美国_数学课程标准_2000_简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

□专 稿□
美国《数学课程标准(2000)》简介
南京大学哲学系 郑毓信
日前,国内一些刊物同时刊出了《关于我国数学课程标准研制的初步设想》(本刊在1999年第5期刊出).这是一项很有意义的工作,相信必然会对我国数学教育事业的深入发展产生持久和深远的影响.作为一种积极的反响,笔者愿对美国数学教师全国委员会(NCTM)近期发表的新的数学课程标准———《学校数学的原则和标准》(讨论稿)(以下简称为《课程标准(2000)》)作一介绍,希望能起到一定的借鉴和启示作用.
与《关于我国数学课程标准研制的初步设想》不同,美国的《课程标准(2000)》并非一个完全创新的工作.因为,美国数学教师全国委员会在10年前已颁布了它的第一个数学课程标准———《学校数学课程和评估的标准》(以下简记为《课程标准(1989)》);另外,除去这一标准外,美国数学教师全国委员会曾于1991年和1995年分别发表了它的两个姐妹篇:《数学教学的职业标准》和《学校数学的评估标准》,后者就构成了制订这一新的课程标准的直接基础,或者说,新的课程标准即是代表了对于《课程标准(1989)》的一种自觉“反思和再思考”.
美国数学教师全国委员会之所以始终坚持课程标准的制订和修改,主要是为了“保证质量、指明目标、促进变化”.而且,由过去10年的实践看,尽管对《课程标准(1989)》存在多种不同的评价或看法,更有人提出了十分尖锐的批评(详可见另文《世纪之交的美国数学教育》,载《数学教育的现代发展》,江苏教育出版社,1999年).但是,这又是各方面的一个共同意见———认为《课程标准(1989)》对于促进美国的数学教育发挥了十分重要的作用,特别是,这不仅使得整个“数学教育共同体”(包括数学家、数学教育工作者和广大的数学教师)集中于数学教育的各个基本问题,而且也使数学教育成为一般民众共同关注的一个热点.显然,这就清楚地表明了制订国家数学课程标准的重要性;当然,由《课程标准(1989)》到《课程标准(2000)》的发展,则又表明科学的“国家数学课程标准”的制订并非是一个一劳永逸的简单过程,而是必然有一个不断改进和发展的过程.
总的来看,《课程标准(2000)》应当说仍然坚持了《课程标准(1989)》的基本立场,即认为学校数学教育应使所有的学生、而不只是少数人在数学上达到高标准.特别是,新的课程标准仍然坚持了如下的5个目标,即我们应使学生:(1)学会认识数学的价值;(2)对
自己的数学能力具有信心;(3)具有数学地解决问题的能力;(4)学会数学地交流;(5)学会数学地推理.
但是,在坚持上述基本立场的同时,《课程标准(2000)》与《课程标准(1989)》相比,无论内容或表述形式都有了较大的变化.之所以出现这样的变化,其首要的目的是为了对旧的课程标准所暴露出来的一些弊病作出纠正.例如,新的课程标准明确地提出了这样一点,即应“对基本技能和概念学习的作用作出更为明确的论述”.另外,在过去10年中所出现的一些现象也引起了新的课程标准编写者们的高度重视.例如,在过去的这些年中,曾出现了关于《课程标准(1989)》的多种不同解释,从而就使得相应的教学实践出现了一些不应有的现象,如人们把课程标准中所列举的“应予淡化的论题(Topics to Receive Decreased Attention)”不适当地解释成了应把这些论题从学校数学课程中完全舍去.最后,社会的进步也促使人们不断地去对数学课程标准作出必要的发展和改进.
以下我们围绕新的课程标准的主要特点与“指导性原则”和“活动的标准”对《课程标准(2000)》作简要的介绍.
一、
《课程标准(2000)》的主要特点
第一,重点突出.
新的课程标准在整体上是围绕以下两个问题展开的:
(1)为了使所有的学生实现数学上的高水准,相应的教学设计应是什么样的?
(2)在整个学习过程(从学前到十二年级)中,学生应当并且可能掌握哪些数学内容和能力?
具体地说,新的课程标准共给出了10个标准,其中5个是关于数学内容的,包括“数和运算”,“模式、函数和代数”,“几何与空间感”,“度量”和“数据分析、统计与概率”;另外5个则是关于数学活动的(原文为process,但从上下文看,译为“活动”似较为恰当),包括“问题解决”、
“推理与证明”、
“交流”、
“联系”和“表述”.依据各个年级组(新的课程标准将学生的全部学习过程分为“由学前到二年级”、“由三年级到五年级”、“由六年级到八年级”和“由九年级到十二年级”这样四个年级组)对这些标准作出具体说明,即就构成了《课程标准(2000)》的主要内容.
《课程标准(2000)》明确指出,文件中关于数学课程标准的论述并非包罗一切,无所遗漏;恰恰相反,其中所论及的只是若干对数学教学设计特别重要的因
素.一般地说,这事实上也就体现了新的课程标准编写者们的一个主要意图,即不应过分强调标准的规范性,而应给各级数学教育工作者(教材编写者、课程设计者、学区管理人员、数学教师、考核设计者等)的创造性活动留下充分的空间或余地.
如果说上述的标准构成了新的课程标准的核心,那么,关于教学设计的若干原则就为所说的标准提供了必要的理论支持(可参见图1).
具体地说,《课程标准
(2000)》共提出了6个原则:
平等性原则、关于课程的原
则、关于教学的原则、关于学
习的原则、关于评估的原则和
技术性原则(关于这些原则的
具体内容见以下介绍).
第二,高度的一致性.
首先,与先前的做法不同,美国的数学教师全国委员会这次将“课程标准”、“教师标准”和“评估标准”这三者有机地统一了起来.考虑到现实中评估的改革严重滞后于整个数学教育的改革,这一新的做法无疑有利于这样一种观念的养成,即评估的改革也应被看作整体性的数学教育改革的一个有机组成成分.
其次,更为重要的是,《课程标准(2000)》的主要内容全是围绕上述的10个标准展开的,也即是就各个年级组具体地指明了所应达到的深度和广度以及相对于不同年级的不同重点.显然,这不仅较好地体现了整个课程的连续性,而且也清楚地表明了课程(与学生学习过程)的发展性和阶段性.
例如,就“推理与证明”这一标准而言,《课程标准(2000)》对各个不同的年级组提出了如下的不同要求:在学前到二年级组,我们应帮助学生学会应用具体模型对自己的结论作出说明;在三到五年级组,学生应能通过观察和实验作出预言并对此作出论证;在九到十二年级组,学生则应掌握较为复杂的论证过程.
由下表我们可看出《课程标准(2000)》的基本结构和主要内容:
序言(第一章)
指导性原则(第二章)
课程标准(第三章)
学前到二年级(第四章) 三到五年级(第五章)
六到八年级(第六章) 九到十二年级(第七章)
结论(第八章)
第三,较强的针对性.
正如上面所提及的,针对已有的教学实践所暴露出来的弊病以及由于社会进步所造成的新的局面,《课程标准(2000)》与原来的课程标准相比包括了不少必要的修正或补充.
例如,在现有的教学设计中可以看到这样的倾向,
即某些方案只是注意了教法的问题,而未能对学生的学习过程给予足够的重视.与这种做法相对立,新的课程标准明确地提出了关于数学活动的5项标准,这在一定程度可以看成是克服上述错误倾向的一种自觉努力;另外,更为一般地说,新的课程标准不仅明确提出了什么是学生所应达到的,而且也指明了什么是学生所能达到的,后者显然也立足于对学生学习过程的深入研究.
再例如,技术的进步无疑为数学教育的深入发展提供了新的挑战和机遇,特别是计算机技术的迅速发展和普及,不仅为我们搞好数学教学提供了新的更为有效的手段,而且也必然会导致教学内容与学习方式的重要变化.正是基于这样的认识,与先前的课程标准相比,新的课程标准更加突出了技术的作用,并增加了“技术性原则”这样一条指导性原则.
另外,值得提及的是,新的课程标准去掉了“离散数学”这样一个论题,这不仅是因为离散数学的重要性现已得到了普遍的认同,而且是因为在已有的实践中我们可看到这样的现象,即人们很容易把离散数学看成是与传统教学内容完全不相干的一个新的分支.正是基于这样的认识,在新的课程标准中,离散数学的有关内容大部分就被整合到了其他的内容之中.例如,在数系、代数和几何的学习中,算法的发展、应用和分析就都占据了一个十分重要的位置.
第四,必要的基础.
以下几点即可说是为新的课程标准提供了必要的基础.
其一,数学教育的理论研究.特别是,这就为科学地确定在各个特定水平学生能够达到怎样的水准提供了重要的依据.
其二,专家(包括数学家和数学教育家)的判断,包括数学上的考虑、社会的需要、公众的期望等.显然,这就为具体地确定什么是学生所应达到的标准提供了必要的基础.
其三,已有的实践.这不仅包括反面的教训,而且包括成功的实例.这些实例的重要性就在于,与抽象的理论相比,具体的事例有着更大的说服力.
显然,从这样的角度去分析,新的课程标准与《课程标准(1989)》相比就可说是代表了一个真正的进步.这就是说,如果没有这些新的思考,而只是惟一地着眼于如何去纠正《课程标准(1989)》的弊病,那么,新的课程标准的制订充其量就只是一种修补性的工作.
二、六项指导性原则
在总体上说,所说的指导原则就是为数学教学设计的各个环节(包括课程设计、教法设计、考核设计等)提供必要的指导.
第一,平等性原则.
是指数学教学设计应当促进所有学生的数学学习.
显然,这一原则集中地体现了上述的基本立场,即数学教育应使所有的学生、而不只是少数人在数学上达到高标准.也正是在这样的意义上,《课程标准(2000)》提出,平等性是与高标准直接相关的.
另外,针对美国的现实情况,新的课程标准提出应当努力消除以下的不平等现象,即女性、少数民族和来自贫困家庭的儿童往往不能得到应有的数学教育.文中指出,实现上述目标的关键就在于:第一,应当改变不正确的传统观念,相信一切学生都可以学好数学;第二,应对这些儿童提供更多的支持.
第二,关于课程的原则.
这是指数学教学设计应当突出重要的和有意义的数学,并设计出协调的和综合的数学课程.
那么,究竟什么样的数学是重要的呢?对此《课程标准(2000)》提出了这样几条标准:第一,从数学本身看;第二,从数学在数学以外的应用看;第三,从认知发展的角度看,即相关的题材是否有利于调动学生的学习积极性,或能使他们更为清楚地认识数学的意义.
另外,所谓课程的协调性和综合性则分别是指,课程中的各个部分应密切相关,而不应是互不相干的;整个课程应在各个对立环节之间实现较好的平衡,即如程序性知识与概念性知识的平衡,既能帮助学生掌握具体的数学知识和技能,又能帮助学生了解数学的本质和应用,等等.
第三,关于教学的原则.
这主要是指数学教学设计的实施依赖于有能力的教师.
作为这一原则的具体阐述,《课程标准(2000)》突出地强调了教学活动的创造性,如教师应当根据总的教学目标和学生的情况决定具体的教学任务,并能很好地指导学生的课堂讨论,等等.
特殊地,这种关于教学活动创造性的明确肯定,显然也就与对于《课程标准(1989)》的以下批评构成了直接的对立:《课程标准(1989)》过分地强调了某些教学形式(如小组学习等),而未能给教师留下充分的自主权.
作为实现上述目标的关键,《课程标准(2000)》提出,教师应善于对数学、学习活动的本质及已有的实践作出自觉的分析与反思;另外,有关方面也应为教师在业务上的不断提高提供更大的帮助.
第四,关于学习的原则.
这是指数学教学设计应使学生理解数学和应用数学.
显然,这一原则表明了这样的观点,即数学学习是与理解和应用密切相关的.
另外,就理解而言,《课程标准(2000)》提出,这既与学生已有的知识和经验有关,即主要是一个整合(同化与顺应)的过程;同时又是一个文化继承的行为,也即是这样的一个过程:学习者逐步成为了数学共同体的一员.容易看出,以上的观点即是建构主义(特别是社会建构主义)学习观的直接反映.
《课程标准(2000)》明确提出了这样的观点,数学学习未必是一件乐事,也需要艰苦的工作,后者又以全身心的投入为必要的前提.应当指出后一观点也有着很强的针对性,因为,过分强调学生的兴趣也是前些年的数学实践的暴露出来的一个错误倾向.
《课程标准(2000)》还提出了这样的目标:数学教学应当努力提高学生的学习能力,即使学生成为“自主的学习者”.
第五,关于评估的原则.
这一原则是指数学教学设计应当包括评估以指导、强化和评价学生的数学学习,并为教师提供必要的信息.
《课程标准(2000)》指出,以下两点可以被看成评估工作的实际出发点:对什么进行评估?为什么要进行评估?另外,为了作好评估,我们则应注意评估方法的适当性并对所获得的信息作出仔细的分析.因为,这是一个基本的事实,即存在有多种不同的评估方法,如选择性问题、建构性问题、非常规性问题、课题研究、观察、谈话和学习日记等,而且,这些方法又有着不同的适用范围;另外,就所获得的信息的分析而言,我们则又应当特别注意结论的一致性.
最后,《课程标准(2000)》指出,适当的评估不仅对于改进教学有着十分重要的作用,而且对于学生的成长也有很大的好处,特别是,这能促使学生主动地承担起责任,并进一步增强学习的自主性.
第六,技术性原则.
这是指数学教学设计应当利用现代技术帮助学生理解数学,并为他们进入技术性不断增强的社会做好准备.
事实上,技术,特别是计算机技术的迅速发展,即可说是最为清楚地表明了社会进步的迅速性.例如,在今天,对于大多数美国学生来说,计算机和网络已经成为日常生活的一个部分,在教学中更已出现了多媒体教学和远程教学这样一些新的教学方法或手段.显然,面对这样的现实,明确地提出“数学教学应当为学生们进入技术性不断增强的社会做好准备”不仅十分恰当,而且也是完全必要的.
另外,就现代技术在数学教学中的应用而言,一个关键的问题就在于,我们不仅应当清楚地认识现代技术为数学教学所提供的新的前景,如学生能够积极地去从事数学的探索,并真正从事实际生活中数学问题的分析,从而也就能够更好地领会数学的意义;我们也应清醒地看到这种应用所可能造成的消极后果,如若只是满足于观察和实验就可能使学生认识不到证明的必要性,对于计算器的依赖则又可能极大地削弱学生的计算能力.
也正是在这样的意义上,《课程标准(2000)》提出,
我们应当区分对于现代技术“好的应用”和“坏的应用”.显然,这是一个十分重要的问题.
三、活动的标准
如前所述,《课程标准(2000)》中给出了两类不同的标准,即所谓“内容的标准”和“活动的标准”.两者的区别可以大致描述如下:前者具体指明了什么是学生应当知道的,后者则是指明了实现上述目标的具体途径,特别是,如何才能达到或加强数学的理解;另外,从更深入的层次看,这里的“活动的标准”又是与通常所说的“数学能力”(包括数学思维能力)直接相联系的.
由于“内容的标准”是人们较为熟悉的,以下我们就着重对《课程标准(2000)》中所给出的5个“活动的标准”(标准6~标准10)作以介绍.
标准6.问题解决.
这是指,我们应帮助学生通过问题解决获得数学知识;养成表述、抽象、一般化这样的思维习惯;能应用多种解题策略解决问题;并能对解题过程中的思维活动作出调节和反思.
《课程标准(2000)》指出,问题解决不仅关系到了数学教育的一个主要目标,即应努力提高学生解决问题的能力,而且也是学生学习数学的一种重要手段,即可通过问题解决获得新的知识.显然,从后一角度去分析,以下就是一个不适当的看法,即认为只有当学生具备了“足够的知识”时,才可以为其提供解决问题的机会.
另外,突出数学的思维习惯,则清楚地表明了这样一种认识,即我们不能满足于解答的获得,而应积极地去从事进一步的工作,如对结论加以推广,探究不同的解题方法,等等.应当指出,这事实上就代表了对于“问题解决”这一始于80年代的数学教育改革运动的自觉反思(可参见另文《关于大众数学的反思》,《数学教育学报》,1994年第5期).
标准7.推理与证明.
这是指,我们应帮助学生认识到推理和证明是数学的一个十分重要的成分;让学生进行猜测并对此进行考察;逐步学会数学论证和证明,并能对各种论证和证明的方法作出适当的选择和应用.
一般地说,以下即是这方面最为重要的一个思想,即推理和证明应被看成数学的一个有机组成成分,而并非是一个外加的部分,特别地,这即是达到真正理解的重要一环.因而,对于推理和证明的学习就贯穿于全部的学习过程之中.其次,我们又应看到推理与证明的学习是一个逐步深入的过程,其中必然包含着由简单到复杂,由非形式到形式化的发展过程;最后,为了帮助学生很好地发展这方面的才能,一个特别重要的环节就在于,教师应当努力创造一个好的学习环境,在其中,大胆表述和积极的批评能得到大力的提倡.
标准8.交流.
这是指,我们应帮助学生学会对自己的数学思想进行组织和澄清;并能清楚地、前后一致地表达自己的数学思想;能通过对其他人的思维和策略的考察扩展自己的数学知识,并能学会使用精确的数学语言.
由以上内容可以看出,这一标准事实上包括了两个方面,即通过交流去学习数学,以及学会数学地交流.
特殊地,对自己的数学思想进行组织和澄清即可被看成交流的第一步,而这就清楚地表明了交流对于数学学习的特殊意义,因为,组织和澄清就是一个反思的过程,从而不仅会导致更深刻的理解,而且也会促使学生对先前的思想作出必要的修正与改进.另外,对其他人的思维和策略进行考察无疑有助于学生学会批判地思维,而且,从更深入的层次看,这更反映了这样一种认识,数学是一种群体的活动.
值得指出的是,《课程标准(2000)》对“数学地写”(与“数学地谈论”一样,这也是数学交流的一个重要方面)在数学学习中的作用作了较为具体的分析.
标准9.联系.
这是指,我们应当帮助学生认识不同数学思想的内在联系,并能对此加以应用;理解数学思想如何彼此相关从而构成了一个协调的整体;并能在数学以外的情景中辨认、学习和应用数学.
由此可见,所说的联系包括了两个方面的含义,即数学内部的联系与数学与数学以外的联系.就前者而言,一个核心的思想就在于,我们应帮助学生清楚地认识到数学是一个整体,而这事实上也就应当被看成数学思维的一个重要内容.另外,就数学的学习而言,知识的相关性则又明显地表现于以下的事实,即已有的知识为新的学习活动提供了必要的基础,新的学习则不仅加深了已有的认识,并构成了已有知识的一种推广和发展.
《课程标准(2000)》强调指出,我们应当善于利用数学的内在联系加深理解和解决问题.
标准10.表述.
这是指,我们应当帮助学生创造和应用适当的表述以对数学思想进行组织、记录和交流;逐步掌握各种表述方法,从而能有目的地、熟练地、恰当地加以应用;能利用表述对物理的、社会的和数学的现象作出模型和解释.
《课程标准(2000)》指出,表述直接关系到了学生对于数学概念的理解、交流和应用,特别是,就数学模型的建构而言,这不仅是“数学化”思想的具体体现,而且也直接关系到了数学是“模式的科学”这样一个本质特性.
另外,这方面的一个基本事实就在于:同一数学对象或关系可能有多种不同的表述方法(如函数关系的公式表示法、图象表示法和表格表示法),它们适用于不同的目的或场合,从而,我们就应注意帮助学生作到对各种表述方法的恰当和熟练的应用.。

相关文档
最新文档