非线性模型参数估计的EViews操作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性模型参数估计的EViews 操作
例3.5.2
建立中国城镇居民食品消费需求函数模型。根据需求理论,居民对食品的消费需求函数大致为: ()01,,f P P X Q =。
其中,Q 为居民对食品的需求量,X 为消费者的消费支出总额,P1为食品价格指数,P0为居民消费价格总指数。
表3.5.1 中国城镇居民消费支出及价格指数
单位:元
资料来源:《中国统计年鉴》(1990~2007)
估计双对数线性回归模型μββββ++++=031210n n n P L LnP X L Q L 对应的非线性模型:
32101βββP P AX Q =
这里需要将等式右边的A 改写为0e β。取0β,1β,2β,3β的初值均为1。
Eviews操作:
1、打开EViews,建立新的工作文档:File-New-Workfile,在Frequency选择Annual,在Start date输入“1985”,End date输入“2006”,确认OK。
2、输入样本数据:Object-New Object-Group,确认OK,输入样本数据。
图1
3、设置参数初始值:在命令窗口输入“param c(1) 1 c(2) 1 c(3) 1 c(4) 1”,回车确认。
4、非线性最小二乘法估计(NLS):Proc-Make Equation,在NLS估计的方程中写入Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4),方程必须写完整,不能写成Q C(1) X P1 P0。确定输出估计结果:
图2
NLS注意事项:
1).参数初始值:
如果参数估计值出现分母为0等情况将导致错误,解决办法是:手工设定参数的初始值及范围,比如生产函数中的c(2)肯定是介于0-1之间的数字。
eviews6.0中并没有start 的选项,只有iteration的次数和累进值得选择。只能通过param c(1) 0.5 c(2) 0.5来设置。
2).迭代及收敛
eviews用Gauss Seidel迭代法求参数的估计值。迭代停止的法则:基于回归函数或参数在每次迭代后的变化率,当待估参数的变化百分比的最大值小于事先给定的水平时,就会停止迭代。当迭代次数到了迭代的最大次数时也会停止,或者迭代过程中发生错误也会停止。