RS485硬件电路设计中需注意的问题

合集下载

(完整word版)RS485,RS422设计指南

(完整word版)RS485,RS422设计指南

前言 01 RS-485与RS-422性能指标及其标准 02 RS-485与RS-422器件及材料说明 (1)3 RS-485与RS-422设计原理 (1)3.1 基本原理 (1)3.1.1RS-485与RS -232电路的区别与优势 (1)3.1.2长短连接的判断标准、物理表现与应对措施 (3)3.1.3 RS-485与RS-422典型应用电路与选择方法 (4)3.1.4 485总线上处理竞争的方法 (7)3.2 可靠性的设计 (8)3.2.1 网络配置 (8)3.2.2 总线匹配 (8)3.2.3 引出线 (10)3.2.4 失效保护 (10)3.2.5 地线与接地 (11)3.2.5.1 共模干扰问题 (11)3.2.5.2 电磁辐射(EMI)问题: (12)3.2.6 瞬态保护 (13)3.2.7 其它需要注意的问题 (14)3.3 电源和接地 (14)4 维护说明 (14)参考资料 (15)RS485、RS422接口设计指南前言RS-485标准最初由电子工业协会(EIA)于1983年制订并发布,后由TIA-通讯工业协会修订后命名为TIA/EIA-485-A,习惯地称之为RS-485。

RS-485由RS-422发展而来,而RS-422是为弥补RS-232之不足而提出的。

为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(速率低于100kbps时),并允许在一条平衡线上连接最多10个接收器。

RS-422是一种单机发送、多机接收的单向、平衡传输规范,为扩展应用范围,随后又为其增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,这就是后来的EIA RS-485标准。

RS-485是一个电气接口规范,它只规定了平衡驱动器和接收器的电特性,而没有规定接插件、传输电缆和通信协议。

RS485串行通信电路设计

RS485串行通信电路设计

RS485串行通信电路设计RS485是一种常见的串行通信协议,广泛应用于工业自动化、仪器仪表、电力系统等领域。

RS485通信具有高可靠性、抗干扰能力强、通信距离远等特点,因此在一些需要长距离、高可靠性的通信场景中得到广泛应用。

本文将针对RS485串行通信电路的设计进行详细介绍。

首先,我们需要了解RS485通信的基本原理。

RS485采用差分信号传输,即发送端将逻辑0和逻辑1分别表示为低电平和高电平,接收端通过比较接收到的两个信号的电平差值来判断传输的是0还是1、差分信号传输具有较强的抗干扰能力,可以有效地抵抗电磁干扰和串扰。

除了收发芯片,RS485通信电路还需要考虑其他一些因素。

首先是电源电压的选择,一般RS485通信电路的电源电压为5V,但也可以根据实际需求选择其他电压。

其次是控制信号的设计,通常需要使用一个使能信号来控制发送和接收的开关。

此外,还要考虑阻抗匹配和信号线的布线,通常使用120欧姆电阻进行阻抗匹配,并尽量避免信号线与电源线、高电压线等干扰源的靠近。

在实际设计中,我们可以参考以下步骤进行RS485串行通信电路的设计:1.确定通信距离和通信速率:根据实际需求确定通信的最远距离和传输速率,这将影响到电路设计的一些参数。

2.选择收发芯片:根据通信距离和速率的要求,选择合适的收发芯片,并根据其规格书进行电路连接和布线。

3.设计电源电路:确定电源电压和电流,并设计相应的电源电路,通常需要增加滤波电容来提高电源的稳定性。

4.控制信号设计:根据收发芯片的要求设计使能信号和其他控制信号的接口电路。

5.阻抗匹配和信号线布线:根据通信距离和速率要求,选择合适的阻抗匹配电阻,并良好地布线,以减少干扰和串扰。

6.电路测试和优化:完成电路设计后,进行测试和优化,检查通信稳定性和可靠性,并根据需要进行一些调整和改进。

总之,RS485串行通信电路设计是一个相对复杂的过程,需要考虑多个因素的综合。

通过仔细设计和优化,可以实现稳定、可靠的串行通信。

RS485通信终端电阻--通信丢数据原因之一

RS485通信终端电阻--通信丢数据原因之一

RS485通信终端电阻--通信丢数据原因之一
在进行RS485 通信硬件电路设计时,会遇到一个设计的问题,即485_A 线和485_B 线之间是否并联一个120Ω电阻?如下图所示:
RS485 通信终端电阻
图中120Ω电阻称为通信终端电阻。

这个通信终端电阻是否应该添加,是有条件的,并不是一定要加,具体原
因为:
RS-485 是差分电平通信,在距离较长或波特率较高(19200 以上)时,线路存在回波干扰,此时需要在通信线路首末两端并联120Ω匹配电阻同时匹配电阻会降低线路带负载能力,因此我们推荐在通信速率大于19.2Kps 或线路长度大于200 米时,才需加接匹配电阻。

我就遇到过这种情况,当初设计一个485 通信模块,波特率使用的是9600,线路距离很短,添加了终端电阻,然后就发现在通信过程中出现了丢数据的现象,不停的考虑软件编程,都找不到原因,后来是无意中去掉该电阻,才解决了这个问题,所以这个问题非常重要。

建议在设计电路时,在PCB 中添加该电阻,但是根据需要来决定是否焊接。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

RS485串口通讯电路的保护

RS485串口通讯电路的保护

RS485串口通讯电路的保护串口通讯一般采用RS-485或RS-422通讯方式。

该通讯方式技术成熟、通讯过程稳定可靠、传输距离最远可达1200M。

本设计选用MAX485作为RS-485通讯芯片。

MAX485接口芯片是Maxim公司的一种RS-485芯片。

是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率。

收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120uA-500uA之间。

采用单一电源+5 V 工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平转换为RS -485电平的功能。

MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

在与单片机连接时接线非常简单。

只需要一个信号控制MAX485的接收和发送即可。

同时将A和B端之间加匹配电阻,一般可选100Ω的电阻。

在系统工作中,通讯的稳定性、可靠性是至关重要的。

然而,往往外部设备数量较多,分布距离较远,现场干扰信号的不可预测性、没有固定性对于通讯都会有相当大的影响。

如果简单的通讯电路设计在现场工作中可能出现2种问题。

一、接收数据可靠性问题。

二、多机通讯方式下,一个节点的故障可能导致整个系统通讯框架崩溃。

由于工程环境比较复杂,现场常有各种形式的干扰源,本设计电路如上图所示。

D8为防反向二极管,当本机电源关闭,外部电源不会通过信号线到VCC,避免CPU因低压处于休眠状态。

RS485 通信

RS485 通信

RS485 通信1在电能表中的应用由于历史的原因,我国在制定DL/T 614-1997《电子式多功能电能表》及DL/T 645-1997《电子式多功能电能表通讯协议》时将RS-485标准串行通讯接口作为电表的通讯接口,并详细地定义了物理层、链路层、应用层,结束了以前电表厂家规约各不兼容、互相不能抄的尴尬局面。

各电表厂家遵循相同的协议标准对电表进行读写操作,简化了电表抄表应用及维护的工作量。

使得国内的智能电表基本上可以做到互联互通。

但是目前国内的485抄表还存在一些问题,主要是通信成功率低、不能做到即连即通、易损坏等。

2物理层、链路层及数据传输2.1物理层A)共模输入电压:-7V~+12V。

B)差模输入电压:大于0.2V。

C)三态方式输出。

D)半双工通信方式。

E)驱动能力不小于32个同类接口。

F)总线是无源的,由费率装置或数据终端提供电源。

G)逻辑“1”以A、B两线间的电压差为+(2~6)V表示;逻辑“0”以两线间的电压差为-(2~6)V表示。

2.2链路层及数据传输通讯链路的建立与解除由主站发出的信息帧来控制,帧的组成如表:域起始符地址域起始符控制码长度数据域校验码结束码字节代码68H A0 A1 A2 A3 A4 A5 A6 68H C L DA TA CS 16H由上表可知,帧由起始符、地址域、控制码、数据长度、数据域、校验码及结束符等7个域组成,每部分由若干字节组成。

DL/T 645-1997规定,在发送帧信息之前,先发送1~4个字节FEH,其目的是预先拉高控制总线,以唤醒接收方,保障帧信息的顺利接收。

DL/T 645-1997规定了主—从结构的半双工通讯方式。

每次通讯都是由主站向从站发出请求命令帧开始,从站根据要求作出响应。

收到命令帧后的响应延时称作帧间延时Td:20ms≤Td≤500ms。

字节之间停顿时间称作字节间延时Tb:Tb≤500ms。

如图1所示:3RS485在电表通讯中的常见问题及解决方案3.1收发时序不匹配现象1:485通讯不成功,用逻辑分析仪查看,发送的码字正确,电能表返回码字也符合规约。

RS485通讯布线要求及故障处理方法

RS485通讯布线要求及故障处理方法

RS485通讯布线要求及故障处理方法作者:金典高科(北京)科技有限公司时间:2010-04-26 阅读次数:11323RS485总线是一种用于设备联网的经济型的传统的工业总线方式。

通讯质量是需要根据施工经验进行测试和调试的。

485通讯的传输线路为DATA+(TDA)接DATA+,DATA-(TDB)接DATA-,SG接SG(信号地通常没有接,在多数情况下,通讯也能正常,但在现场有共模干扰存在时,可能会出现发出的字符出现在接受缓冲区内的现象,因此根据现场必要时应接上信号地线并良好的接地,可以确保设备被雷击、浪涌冲击、静电累计时可以配合设备的防雷设计较好地释放能量,保护485总线设备和相关芯片不受伤害)。

1.施工前准备充足:凡事预则利,施工前做好充分的准备工作往往可使工程更好的完成,达到事半功倍的效果。

1).常用工具准备:万用表、电烙铁、剥线钳、备用232-485转换器。

2).备用工具准备:串口调试软件、备用长距离通讯线(普通)。

3).现场勘察准备:在施工前要了解清楚现场各方面情况,有无大型变压、高频、无线、射频等电磁干扰源,如果有将要在特定的地方采用相关的对应措施,包括控制的距离、布线的难易度及通讯的维护等预计出大概的线路。

2.布线要求:1).线材要求:布线要求布多股屏蔽双绞线:多股是为了备用,可以减少以后工程维护量。

屏蔽是为了出现特殊情况时调试,像现场干扰大时可以用屏蔽线作为地线连接,减少外界电磁干扰。

双绞是因为485通讯采用差模通讯原理,双绞的抗干扰性能最好。

我们推荐用的屏蔽双绞线的型号为RVSP4*0.5(四芯屏蔽双绞线,每芯由16股的0.2mm的导线组成(RVSP4*0.5))。

注意:工程商大都习惯采用5类网线或超5类网线作为485通信线,这是错误的。

因为: A.普通网线没有屏蔽层,不能防止共模干扰。

B.网线只有0.2mm平方,线径太细,会导致传输距离降低和可挂接的设备减少。

C.网络线为单股的铜线,相比多芯线而言容易断裂。

rs485接口设计要点和调试方法

rs485接口设计要点和调试方法

rs485接口设计要点和调试方法一、RS485接口设计要点:1.基本电气参数:RS485接口是一种基于差分传输的串行通信接口,能够实现远距离和高速传输。

在设计RS485接口时,需要考虑以下基本电气参数:a.差分电平:RS485采用差分信号传输,所以需要在接口电路中设置一个电平变换器,将逻辑电平转换为差分电平。

通常差分电平为正负两个电平,例如:+5V和-5V。

b.带宽:RS485接口的带宽决定了其传输速率和信号质量。

在设计时需要根据实际需求选择合适的带宽。

c.驱动能力:RS485接口通常需要驱动一定数量的设备,因此需要考虑驱动电流和输出功率等参数,以确保信号传输稳定和可靠。

2.线路特性:a.线路长度:RS485接口支持较长的通信距离,但实际可靠距离受到多种因素的影响,如传输速率、电缆类型和环境干扰等。

因此,在设计RS485接口时需要考虑通信距离的限制,并根据需求选择合适的电缆类型和衰减补偿方法。

b.终端电阻:RS485通信线路需要在两端分别加上120欧姆的终端电阻,以确保信号有效的传输和防止信号反射。

c.屏蔽和抗干扰措施:RS485接口在电气环境中可能会受到较强的干扰,如电磁辐射和电磁感应等。

为了提高信号质量和抗干扰能力,可以采用屏蔽电缆、引入滤波电路和设置适当的接地措施。

3.通信协议:a.数据格式:RS485接口支持多种数据格式,包括:ASCII码、二进制码和Modbus等。

在设计接口时需要根据实际应用场景选择合适的数据格式。

b.通信速率:RS485接口支持多种通信速率,通常为几百kbps至几Mbps。

在设计接口时,需要根据实际需求选择合适的通信速率,并确保接口电路的传输带宽足够以支持所选择的速率。

c.错误检测和纠正:RS485接口在数据传输过程中可能会出现错误,例如位错误、校验错误和帧错误等。

为了提高通信的可靠性,可以采用差错检测和纠正机制,如CRC校验等。

二、RS485接口调试方法:1.硬件调试:a.接线检查:首先需要检查接线是否正确连接,包括数据传输线、终端电阻和供电电路等。

RS485接口EMC电路设计方案

RS485接口EMC电路设计方案

RS485接口EMC电路设计方案一、原理图1. RS485接口6KV防雷电路设计方案图1 RS485接口防雷电路接口电路设计概述:RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源、功率信号等混合在一起,存在EMC隐患。

本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计,从设计层次解决EMC问题。

2.电路EMC设计说明:(1) 电路滤波设计要点:L1为共模电感,共模电感能够对衰减共模干扰,对单板内部的干扰以及外部的干扰都能抑制,能提高产品的抗干扰能力,同时也能减小通过429信号线对外的辐射,共模电感阻抗选择范围为120Ω/100MHz ~2200Ω/100MHz,典型值选取1000Ω/100MHz;C1、C2为滤波电容,给干扰提供低阻抗的回流路径,能有效减小对外的共模电流以同时对外界干扰能够滤波;电容容值选取范围为22PF~1000pF,典型值选取100pF;若信号线对金属外壳有绝缘耐压要求,那么差分线对地的两个滤波电容需要考虑耐压;当电路上有多个节点时要考虑降低或去掉滤波电容的值。

C3为接口地和数字地之间的跨接电容,典型取值为1000pF, C3容值可根据测试情况进行调整;(2) 电路防雷设计要点:为了达到IEC61000-4-5或GB17626.5标准,共模6KV,差模2KV的防雷测试要求,D4为三端气体放电管组成第一级防护电路,用于抑制线路上的共模以及差模浪涌干扰,防止干扰通过信号线影响下一级电路;气体放电管标称电压VBRW要求大于13V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1859W;PTC1、PTC2为热敏电阻组成第二级防护电路,典型取值为10Ω/2W;为保证气体放电管能顺利的导通,泄放大能量必须增加此电阻进行分压,确保大部分能量通过气体放电管走掉;D1~D3为TSS管(半导体放电管)组成第三级防护电路,TSS管标称电压VBRW 要求大于8V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1144W;3.接口电路设计备注:如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连;如果设备为非金属外壳,那么接口地PGND与单板数字地GND直接电气连接。

485短路电流

485短路电流

485短路电流短路电流是指电路中出现电阻极低的短路路径时,电流会突然增大到很高的数值。

485短路电流是指在RS485通信中出现短路时,电流达到的数值。

RS485通信是一种常用的串行通信协议,它被广泛应用于工业自动化领域。

在RS485通信中,数据传输是通过电流的变化来表示的。

当RS485通信线路发生短路时,电流无法正常流动,从而导致电路中的短路电流增大。

短路电流的大小与通信线路的特性有关,包括线路电阻、线路电容和线路电感等。

通常情况下,485短路电流的数值在几十毫安到几百毫安之间。

短路电流的大小对通信设备的安全性和可靠性都有重要影响。

485短路电流的大小与通信设备的设计有关。

在设计RS485通信电路时,通常会采取一些措施来限制短路电流的大小,以保护通信设备。

其中一种常用的措施是在通信电路中添加短路保护电阻。

这样,当通信线路短路时,短路电流会通过短路保护电阻流回电源,从而保护通信设备免受短路电流的损害。

除了短路保护电阻,还可以通过调整通信电路的电源电压和电流限制器来限制短路电流的大小。

在实际应用中,根据通信线路的特性和通信设备的要求,可以选择适当的电源电压和电流限制器,以控制短路电流的大小。

短路电流的存在对RS485通信系统的正常运行有一定的影响。

当通信线路短路时,通信设备可能无法正常工作,数据传输可能会中断。

因此,在RS485通信系统的设计和安装中,需要特别注意短路电流的问题,以确保通信的稳定性和可靠性。

在实际应用中,可以通过以下几点来减小短路电流的大小和对通信设备的影响:1.合理设计通信电路,选择合适的电源电压和电流限制器,以控制短路电流的大小。

2.在通信电路中添加短路保护电阻,以限制短路电流的大小。

3.定期检查和维护通信线路,及时发现和修复可能导致短路的故障点。

4.在通信线路上设置过载保护装置,及时切断电路,防止短路电流对通信设备造成损害。

总之,485短路电流是在RS485通信中出现短路时,电流达到的数值。

强电485方案

强电485方案

以我给的标题写文档,最低1503字,要求以Markdown 文本格式输出,不要带图片,标题为:强电485方案# 强电485方案## 引言强电485通信是一种基于RS485电平标准的通信协议,用于在强电环境中进行稳定可靠的数据传输。

本文档将介绍强电485方案的原理和实现方法,包括硬件设计和软件开发。

## 硬件设计### 1. RS485转换器RS485转换器是强电485通信的关键硬件设备,它实现了电平转换和差分信号传输。

典型的RS485转换器包含一个收发器芯片和一对差分传输线,如MAX485芯片和A/B 线。

### 2. 电源和保护电路在强电环境中,电源稳定和保护非常重要。

设计强电485方案时,需要考虑到电源的稳定性和过压、过流保护等功能,以确保系统的可靠性和安全性。

### 3. 通信接口电路强电485方案通常需要与其他设备进行数据交互,因此需要设计适合的通信接口电路。

常见的接口电路包括UART、SPI和I2C等,根据具体应用场景选择合适的接口。

### 4. 增强抗干扰能力在强电环境中,存在各种电磁干扰和放射干扰。

为了提高系统的抗干扰能力,设计中需要采取一系列措施,如使用屏蔽线缆、地线隔离、滤波器等。

## 软件开发### 1. 通信协议强电485方案中的通信协议一般是自定义的,根据具体需求进行设计。

通信协议包括数据帧结构、帧头和帧尾的定义,以及错误检测和纠错机制等。

### 2. 驱动程序开发在软件开发中,需要开发针对硬件设备的驱动程序,使其能够与上层应用进行数据交互。

驱动程序一般包括初始化配置、发送和接收数据等功能。

### 3. 上层应用开发根据具体的应用需求开发上层应用。

上层应用可以是监控系统、控制系统或其他数据采集和处理系统,通过强电485通信与下层设备进行数据通信和控制。

### 4. 鲁棒性和安全性在软件开发过程中,需要考虑系统的鲁棒性和安全性。

鲁棒性包括错误处理和异常情况处理等,安全性包括数据加密和权限管理等。

RS485接口容易损坏的原因和解决办法

RS485接口容易损坏的原因和解决办法

西门子S7-200PLC RS485接口容易损坏的原因和解决办法一、 S7-200PLC内部RS485接口电路图:图中R1、R2是阻值为10欧的普通电阻,其作用是防止RS485信号D+和D-短路时产生过电流烧坏芯片,Z1、Z2是钳制电压为6V,最大电流为10A的齐纳二极管,24V电源和5V电源共地未经隔离,当D+或D-线上有共模干扰电压灌入时,由桥式整流电路和Z1、Z2可将共模电压钳制在±6.7V,从而保护RS485芯片SN75176(RS485芯片的允许共模输入电压范围为:-7V~+12V)。

该保护电路能承受共模干扰电压功率为60W,保护电路和芯片内部没有防静电措施。

二、常发生的故障现象分析:当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:●R1或R2被烧断,Z1、Z1和SN75176完好。

这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受最大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。

●SN75176损坏,R1、R2和Z1、Z2完好。

这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。

●Z1或Z2、SN75176损坏,R1和R2完好。

这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。

由以上分析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压超出允许范围。

RS485接口EMC电路设计方案

RS485接口EMC电路设计方案

一、原理图1. RS485接口6KV防雷电路设计方案图1 RS485接口防雷电路接口电路设计概述:RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源、功率信号等混合在一起,存在EMC隐患。

本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计,从设计层次解决EMC问题。

2.电路EMC设计说明:(1)电路滤波设计要点:L1为共模电感,共模电感能够对衰减共模干扰,对单板内部的干扰以及外部的干扰都能抑制,能提高产品的抗干扰能力,同时也能减小通过429信号线对外的辐射,共模电感阻抗选择范围为120Ω/100MHz~2200Ω/100MHz,典型值选取1000Ω/100MHz;C1、C2为滤波电容,给干扰提供低阻抗的回流路径,能有效减小对外的共模电流以同时对外界干扰能够滤波;电容容值选取范围为22PF~1000pF,典型值选取100pF;若信号线对金属外壳有绝缘耐压要求,那么差分线对地的两个滤波电容需要考虑耐压;当电路上有多个节点时要考虑降低或去掉滤波电容的值。

C3为接口地和数字地之间的跨接电容,典型取值为1000pF,C3容值可根据测试情况进行调整;(2)电路防雷设计要点:为了达到IEC61000-4-5或GB17626.5标准,共模6KV,差模2KV的防雷测试要求,D4为三端气体放电管组成第一级防护电路,用于抑制线路上的共模以及差模浪涌干扰,防止干扰通过信号线影响下一级电路;气体放电管标称电压VBRW要求大于13V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1859W;PTC1、PTC2为热敏电阻组成第二级防护电路,典型取值为10Ω/2W;为保证气体放电管能顺利的导通,泄放大能量必须增加此电阻进行分压,确保大部分能量通过气体放电管走掉;D1~D3为TSS管(半导体放电管)组成第三级防护电路,TSS管标称电压VBRW要求大于8V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1144W;3.接口电路设计备注:如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连;如果设备为非金属外壳,那么接口地PGND与单板数字地GND直接电气连接。

RS485通讯原理及排错处理

RS485通讯原理及排错处理

提高RS485通信可靠性的设计方法发布时间:2009-5-11 14:00 发布者:李宽阅读次数:556RS-485接口芯片能担当起一种电平转化的角色,把TTL信号、COMS信号等转化为能在485总线上传输的差分信号,把接收到的485差分信号转化为MCU能够识别的TTL或COMS电平,在工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域得到了广泛应用。

但在RS485通信中,常常会存在通信距离不远、通信质量差等问题。

为提高RS485的通信质量,除了采用终端匹配的总线型结构外,在系统设计中通常要考虑以下几个问题。

1.故障保护根据RS-485的标准规定,接收器的接收灵敏度为±200mV,这意味着当接收端的差分电压大于等于+200mV时,接收器输出为高电平,小于等于 -200mV时输出为低电平,介于±200mV 之间时,接收器输出为不确定状态。

在总线空闲(即传输线上所有节点都为接收状态)以及传输线开路或短路故障时,若不采取特殊措施,接收器可能输出高电平或者低电平。

一旦某个节点的接收器产生低电平,就会使串行接收器(UART)找不到起始位,从而引起通信异常。

为解决该问题,很多RS485接口芯片引入了故障保护。

例如,上海英联电子的UM3085/UM3088输入灵敏度为-50mV/-200mV,即差分接收器输入电压UA-B≥-50mV时,接收器输出逻辑高电平,如果UA-B≤-200mV,则输出逻辑低电平。

当接收器输入端总线短路或总线上所有发送器被禁止时,接收器差分输入端为0V,从而确保总线空闲、短路时接收器输出高电平。

2.防雷电冲击RS- 485接口芯片在使用、焊接或设备的运输途中都有可能受到静电冲击而损坏。

在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭受雷电袭击。

选用抗静电或抗雷击的芯片可有效避免此类损失。

UM3085/UM3088芯片内部集成了ESD保护电路,人体模型ESD 保护和机器模型ESD保护分别达到 15kV和2kV。

RS-485接口电路设计完全指南

RS-485接口电路设计完全指南
2.3故障保护和失效保护 2.3.1故障保护
和其它任何系统设计一样,必须习惯性的考虑故障应对措施,不论这些故障是自然产生还是因 环境诱导产生。对于工厂控制系统,通常要求对极端噪声电压进行防护。485提供的差分传输机 制,特别是宽共模电压范围,使得485对噪声具有一定的免疫力。但面对复杂恶劣环境时,其免 疫力可能不足。有几种方法可以提供保护,最有效的方法是通过电流隔离,后面会讨论这个方 法。电流隔离能够提供更好的系统级保护,但是价格也更高。更流行并且比较便宜的方案是使 用二极管保护。使用二极管方法代替电流隔离是一种折衷方法,在更低层次上提供保护。外接 二极管和内部集成瞬态保护二极管的例子如下图所示:
在数据通讯系统中,隔离是指多个驱动器和接收器之间没有直接电流流通。隔离变压器为系统 提供电源,光耦或数字隔离器件提供数据隔离。电流隔离可以去除地环流,抑制噪声电压。因 此,使用这种技术可以抑制共模噪声,降低其它辐射噪声。
举一个例子,图9显示了过程控制系统的一个节点,通过485链路连接数据记录器和主计算机。
2.3.2 失效保护 许多485应用也要求提供失效保护,失效保护对于应用层是很有用的,需要仔细考虑并充分理 解。
在任何多个驱动器/接收器共用同一总线的接口系统中,驱动器大多数时间处于非活动状态,这 个状态被称为总线空闲状态。当驱动器处于空闲状态时,驱动器输出高阻态。当总线空闲时,
沿线电压处于浮空状态(也就是说,不确定是高电平还是低电平)。这可能会造成接收器被错 误地触发为高电平或低电平(取决于环境噪声和线路浮空前最后一次电平极性)。显然,这种 情况是不受欢迎的。在接收器前面需要有相关电路,将这种不确定状态变成已知的、预先约定 好的电平,这称之为失效保护。此外,失效保护还要能防止因短路而引起的数据错误。

RS485串行通信电路设计

RS485串行通信电路设计

RS485串行通信接口电路的总体设计在电参数仪的设计中,数据采集由单片机AT89C52负责,上位PC机主要负责通信(包括与单片机之间的串行通信和数据的远程通信),以及数据处理等工作。

在工作中,单片机需要定时向上位PC机传送大批量的采样数据。

通常,主控PC机和由单片机构成的现场数据采集系统相距较远,近则几十米,远则上百米,并且数据传输通道环境比较恶劣,经常有大容量的电器(如电动机,电焊机等)启动或切断。

为了保证下位机的数据能高速及时、安全地传送至上位PC机,单片机和PC机之间采用RS485协议的串行通信方式较为合理。

实际应用中,由于大多数普通PC机只有常用的RS232串行通信口,而不具备RS485通信接口。

因此,为了实现RS485协议的串行通信,必须在PC机侧配置RS485/RS232转换器,或者购买适合PC机的RS485卡。

这些附加设备的价格一般较贵,尤其是一些RS485卡具有自己独特的驱动程序,上位PC机的通信一般不能直接采用WINDOW95/98环境下有关串口的WIN32通信API函数,程序员还必须熟悉RS485卡的应用函数。

为了避开采用RS485通信协议的上述问题,我们决定自制RS485/RS232转换器来实现单片机和PC机之间的通信。

单片机和PC机之间的RS485通信硬件接口电路的框图,如下图1所示。

从图1可看出,单片机的通信信号首先通过光隔,然后经过RS485接口芯片,将电平信号转换成电流环信号。

经过长距离传输后,再通过另一个RS485接口芯片,将电流环信号转换成电平信号。

图1单片机与PC机之间的RS485通信硬件接口电路的框图(略)该电平信号再经过光电隔离,最后由SR232接口芯片,将该电平信号转换成与PC机RS232端口相兼容的RS232电平。

由于整个传输通道的两端均有光电隔离,故无论是PC机还是单片机都不会因数据传输线上可能遭受到的高压静电等的干扰而出现“死机”现象。

2接口电路的具体设计2-1单片机侧RS485接口电路的设计单片机侧RS485接口电路如图2所示。

rs485设计标准

rs485设计标准

RS485总线标准规定了总线接口的电气特性标准,具体如下:
1. 数字信号采用差分传输方式,能够有效减少噪声信号的干扰。

2. 电压标准:正电平在+2V~+6V之间,表示一个逻辑状态。

负电平在-2V~-6V之间,则表示另一个逻辑状态。

3. 阻抗标准:接收器的输入电阻RIN≥12kΩ,驱动器能输出±7V的共模电压。

4. 电容标准:输入端的电容≤50pF。

5. 终端电阻:在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V。

6. 接收灵敏度:接收器的输入灵敏度为200mV,即(V+)-(V-)≥0.2V表示信号“0”,(V+)-(V-)≤-0.2V表示信号“1”。

因为RS485具有远距离、多节点(32个)以及传输线成本低的特性,使得RS485成为工业应用中数据传输的首选标准。

如需更多信息,建议咨询专业技术人员获取帮助。

瞬雷电子:RS485接口的EMC防护

瞬雷电子:RS485接口的EMC防护

RS485接口的EMC防护由于485总线其布线简单,稳定可靠,从而广泛的应用于防盗报警、视频监控、门禁对讲等各个领域中。

但在实际应用中,雷击、功率感应、直接接触、电源波动、感应开关和静电放电可能产生较大瞬变电压,对RS-485收发器造成损害。

设计人员必须确保设备不仅能在理想条件下工作,而且能够在实际可能遇到的恶劣环境下正常工作。

为了确保这些设计能够在电气条件恶劣的环境下工作,必须符合EMC设计规范。

IEC 61000规范定义了信号线EMC抗扰性要求。

在规范中,设计人员必须考虑数据通信线路的下列三类高压瞬变: IEC 61000-4-2静电放电(ESD),IEC 61000-4-4电快速瞬变(EFT)及IEC 61000-4-5雷击浪涌(SURGE)等。

下图为RS485 雷击浪涌(SURGE)6KV的防护方案:防护等级:IEC61000-4-2: LEVEL4:Contact 8kv ; Air:15kvIEC61000-4-5: 10/7000us LEVEL4:6KV设计原理:为了达到上述防护等级要求选择一级防护时必须能够承受瞬间大能量的冲击,并且残压要满足后端芯片的承受范围,为此瞬雷电子推出全新物料SET浪涌静电硅抑制器(SPE06SC),该器件具有低残压,响应速度快,寄生电容小等特点,当输入端有高压脉冲时,SPE06SC可吸收高压脉冲,并把电压箝位在电路的正常工作电压范围内,防止干扰通过信号线影响下一级电路,从而抑制了线路上的共模以及差模浪涌干扰,由于寄生电容小,不会影响信号传输,且后端带载能力强。

R1、R2是为了防止浪涌能量瞬间干扰到后端,而做延时退偶,确保能量大部分由SET吸收及泄放。

C1,C2为滤波电容,给干扰提供低阻抗的回流路径,能有效减小对外的共模电流,同时对外界干扰能够滤波,典型值选100pF。

L1为共模电感,过滤共模的电磁干扰信号,对单板内部的干扰以及外部的干扰都能抑制,能提高产品的抗干扰能力,同时也能减小通过信号线对外的辐射。

工业总线(RS485)抗干扰设计和优化方法

工业总线(RS485)抗干扰设计和优化方法
2、节点与主干距离
理论上讲,RS-485节点与主干之间距离(T头,也称引出线)越短越好。T头小于10m的节点采用T型,连接对网络匹配并无太大影响,可放心使用,但对于节点间距非常小(小于1m,如LED模块组合屏)应采用星型连接,若采用T型或串珠型连接就不能正常工作。RS-485是一种半双工结构通信总线,大多用于一对多点的通信系统,因此主机(PC)应置于一端,不要置于中间而形成主干的T型分布。
五、光电隔离
在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。
4、总线隔离
RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。如没有PTC电阻和TVS二极管,可用普通电阻和稳压管代替。
四、RS-485接口电路的电源、接地
对于由MCU结合RS-485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS-485信号线共用同一股多芯电缆。RS-485信号线宜选用截面积0.75mm2以上双绞线而不是平直线。对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适。当然应注意LM7805的保护:
工业总线(RS485)抗干扰设计和优化方法
作者:兆富科技
在工业应用场合RS-485因硬件设计简单、控制方便、成本低廉等优点而被广泛应用。但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RS48硬件电路设计中需注意的问题1 问题的提出在工业控制及测量领域较为常用的网络之一就是物理层采用RS-485通信接口所组成的工控设备网络。

这种通信接口可以十分方便地将许多设备组成一个控制网络。

从目前解决单片机之间中长距离通信的诸多方案分析来看,RS-485总线通信模式由于具有结构简单、价格低廉、通信距离和数据传输速率适当等特点而被广泛应用于仪器仪表、智能化传感器集散控制、楼宇控制、监控报警等领域。

但RS485总线存在自适应、自保护功能脆弱等缺点,如不注意一些细节的处理,常出现通信失败甚至系统瘫痪等故障,因此提高RS-485总线运行可靠性至关重要。

2 硬件电路设计中需注意的问题图1 RS485通信接口原理2.1 电路基本原理某节点的硬件电路设计如图1所示,在该电路中,使用了一种RS-485接口芯片SN75LBC184,它采用单一电源Vcc,电压在+3~+5.5 V范围内都能正常工作。

与普通的RS-485芯片相比,它不但能抗雷电的冲击而且能承受高达8 k V的静电放电冲击,片内集成4个瞬时过压保护管,可承受高达400 V的瞬态脉冲电压。

因此,它能显著提高防止雷电损坏器件的可靠性。

对一些环境比较恶劣的现场,可直接与传输线相接而不需要任何外加保护元件。

该芯片还有一个独特的设计,当输入端开路时,其输出为高电平,这样可保证接收器输入端电缆有开路故障时,不影响系统的正常工作。

另外,它的输入阻抗为RS485标准输入阻抗的2倍(≥24 kΩ),故可以在总线上连接64个收发器。

芯片内部设计了限斜率驱动,使输出信号边沿不会过陡,使传输线上不会产生过多的高频分量,从而有效扼制电磁干扰。

在图1中,四位一体的光电耦合器TLP521让单片机与S N75LBC184之间完全没有了电的联系,提高了工作的可靠性。

基本原理为:当单片机P1.6=0时,光电耦合器的发光二极管发光,光敏三极管导通,输出高电压(+5 V),选中RS485接口芯片的DE端,允许发送。

当单片机P1.6=1时,光电耦合器的发光二极管不发光,光敏三极管不导通,输出低电压(0 V),选中RS485接口芯片的RE端,允许接收。

SN75LBC184的R端(接收端)和D 端(发送端)的原理与上述类似。

2.2 RS-485的DE控制端设计在RS-485总线构筑的半双工通信系统中,在整个网络中任一时刻只能有一个节点处于发送状态并向总线发送数据,其他所有节点都必须处于接收状态。

如果有2个节点或2个以上节点同时向总线发送数据,将会导致所有发送方的数据发送失败。

因此,在系统各个节点的硬件设计中,应首先力求避免因异常情况而引起本节点向总线发送数据而导致总线数据冲突。

以MCS51系列的单片机为例,因其在系统复位时,I/O口都输出高电平,如果把I/O口直接与RS-485接口芯片的驱动器使能端DE相连,会在CPU复位期间使DE为高,从而使本节点处于发送状态。

如果此时总线上有其他节点正在发送数据,则此次数据传输将被打断而告失败,甚至引起整个总线因某一节点的故障而通信阻塞,继而影响整个系统的正常运行。

考虑到通信的稳定性和可靠性,在每个节点的设计中应将控制RS 485总线接口芯片的发送引脚设计成DE端的反逻辑,即控制引脚为逻辑“1”时,DE端为“0”;控制引脚为逻辑“0”时,DE端为“1”。

在图1中,将CPU的引脚P1. 6通过光电耦合器驱动DE端,这样就可以使控制引脚为高或者异常复位时使S N75LBC184始终处于接收状态,从而从硬件上有效避免节点因异常情况而对整个系统造成的影响。

这就为整个系统的通信可靠奠定了基础。

此外,电路中还有1片看门狗MAX813L,能在节点发生死循环或其他故障时,自动复位程序,交出RS-485总线控制权。

这样就能保证整个系统不会因某一节点发生故障而独占总线,导致整个系统瘫痪。

2.3 避免总线冲突的设计当一个节点需要使用总线时,为了实现总线通信可靠,在有数据需要发送的情况下先侦听总线。

在硬件接口上,首先将RS-485接口芯片的数据接收引脚反相后接至CPU的中断引脚INT0。

在图1中,INT0是连至光电耦合器的输出端。

当总线上有数据正在传输时,SN75LBC184的数据接收端(R端)表现为变化的高低电平,利用其产生的CPU下降沿中断(也可采用查询方式),能得知此时总线是否正“忙”,即总线上是否有节点正在通信。

如果“空闲”,则可以得到对总线的使用权限,这样就较好地解决了总线冲突的问题。

在此基础上,还可以定义各种消息的优先级,使高优先级的消息得以优先发送,从而进一步提高系统的实时性。

采用这种工作方式后,系统中已经没有主、从节点之分,各个节点对总线的使用权限是平等的,从而有效避免了个别节点通信负担较重的情况。

总线的利用率和系统的通信效率都得以大大提高,从而也使系统响应的实时性得到改善,而且即使系统中个别节点发生故障,也不会影响其他节点的正常通信和正常工作。

这样使得系统的“危险”分散了,从某种程度上来说增强了系统的工作可靠性和稳定性。

2.4 RS-485输出电路部分的设计在图1中,VD1~VD4为信号限幅二极管,其稳压值应保证符合RS-485标准,VD1和VD3取12 V,VD2 和VD4取7 V,以保证将信号幅度限定在-7~+12 V 之间,进一步提高抗过压的能力。

考虑到线路的特殊情况(如某一节点的RS-48 5芯片被击穿短路),为防止总线中其他分机的通信受到影响,在SN75LBC184的信号输出端串联了2个20 Ω的电阻R1和R2,这样本机的硬件故障就不会使整个总线的通信受到影响。

在应用系统工程的现场施工中,由于通信载体是双绞线,它的特性阻抗为120 Ω左右,所以线路设计时,在RS485网络传输线的始端和末端应各接1个120 Ω的匹配电阻(如图1中的R3),以减少线路上传输信号的反射。

2.5系统的电源选择对于由单片机结合RS-485组建的测控网络,应优先采用各节点独立供电的方案,同时电源线不能与RS-485信号线共用同一股多芯电缆。

RS-485信号线宜选用截面积0.75 mm2以上的双绞线而不是平直线,并且选用线性电源TL750L05比选用开关电源更合适。

TL750L05必须有输出电容,若没有输出电容,则其输出端的电压为锯齿波形状,锯齿波的上升沿随输入电压变化而变化,加输出电容后,可以抑制该现象。

3 软件的编程SN75LBC184在接收方式时,A、B为输入,R为输出;在发送方式时,D 为输入,A、B为输出。

当传送方向改变一次后,如果输入未变化,则此时输出为随机状态,直至输入状态变化一次,输出状态才确定。

显然,在由发送方式转入接收方式后,如果A、B状态变化前,R为低电平,在第一个数据起始位时,R仍为低电平,CPU认为此时无起始位,直到出现第一个下降沿,CPU才开始接收第一个数据,这将导致接收错误。

由接收方式转入发送方式后,D变化前,若A与B之间为低电压,发送第一个数据起始位时,A与B之间仍为低电压,A、B引脚无起始位,同样会导致发送错误。

克服这种后果的方案是:主机连续发送两个同步字,同步字要包含多次边沿变化(如55H ,0AAH),并发送两次(第一次可能接收错误而忽略) ,接收端收到同步字后,就可以传送数据了,从而保证正确通信。

为了更可靠地工作,在RS485总线状态切换时需要适当延时,再进行数据的收发。

具体的做法是在数据发送状态下,先将控制端置“1”,延时0.5 ms左右的时间,再发送有效的数据,数据发送结束后,再延时0.5 ms,将控制端置“0”。

这样的处理会使总线在状态切换时,有一个稳定的工作过程。

数据通信程序基本流程图如图2所示。

图2数据通信程序基本流程图单片机通信节点的程序基本上可以分为6个主要部分,分别为预定义部分、初始化部分、主程序部分、设备状态检测部分、帧接收部分和帧发送部分。

预定义部分主要定义了通信中使用的握手信号,用于保存设备信息的缓冲区和保存本节点设备号的变量。

设备状态检测部分应能在程序初始化后,当硬件发生故障时,作出相应的反应。

主程序部分应能接收命令帧,并根据命令的内容作出相应的回应。

为缩短篇幅,这里仅给出主程序部分的代码。

如下所示:/* 主程序流程*/while(1) {//主循环if(recv_cmd(&type)==0) //发生帧错误或帧地址与本机//地址不符,丢弃当前帧后返回continue;switch(type) {case __ACTIVE_://主机询问从机是否存在send_data(__OK_, 0,dbuf);//发送应答信息break;case __GETDATA_:len = strlen(dbuf);send_data(__STATUS_, len,dbuf);//发送状态信息break;default:break;//命令类型错误,丢弃当前帧后返回}}4 结论RS-485由于使用了差分电平传输信号,传输距离比RS-232更长,最多可以达到3000 m,因此很适合工业环境下的应用。

但与CAN总线等更为先进的现场工业总线相比,其处理错误的能力还稍显逊色,所以在软件部分还需要进行特别的设计,以避免数据错误等情况发生。

另外,系统的数据冗余量较大,对于速度要求高的应用场所不适宜用RS-485总线。

虽然RS-485总线存在一些缺点,但由于它的线路设计简单、价格低廉、控制方便,只要处理好细节,在某些工程应用中仍然能发挥良好的作用。

总之,解决可靠性的关键在于工程开始施工前就要全盘考虑可采取的措施,这样才能从根本上解决问题,而不要等到工程后期再去亡羊补牢。

相关文档
最新文档