根号可得它的标准差 ;
6、已知 ,试求 。
解:利用均值的性质可得 ;
又因为 ,所以 ;
代入上式可以求得 。
7、设 , 是取自正态总体 的一个容量为2的样本。试判断下列三个估计量是否为 的无偏估计量: , , 并指出其中哪一个方差较小。
,
由此可得 ,解得 , ;
3、已知连续型随机变量 ,试求它的密度函数 。
解:因为随机变量 服从正态分布,所以它的密度函数具有如下形式:
;
进而,将 代入上述表达式可得所求的密度函数为:
;
4、已知随机变量 的概率密度为 ,试求(1)常数 ;(2) 。
解:(1)由于
即 2A=1,A= ,所总体 的样本,所以 。
又因为 ,
,
,
所以三个估计量都是 的无偏估计;又因为
,
,
,
所以 的方差最小。
二、证明题(共30分)
设二维连续型随机向量 的联合密度函数为
证明: 与 相互独立。
证明:由二维连续型随机向量 的联合密度函数为
可得两个边缘密度函数分别为:
(完整word版)概率论和数理统计考试试题和答案解析.doc
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
(完整版)《概率论与数理统计》习题及答案选择题
·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销",则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销"; (D )“甲种产品滞销”。
解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销'。
选C 。
2.设,,A B C 是三个事件,在下列各式中,不成立的是( )。
(A )()A B B A B -=;(B )()AB B A -=;(C)()A B AB ABAB -=;(D )()()()A B C A C B C -=--。
解:()()()A B B AB B A B B B A B -=== ∴A 对。
()()A B B A B B AB BB AB A B A -====-≠ B 不对 ()()().A B AB A B B A AB AB -=--= C 对 ∴选B.同理D 也对。
3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C)()()P C P AB =; (D)()().P C P A B =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B 。
4.设(),(),()P A a P B b P A B c ===,则()P AB 等于( )。
(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -。
解:()()()()()()()P AB P A B P A P AB a P A P B P A B c b =-=-=--+=- ∴ 选B 。
概率论与数理统计试题库及答案(考试必做)
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
(完整版)概率论与数理统计复习题带答案讲解
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计的答案详解_北邮版_(第一章的)
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。
2021年大学必修课概率论与数理统计必考题及答案
2021年大学必修课概率论与数理统计必考题及答案(完整版)一、单选题 1、下列函数中,可作为某一随机变量的分布函数是11F (x ) = + — arctan x 2 兀【答案】B2、对于事件人,B,下列命题正确的是F (x ) = 1 + —B ) —(1 - e-x),0,D )F (x )=Jx f (t )dt-s,其中 -s J+sf (t) dt = 1(A ) 若A , B 互不相容,则A 与B 也互不相容。
(B ) 若A ,B 相容,那么X 与B 也相容。
(C ) 若A , B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D ) 若A , B 相互独立,那么X与B 也相互独立。
【答案】D3、设X , X ,…X 为来自正态总体N (R ,。
2)简单随机样本, 12nX 是样本均值,记S 21-^―£(X - X )2, n -1 ii =1S 2 =1 £(X -X)22n ii =1S 2 = -L- £(X -^)2,3n -1 i i=1S 2 = -£ (X -^)2, 4n i则服从自由度为n -1的t 分布的随机变量是X - RA) t = ------ =^=S /%n -11B) t =S / nn -12C) X — R X — Rt =——D) t = ------------S / nn S 八n【答案】B4、设X ,X ,…,X 是取自总体X 的一个简单样本 12 n 则E (X 2)的矩估计是S 2 = 1—£(X - X)21S 2 =1£ (X - X)22n i(C)S T x 2 (D )S ; + X 2【答案】D八 八 八5、设6是未知参数0的一个估计量,若E °W °,则6是0的 (A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计【答案】D6、已知X , X ,…,X 是来自总体的样本,则下列是统计量的是()12n1 V_ 1「一(A )X + X +A(B )——乙X 2(C )X + a +10(D )-X + aX +5n — 1 ,3 ii =1【答案】B7、设X 「X 2,…,X n 为来自正态总体N (禺02)的一个样本,若进行假设检验,当 时,一般采用统计量X - Nt~~s~r^【答案】C 8、总体X 〜N (从,o 2), o 2已知,n >时,才能使总体均值目的置信水平为0.95的置信区间长不大于L(A )15o 2/L 2 (B )15.3664 o 2/L 2 (C )16o 2/L 2(D )16【答案】B统计量的是( ) (A ) _L (X 2 + X 2 + X 2)(B ) X + 3四o 21 2 31(C )max (X ,X ,X )(D )1(X + X + X )1233123【答案】A则统计量V = y —服从的分n £X 2ii =n +1布是 ____________(A )日未知, 日已知,检验o 2= o 2(B)O 2未知,检验日=日o 2已知,检验N =R(D) 09、设5~ N Q,o 2),其中自已知,o 2未知,X ,X ,X 为其样本,123下列各项不是10、设 X 1,X 2,…X n , X n+1,…,X 是来自正态总体N (0,o 2)的容量为n+m 的样本, n+m【^案】C 二、填空题1、设X , X ,…,X 是来自总体X ~ N (4,02)的简单随机样本,O 2已知,令X = 1-£X ,则统计量121616 ii =14X -16,,、,,一,、,,,,,,—— 服从分布为 (必须写出分布的参数)。
东北师范大学2018年秋《概率论与数理统计》
期末作业考核《概率论与数理统计》满分100分一、判断正误,在括号内打√或×(每题2分,共20分) ( × )1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布;( × )2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是),(lim y x F y +∞→;( √ )3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; ( × )4.若0)(=AB P ,则AB 一定是空集; ( × )5.对于任意两个事件B A 、,必有=B A B A ; ( × )6.设C B A 、、表示3个事件,则C B A 表示“C B A 、、中不多于一个发生”; ( √)7.B A 、为两个事件,则A B A AB = ; ( √)8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ;( √)9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量;( √ )10.回归分析可以帮助我们判断一个随机变量和另一个普通变量 之间是否存在某种相关关系。
二、填空题(每题3分,共30分)1.设C B A 、、是3个随机事件,则“三个事件都不发生”用C B A 、、表示为; 2.若事件C B A 、、相互独立,则)(C B A P =P (A )+P (B )+P (C )-P(AB) -P(BC) -P(AC)+P(ABC)3.设离散型随机变量X 的概率分布为除了要求每个≥k p 0之外,这些k p 还应满足1p +2p +……+ k p =1 ; 4.若随机变量X 服从区间[]π2,0上的均匀分布,则=)(X E π ;5.设随机变量X 的概率分布列为)0,2,1,0(!)(>===-λλλ; k e k k X P k,则=)(X D λ ;6.),(Y X 为二维随机向量,其协方差),cov(Y X 与相互系数XY ρ的关系为XY ρ7.已知3)(=X E ,5)(=X D ,则=+2)2(X E 30 ; 8.设离散型随机变量X 的概率分布为其分布函数为)(x F ,则=)3(F 1 ;9.设n X X X ,,,21 为总体),(~2σμN X 的一个简单随机样本,若方差2σ未知,则μ的)1(α-的置信区间为。
东北大学概率论与数理统计课后习题答案
求P(B). 解 由于 P(AB)=P(A)+P(B)-P(A+B) =P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B)
所以, P(A)+P(B)-1=0
即, P(B)=1-P(A)=1-p
精选课件
13
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从中
=1, 2, 3,… ,A={1, 2, 3}
(3)把单位长度的一根细棒折成 三段, 观察各段的长度,
A表示“三段细棒能构精选成课件一个三角形”.
1
=(a, b, 1-a-b)|a, b>0且a+b<1,
=(a, b, c)|a, b, c>0且a+b+c=1,
A={(a, b, 1-a-b)|0<a, b<0.5且a+b>0.5}
(2) P=3/12=1/4=0.25
精选课件
16
6. 假设2个叫Davis的男孩, 3个叫Jones的男孩, 4个叫Smith
的男孩随意地坐在一排9座的座位上. 那么叫Davis的男孩
刚好坐在前两个座位上, 叫Jones的男孩坐在挨着的3个座
位上, 叫Smith的男孩坐在最后4个座位上的概率是多少?
任取200个, 求: (1) 恰有90个次品的概率; (2) 至少有2个
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
完整版概率论与数理统计习题及答案选择题
完整版概率论与数理统计习题及答案选择题《概率论与数理统计》习题及答案选择题单项选择题1.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件入为().(A)“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C)“甲种产品滞销或乙种产品畅销”:(D)“甲种产品滞销” ?解:设B '甲种产品畅销',C '乙种产品滞销',A BCA BCB UC '甲种产品滞销或乙种产品畅销' .选C.2.设A, B,C是三个事件,在下列各式中,不成立的是()?(A) ( A B)UB AUB ;(B ) (AUB) B A;(C) (AUB) AB AB U AB ;(D) (AUB) C (A C )U(B C).解:(A B)UB AB UB (AUB)I?UB) AUB A对.(AUB) B (AUB) B AB UBB AB A B A B不对(AUB) AB (A B)U(B A) AB U AB. C 对选B同理D也对.3.若当事件A, B同时发生时,事件C必发生,则().(A ) P(C ) P( A) P(B) 1 ;(B ) P(C ) P( A) P(B) 1;(C) P(C ) P( AB);(D) P(C ) P( AUB).解:AB C P(C) P( AB) P(A) P(B) P(AUB) P(A) P( B) 1选B.4?设P(A) a, P( B) b, P( AUB) c,贝忡(廳)等于( ).(A ) a b ;(B ) c b;(C) a(l b) ;(D ) ba.解:P( AB) P(A B) P(A) P( AB) a P( A) P(B) P(AUB) c b151 ?152 ?选B.5.设A, B 是两个事件,若 P( AB) 0 ,则( (A ) A, B 互不相容;(B ) AB 是不可能事件; (C) P( A) 0 或 P(B) 0 ;解:Q P(AB) 0 AB(D ) AB 未必是不可能事件.选D.6.设事件A, B 满足AB (A ) A, B 互不相容; ,则下列结论屮肯定正确的是((B) A, B 相容;(C) P( AB) P(A)P(B); (D) P( A B)P(A).解:BA A,B 相容 AB P( AB) B, BA, ABB 错. P( A B)P(A)而P( A)P(B)不一定为 P( AB) P(A). C 错. 选D.7?设 0 P(B) 1, P( Al B) (A) A, B 互不相容; P( Al B)(B ) A, B 互为对立; (C) A, B 不独立;P(AB ) P( AB^ 川牛?P(B) P(B) P(AB)(1P(B))A, B 相互独立.(D ) P( AB) P( AUB) P( AB ) P( B) 1 P(B) P(B)P(B)(1 P(A) P(B) P(AB)) P(B)(1P(B))P(B) P 2 (B) P( AB) P(B) P( A)P(B) P 2 (B) 选D.P( AB) P( A)P(B) 8.下列命题中,正确的是( 1 P( AUB)P(B)(A)若P( A) 0 , 则A 是不可能事件; (B )若 P( AUB) P( A) P(B),则A,B 互不相容; (C)若 P( AUB)P( AB) 1,则 P(A) P(B) 1 ;(D) P( A B) 解:P(AUB)P(A) P(B). P(A) P(B)P(AB)P(AUB) P(AB) P(A) P(B) 1由 P( A) B 错.只有当AB 时 P(A B) P( A) P(B),否则不对.选C.153 ?(C) P( A) P( Al B) ; (D)前三者都不一定成立.P( AB )解:P(AI B) ------------------ 要与P( A)比较,需加条件. 选D.P(B)11?设0 P(B) 1,P(A I )P(A2)0 且 P(A I U A 2 I B) P(A[ I B) P( A 2 I B), 则下列等式成立的是()?(A ) P( Ai U A2 I B) P( Ai I B) P( A 2 I B); (B ) P( Ai B U A2 B) P( A I B) P( A 2 B); (C) P( Ai U A2 ) P( Ai I B) P( A 2 I B); (D) P( B) P( Ai )P( B I Ai ) P( A 2 ) P( B I A 2 ).解.:P(AUAIB) P(AIB) P(A I B) P(AAIB) p(亦 B) P(A? I B)P( Ai A2 I B) 0 P( Ai A2 B) 0P( Ai BU A 2B)P(A I B) P(A 2 B) P( A I A 2 B) P(A I B) P(A 2 B) 选B.解2:由 P{ Ai U A 2I B} P( Ai I B) P( A2 I B)得P( Ai B U A 2 B) P( A I B) P( A2 B)P(B)P(B)可见 P( Ai BU A2B) P( A I B) P( A2B) 选B.12.假设事件A, B 满足P(B I A) 1 ,贝ij ( ).(A 、>B 是必然事件;(B) P( B) 1; (C) P( A B) 0 ; (D) A B .解: P(B 1 A)P( AB)]P(A) P( AB) P(A) P( A) P( AB ) 0P( AB) 0选C.13. 设A, B 是两个事件,且A B, P(B) 0 ,则下列选项必然成立的是).(A ) P( AU B) P( A); (B ) P( AB) P(A);(C) P(B 1 A) P(B); (D ) P(B A)P(B) P(A). 解:B A AUB AP( AUB) P( A)选A.10.设A, B 是两个事件,且 P( A) P( Al B);(A ) P( A) P( Al B);(B) P(B) 0,则有( )9.设A, B 为两个事件,且 B A ,则下列各式中正确的是().154 ?(A ) P( A) P( Al B) ; (B ) P( A) P( Al B);(C) P( A) P( Al B) ;( D ) P( A)P( Al B).解:P(AI B)P( AB) A B P( A)-7P( A)P(B)P(B)A BP( A) P(B) 0 P(B) 1 选B(或者:A B,P( A) P( AB) P(B)P( Al B) P( Al B))14.设 P(B) 0, Ai , A2互不相容,则下列各式中不一定正确的是().(A ) P( Ai A 2I B) 0;(B ) P( Ai U A2 IB) P( Ai I B) P( A2 I B); (C) P( Ai A2 I B) 1;(D)P( Ai U A2 I B) 1.解:P( Ai A2 ) 0 Q Ai A2P(A I A 2B)P(Ai A2 I B) P(B) 0P(Ai U A2 I B) P( Ai I B) P(A2 I B) P( Ai A2 I B)P(Ai I B) P( A2 I B)P(Ai A 2 I B) P( Ai U A2 IB) 1 P( AiU A2 I B)1 P(Ai I B) P( A2 I B) 1P(Ai U A2 IB) P( Ai A2 I B) 1 P( Ai A2 I B) 1 0 选C.15. 设A, B, C 是三个相互独立的事件,且 0 P(C) 1 ,则在下列给定的四对事件中不相互独立的是().__(A) AUB 与 C ; ( B) AC 与 C ;(C) A B 与 C ;(D ) AB 与 C. - --------------------解:P[(AUB)C] P(ABC) P( A)P(B)P(C )(1 P( A))(l P(B)) P(C)[1 (P( A) P( B) P( A)P( B))] P(C ) P(A U B) P(C ) A 对. P( ACC )P[( AUC )C ] P( AC UCC ) P( AC) P(C ) P( AC )------- 11"111 -----------------------------------------------------------P(C ) P( AC )P(C ) AC 与 C 不独立选 B.16. 设A, B, C 三个事件两两独立,则 A, B, C 相互独立的充分必要条件是( ).(A ) A 与BC 独立; (B) AB 与AUC 独立; (C) AB 与AC 独立;(D) AUB 与AUC 独立.A 对.B 对.C 错. 1D 对.155 ?解:Q A, B, C 两两独立,P( ABC ) P( A)P( B) P(C ) P( A) P( BC )反之,如I A 与 BC 独立则 P( ABC ) P( A) P(BC ) P( A)P( B)P(C ) 选A.P( AB) P(BC ) P( ABC ) P( AUC )P( B)P[( A C ) A] P(ACA) P(AC ) P( A)P(C ) P(A)P( AC )C 对选D (也可举反例).18. —种零件的加工由两道工序组成.第一道工序的废品率为选B.20?设随机变量 X 的概率分布为P(X k) b 4 k 1,2,L ,b 0,则若A, B, C 相互独立则必有A 与BC 独立.17. (C) 设A, B,C 为三个事件且A, B 相互独立,则以下结论屮不正确的是 )若 P(C ) )若 P(C ) 若 P(C ) 1,则AC 与BC 也独立; 1,则AUC 与B 也独立; 1,则A C 与A 也独立; (D) 解: ,则A 与C 也独立. P( A)P(B), P(C )若C B Q P(AB)AC 与BC 也独立.1 概率为1的事件与任何事件独立P[(AUC)I B] P[( AUC )B] P( AB UBC) pi ,第二道工序的废品率为 (A )1 pi(C) 1 pi 解:设A P2,则该零件加工的成品率为((B ) 1 pi p2 : (D ) (1 pi ) 第i 道工序为成品P2 pi P2 ; 成品零件, Ai (1 P2)? i 1, 2.P( Ai ) 1P( A) P( Ai A 2)PlP( A2 ) 1 p2 P(Ai )P(A 2) (1Pl )(1P2)1 pi P2pi P2选C.19.设每次试验成功的概率为 p(0第10次试验才取得第 4次成功的概率为(A) Cio 4 p 4(l p)6 ;(C) C94 p 4(l p)5 ;1),现进行独立重复试验,则直到((B) C93 p 4(l p)6 ;(D) C93 p 3 (1 p)6.3次成功解:说明前9次取得了 C 93 p 3 (1 p)6p C 93 p 4 (1 p)6 第10次才取得第4次成功的概率为)156 ?23.下列函数屮,可作为某个随机变量的分布函数的是()1(A ) F ( x)1-; (B ) F ( x)丄—arc tan x ;1 X 22一(1 eX),x 0(C) F ( x)20 ,x 0;(C)亠(D )-J —.1 bb 1解:P (X K)b k bk b—b- 1k 1k 1k 111(A )为任意正实数; (B) b 1 ;——选C ?1 b21.设连续型随机变量 X 的概率密度和分布函数分别为 f (x )和F (x ),则下列各式正确的是()?(A) 0 f(X ) 1; (B) P(X x) f(x); (C) P(X x) F ( x); (D ) P(X x) F(x). /?选 D.22.下列函数可作为概率密度的是( ).(A ) f(X ) e lxl ,x R ;(B ) f(X )1 2 , x R ;(1 x)12 x_(C) f( X )Ve 2, x 0,0 ,x0;1,1 xl 1, (D) f ( X )0,1 xl 1?解:A : e lxl dx 2B :----- d x ——(1 x 2) 且 f (x)e X dx 21—arc tan xe X dx 2错. 丄[-—]12 2-------- - 0 x R 选 B. (1 解:F (x) P( X x) P(X x)157 ?选B. 26 .设随机变量X ?N(l,22),其分布函数和概率密度分別为F ( x)和()f ( X )dx ;(D ) F ( x) f(t)dt ,其中f(t )dt 1.解:对A : 0F(x) 1,但F(x)不具有单调非减性且 F()0 /. A 不是.对B :一 arc tan x 一\ 0 F ( x)1.2 2由arctanx 是单调非减的 F(x)是单调非减的.F()丄 1—( -) 0F() J- 1 --------- 1 .2 22 2F(x)具有右连续性.选B.24 ?设 Xi ,X 2 是随机变量,其分布函数分别为Fi ( x), F2 (X ),为使F ( x) aFi (x) bF 2 ( x)是某一随机变量的分布函数,在下列给定的各组数值中应取()?32(A ) a —, b2 : (B) a —,b2 ;5531(C) a _ ,b 3 ; (D) a _ ,b3.2 222解:F ()aFi () bF2 ()0 , F() a b 1 ,只有A 满足/.选A25.设随机变量X 的概率密度为f (x),且 f (x)f (x), F ( x)是 X 的分则对任意实数布函数, a 有()?(C)(D)2F(a); 2F (a) 1 .o f ( x)dx ;解: F(a)f (x)dx af()du f (u) du f ( x)dx f(x) dx 1f(x)dxf (x)dx)of ( x)dxof ( x)dxf (x)dxf(x)dxf (x)dxof (x)dx —2。
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布; 错2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;错 3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 错4.若事件A 与B 互斥,则A 与B 一定相互独立; 错 5.对于任意两个事件B A 、,必有=B A B A ;错6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 对7.B A 、为两个事件,则A B A AB = ; 对 8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ; 错9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量; 错10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。
对 二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示2.设随机变量X 服从二项分布),(p n B ,则EXDX3.是 ⎪⎩⎪⎨⎧≤≤-=,,0,1)(其他b x a a b x f4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =73.0 ;5.设随机变量X 的概率分布为则a 6.设随机变量X 的概率分布为7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则)(XY E8.设1θ 与2θ 是未知参数θθ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H 00)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。
答:解:因为5.0)(=A P ,8.0)|(=A B P ,所以4.0)|()()(==A B P A P AB P进而可得7.0)()()()(=-+=AB P B P A P B A P2. 设随机变量),(~p n B ξ,且28.1)(,6.1)(==X D X E ,试求n ,p 。
答:解:因为随机变量),(~p n B ξ,所以)1()(,)(p np X D np X E -==,由此可得28.1)1(,6.1=-=p np np ,解得8=n ,2.0=p ;3. 已知连续型随机变量)2,3(~-N X ,试求它的密度函数)(x f 。
答:因为随机变量X 服从正态分布,所以它的密度函数具有如下形式:4. 已知一元线性回归直线方程为x a y 4ˆˆ+=,且3=x ,6=y ,试求a ˆ。
5.设总体X 的概率密度为⎩⎨⎧<<+=,0,10,)1();(其它,x x x f θθθ式中θ>-1是未知参数,n X X X ,,,21 是来自总体X 的一个容量为n 的简单随机样本,用最大似然估计法求θ的估计量。
由矩估计法知,令6.设nX X X ,,,21 是取自正态总体),0(2σN 的一个样本,其中0>σ未知。
已知估计量∑==ni i X k 122ˆσ是2σ的无偏估计量,试求常数k 。
7. 设有10个零件,其中2个是次品,任取2个,试求至少有1个是正品的概率。
答 44/45或0.978四、证明题1.设二维连续型随机向量),(Y X 的联合密度函数为⎩⎨⎧<<<<=其他。
,;,,010104),(y x xy y x f证明:X 与Y 相互独立。
答:由二维连续型随机向量),(Y X 的联合密度函数为⎩⎨⎧<<<<=其他。
,;,,010104),(y x xy y x f可得两个边缘密度函数分别为:⎩⎨⎧<<==⎰∞+∞-其他。
,;,0102),()(x x dy y x f x f X⎩⎨⎧<<==⎰∞+∞-其他。
,;,0102),()(y y dx y x f y f Y从而可得)()(),(y f x f y x f Y X ⋅=,所以X 与Y 相互独立《概率论与数理统计》练习题二一、判断正误,在括号内打√或×.1.若0)(=AB P ,则AB 一定是空集;错 2.对于任意两个事件B A 、,必有=B A B A ; 错 3.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从),(2nN σμ分布; 对4.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 错5.若事件A 与B 互斥,则A 与B 一定相互独立; 错 6.设甲、乙、丙人进行象棋比赛,考虑事件A ={甲胜乙负},则A 为{甲负乙胜}; 错 7.设C B A 、、表示3个事件,则C B A 表示“C B A 、、三个事件都不发生”;对 8.若B A 、为两个事件,则必有A B A AB =⋃; 对 9.设随机变量X 和Y 的方差存在且不为零,若)()()(Y D X D Y X D +=+成立,则X 和Y 一定不相关; 对10.设)1,(~μN X ,321,,X X X 来自于总体的样本,321515252ˆX X X ++=μ是μ的无偏估计量;对二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示2.设随机变量X 服从二项分布),(p n B ,则EXDX3.⎪⎩⎪⎨⎧≤≤-=,,,0,1)(其他b x a a b x f4.对于随机变量X ,函数)()(xX P x F ≤=称为X5.设X 与Y 是两个相互独立的随机变量,)()(Y D X D 、分别为其方差,则=+)(Y X D)()(Y D X D + ;6.若随机变量X 服从正态分布),(2σμN ,则其概率密度函数)(x p =7.设),(y x f 是二维随机变量),(Y X 的联合密度函数,)(x f X 与)(y f Y 分别是关于X 与Y 的边缘概率密度,且X 与Y 相互独立,则有),(y x f 8.对于随机变量X ,仅知其3)(=X E ,251)(=XD ,则由契比雪夫不等式可知 ≥<-)2|3(|X P9.设),(~),,(~222211σμσμN Y N X ,X 与Y 相互独立,1,,,21n X X X 是X 的样本,2,,,21n Y Y Y 是Y 的样本,则-)(Y X D10.n X X X ,,,21 是总体X 的简单随机样本的条件是:(1(2三、计算题1. 已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。
答:解:因为5.0)(=A P ,8.0)|(=A B P ,所以4.0)|()()(==A B P A P AB P 。
进而可得7.0)()()()(=-+=AB P B P A P B A P 。
2. 设随机变量),(~p n B ξ,且28.1)(,6.1)(==X D X E ,试求n ,p 。
答:解:因为随机变量),(~p n B ξ,所以)1()(,)(p np X D np X E -==,由此可得28.1)1(,6.1=-=p np np ,解得8=n ,2.0=p3. 已知离散型随机变量X 服从参数为2的普阿松分布,即,2,1,0,!2)(2===-k k e k X P k …,试求随机变量23-=X Z 的数学期望。
答:4)23(=-X E4.设连续型随机变量X 的密度函数为⎩⎨⎧<<+=其他,,0,10,)(x b ax x f 且31)(=X E ,试求常数a 和b 。
答:0,25. 若随机变量X 在区间)6,1(上服从均匀分布,试求方程012=++Xy y 有实根的概率。
答:0.86.已知随机变量)1,3(~-N X ,)1,2(~N Y ,且X 与Y 相互独立,设随机变量72+-=Y X Z ,试求Z 的密度函数。
答:)10ex p(101)(2z z f -=π7、已知随机变量X 的概率密度为+∞<<∞-=-x Ae x p x,)(,试求(1)常数A ;(2){}10<<X P 。
答:(1)由于12)(0===⎰⎰⎰+∞-+∞∞--+∞∞-dx e Adx Aedx x p x x即 2A =1,A =21,所以xe x p -=21)((2)2121}10{110---==<<⎰e dx e X P x得分 评卷人 十、证明题一个电子线路上电压表的读数X 服从[θ,θ+1]上的均匀分布,其中θ是该线路上电压的真值,但它是未知的,假设n X X X ,,,21 是此电压表上读数的一组样本,试证明:(1)样本均值X 不是θ的无偏估计;(2)θ的矩估计是θ的无偏估计。
设),,,(21n X X X 是取自总体),0(2σN 的样本,试证明统计量∑=--ni i X X n 12)(11是总体方差2σ的无偏估计量。
答:1.证明:(1)由θ≠)(X E ,知X 不是θ的无偏估计;(2)θ的矩估计为21-X ,由θ=⎪⎭⎫ ⎝⎛-21X E ,知它是θ的无偏估计。
1.A. 错误B. 正确 【答案】B 【解析】2.A. 错误B. 正确【答案】A 【解析】3.A. 错误B. 正确【答案】B 【解析】4.A. -B. -C. -D. -【答案】C 【解析】5.A. -B. -C. -D. -【答案】C 【解析】6.A. 错误B. 正确【答案】A 【解析】7.A. -B. -C. -D. -【答案】B 【解析】8.A. -B. -C. -D. -【解析】9.A. 错误B. 正确【答案】A 【解析】10.A. -B. -C. -D. -【答案】A 【解析】11.A. 错误B. 正确【答案】A 【解析】12.A. 错误B. 正确【解析】13.A. -B. -C. -D. -【答案】A 【解析】14.A. -B. -C. -D. -【答案】B 【解析】15.A. -B. -C. -D. -【解析】16.A. 错误B. 正确【答案】A 【解析】17.A. -B. -C. -D. -【答案】C 【解析】18.A. 错误B. 正确【答案】A 【解析】19.A. -B. -C. -D. -【答案】D 【解析】20.A. 错误B. 正确【答案】A 【解析】21.A. 错误B. 正确【答案】A 【解析】22.A. 错误B. 正确【答案】A 【解析】23.A. -B. -C. -D. -【答案】D 【解析】24.A. -B. -C. -D. -【答案】C 【解析】25.A. -B. -C. -D. -【答案】B 【解析】26.A. -B. -C. -D. -【答案】D 【解析】27.A. -B. -C. -D. -【答案】B 【解析】28.A. 错误B. 正确【答案】A 【解析】29.A. -B. -C. -D. -【答案】C30.A. -B. -C. -D. -【答案】A 【解析】31.A. 错误B. 正确【答案】A 【解析】32.A. 错误B. 正确【答案】A 【解析】33.A. -B. -C. -D. -【解析】34.A. -B. -C. -D. -【答案】D 【解析】35.A. -B. -C. -D. -【答案】A 【解析】36.A. -B. -C. -D. -【答案】A 【解析】37.A. -B. -C. -D. -【答案】A 【解析】38.A. -B. -C. -D. -【答案】D 【解析】39.A. -B. -C. -D. -【答案】D 【解析】40.A. 错误B. 正确【答案】B 【解析】41.A. -B. -C. -D. -【答案】D 【解析】42.A. -B. -C. -D. -【答案】A 【解析】43.A. -B. -C. -D. -【答案】A 【解析】44.A. -B. -C. -D. -【答案】C 【解析】45.A. -B. -C. -D. -【答案】C 【解析】46.A. -B. -C. -D. -【答案】C 【解析】47.A. -B. -C. -D. -【答案】C 【解析】48.A. -B. -C. -D. -【答案】C 【解析】49.A. -B. -C. -D. -【答案】B 【解析】50.A. -B. -C. -D. -【答案】C 【解析】51.A. 错误B. 正确【答案】A 【解析】52.A. -B. -C. -D. -【答案】C 【解析】53.A. 错误B. 正确【答案】A 【解析】54.A. -C. -D. -【答案】A 【解析】55.A. -B. -C. -D. -【答案】D 【解析】56.A. -B. -C. -D. -【答案】A 【解析】57.A. -B. -C. -D. -【答案】B 【解析】58.A. -B. -C. -D. -【答案】C 【解析】59.A. -B. -C. -D. -【答案】B 【解析】60.A. -B. -C. -D. -【答案】D 【解析】61.A. -B. -C. -D. -【答案】A 【解析】62.A. -B. -C. -D. -【答案】B 【解析】63.A. 错误B. 正确【答案】B 【解析】64.A. 错误B. 正确【答案】A 【解析】65.A. -B. -C. -D. -【答案】A 【解析】66.A. -B. -C. -D. -【答案】B 【解析】67.A. -B. -C. -D. -【答案】D 【解析】68.A. -B. -C. -D. -【答案】B 【解析】69.A. -B. -C. -D. -【答案】C 【解析】70.A. -B. -C. -D. -【答案】B 【解析】71.A. 错误B. 正确【答案】A 【解析】72.A. -B. -C. -D. -【答案】B 【解析】73.A. 错误B. 正确【答案】A 【解析】74.A. 错误B. 正确【答案】B 【解析】75.A. 错误B. 正确【答案】A 【解析】76.A. -B. -C. -D. -【答案】D 【解析】77.A. -B. -C. -D. -【答案】A 【解析】78.A. 错误B. 正确【答案】B 【解析】79.A. -B. -C. -D. -【答案】A 【解析】80.A. 错误B. 正确【答案】B 【解析】81.A. -B. -C. -D. -【答案】B 【解析】82.A. 错误B. 正确【答案】A 【解析】83.A. -B. -C. -D. -【答案】C 【解析】84.A. -B. -C. -D. -【答案】A 【解析】85.A. -B. -C. -D. -【答案】D 【解析】86.A. -B. -C. -D. -【答案】C 【解析】87.A. -B. -C. -D. -【答案】D 【解析】88.A. 错误B. 正确【答案】A 【解析】89.A. 错误B. 正确【答案】A 【解析】90.A. -B. -C. -D. -【答案】D 【解析】91.A. -B. -C. -D. -【答案】C 【解析】92.A. -B. -C. -D. -【答案】C 【解析】93.A. -B. -C. -D. -【答案】A 【解析】94.A. -B. -C. -D. -【答案】A 【解析】95.A. -B. -C. -D. -【答案】A 【解析】96.A. 错误B. 正确【答案】A 【解析】97.A. -B. -C. -D. -【答案】B 【解析】98.A. -B. -C. -D. -【答案】A 【解析】99.A. -B. -C. -D. -【答案】A 【解析】100.A. -B. -C. -D. -【答案】C 【解析】101.A. 错误B. 正确【答案】B 【解析】102.A. -B. -C. -D. -【答案】B 【解析】103.A. 错误B. 正确【答案】B 【解析】104.A. -B. -C. -D. -【答案】C 【解析】105.A. -B. -C. -D. -【答案】B 【解析】106.A. -B. -C. -D. -【答案】B 【解析】107.A. 错误B. 正确【答案】A 【解析】108.A. -B. -C. -D. -【答案】D 【解析】109.A. -B. -C. -【答案】A 【解析】110.A. -B. -C. -D. -【答案】D 【解析】111.A. 错误B. 正确【答案】B 【解析】112.A. -B. -C. -D. -【答案】A 【解析】113.A. 错误B. 正确【答案】A 【解析】114.A. -B. -C. -D. -【答案】C 【解析】115.A. -B. -C. -D. -【答案】A 【解析】116.A. -B. -C. -D. -【答案】D 【解析】117.A. -B. -C. -D. -【答案】B 【解析】118.A. -B. -C. -D. -【答案】C 【解析】119.A. 错误B. 正确【答案】B 【解析】120.A. -B. -C. -D. -【答案】D 【解析】121.A. 错误B. 正确【答案】B 【解析】122.A. 错误B. 正确【答案】A 【解析】123.A. 错误B. 正确【答案】B 【解析】124.A. -B. -C. -D. -【答案】B 【解析】125.A. 错误B. 正确【答案】B 【解析】126.A. 错误B. 正确【答案】A 【解析】127.A. -B. -C. -D. -【答案】C 【解析】128.A. -B. -C. -D. -【答案】B 【解析】129.A. -B. -C. -D. -【答案】C 【解析】130.A. -B. -C. -D. -【答案】C【解析】131.A. -B. -C. -D. -【答案】C 【解析】132.A. -B. -C. -D. -【答案】D 【解析】133.A. -B. -C. -D. -【答案】A 【解析】134.A. -B. -C. -D. -【答案】C 【解析】135.A. -B. -C. -D. -【答案】B 【解析】136.。