轴对称知识点及对应例题(经典).

合集下载

八上 线段、角的轴对称性 知识点+例题+练习 (非常好 分类全面)

八上 线段、角的轴对称性 知识点+例题+练习 (非常好 分类全面)

两点,EC=4,ABC∆的周长为的垂直平分线分别交AC,AD,的对称点,线段MN分⊥,延长AE,BE,BE AE8.如图,D是ABC∆的边BC的中点,过AD延长线上的点E作AD的垂线EF,垂足为E,EF 与AB的延长线交于点F,点O在AD上,AO COBC EF.=,//求证:(1)AB AC= ;(2)点O是ABC∆三边垂直平分线的交点.【知识点4】最值问题1.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是()A.10 B.15 C.20 D.303.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.4.如图,在△ABC 中,∠C=90°,AB=4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ+PQ 的最小值是 .5.如图,已知等边△ABC ,点D 为AC 的中点,BD=4,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为角平分线的性质知识点1 角平分线的性质1. 如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,有下列结论:①CD ED =;②AC BE AB +=;③BDE BAC ∠=∠; ④DA 平分CDE ∠.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个2. 若△ABC 的周长为41 cm ,边BC =17 cm .AB<AC ,角平分线AD 将△ABC 的面积分成3:5的两部分,则AB =______cm .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一动点,若3PA =,则PQ 的最小值为( )A.32B. 2C. 3D.不能确定的平分线BE,CD,平分BAC=;∠;③AP PC2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺的一边与射线OB重合,另一把直尺的一边与射线OA重合并且与第一把直尺交于点P,小明说:“射线OP就是BOA∠的平分线.”他这样做的依据是( )A.角的内部到角两边的距离相等的点在角的平分线上B.角平分线上的点到角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确3.如图,已知点P到,,AE AD BC的距离相等,下列说法:①点P在BAC∠的平分线上;②点P 在CBE∠,BCD∠,CBE∠的平分∠的平分线上;④点P是BAC∠的平分线上;③点P在BCD线的交点.其中所有正确的序号是( )A.①②③④B.①②③C.④D.②③4.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.3 C.4 D.55.如图,已知射线OC上的任意一点到AOBD E F分别在边∠的两边的距离相等,点,,OC OA OB上,如果想要证明OE OF,,=,只需要添加以下四个条件中的某一个即可,请写出所有可能条件的序号 .①ODE ODF⊥.∠=∠;②OED OFD∠=∠; ③ED FD=;④EF OC6.如图,已知CE AB=.⊥,垂足分别为点,E F,BF交CE于点D,BD CD⊥,BF AC(1)求证:点D在BAC∠的平分线上;(2)若将条件“BD CD∠的平分线上”互换,成立吗?试说明=”与结论“点D在BAC理由.知识点3 角平分线的性质在生活中的应用1.如图,△ABC中,∠C=90°,(1)在BC上找一点D,使点D到AB的距离等于DC的长度;(2)连接AD,画一个三角形与△ABC关于直线AD对称.3. 如图,直线123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到4. 三条公路的距离都相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处3.如图,两条公路OA 和OB 相交于点O ,在AOB ∠的内部有两个工厂C ,D ,现要在AOB ∠内部修建一个货站P ,使货站P 到两条公路的距离相等,且到两个工厂C ,D 的距离也相等,用尺规作出货站尸的位置.(要求:保留作图痕迹,不写作法)4.如图,三家公司A 、B 、C 准备共建一个污水处理站M ,使得该站到B 、C 两公司的距离相等,且使A 公司到污水处理站M 的管线最短,试确定污水处理站M 的位置.5.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB:(2)在直线l上求一点Q,使l平分∠AQB.。

北师大七年级下册数学知识点总结(生活中的轴对称)和经典例题对接

北师大七年级下册数学知识点总结(生活中的轴对称)和经典例题对接
★知识点一:轴对称实例
▶▶典例分析
1.下列说法中,不正确的是()
A.等腰三角形底边上的中线就是它的顶角平分线
B.等腰三角形底边上的高就是底边的垂直平分线的一部分
C.一条线 段可看作以它的垂直平分线为对称轴的轴对称图形
D.两个三角形能够重合,它们一定是轴对称的
1.下列图形中,轴对称图形的个数是()
A.4个B.3个C.2个D.1个
3.如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.
4.如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分
线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
二、选择题
1、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是()
A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚
C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士
加拿大哥斯达黎加澳大利亚乌拉圭瑞典瑞士
2、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为()
A、7cm B、3cm C、7cm或3cm D、5cm
11、判定一个三角形是等腰三角形常用的两种方法:
(1)两条边相等的三角形是等腰三角形;
(2)如果一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”。
六、等边三角形
1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形。
2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的所有性质。
8.如图,两个三角形关于某直线对称,则x=

人教版八年级数学上册《轴对称》知识点精讲与典型例题(含答案)

人教版八年级数学上册《轴对称》知识点精讲与典型例题(含答案)

轴对称例1.如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种),怎样移动才能使所构成的图形具有尽可能多的对称轴?解:不是。

有以下几种移动方法(如图所示),其中,第3个图的对称轴最多。

例2. 如图所示,C是线段AB的垂直平分线上的一点,垂足为D,则下列结论中正确的有()A.AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°A. 2个B. 3个C. 4个D. 5个分析:由垂直平分线的定义可以直接得出①和⑤;由垂直平分线的性质可得出②;由△ADC≌△BDC可得到③和④。

解:D例3. 写出下列各点关于x轴和y轴对称的点的坐标。

(-2,3),(1,-2),(-2,-4),(0,2)。

例4.(2007年烟台)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):例5. 如图所示,已知线段AB,画出线段AB关于直线l的对称图形。

解:(1)画出点A关于直线l的对称点A';(2)画出点B关于直线l的对称点B':(3)连结A'B',则线段A'B'即为所求。

例6.要在河边修建一个水泵站,分别向张村、李庄送水(如图)。

修在河边什么地方,可使所用水管最短?解:设张村为点A,李庄为点B,张村和李庄这一侧的河岸为直线l。

(1)作点B关于直线l的对称点,(2)连结,交直线l于点C,点C就是所求的水泵站的位置。

(如图所示)1. 下列说法错误的是()A. 关于某直线对称的两个图形一定能完全重合B. 全等的两个三角形一定关于某直线对称C. 轴对称图形的对称轴至少有一条D. 线段是轴对称图形2. 轴对称图形的对称轴是()A. 直线B. 线段C. 射线D. 以上都有可能3. 下面各组点关于y轴对称的是()A. (0,10)与(0,-10)B. (-3,-2)与(3,-2)C. (-3,-2)与(3,2)D. (-3,-2)与(-3,2)*4. 下列图形中,不是轴对称图形的是()A. 一条线段B. 两条相交直线C. 有公共端点的两条相等的线段D. 有公共端点的两条不相等的线段5. (2007年河南)如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A. 30°B. 50°C. 90°D. 100°6. (2008年江苏苏州)下列图形中,是轴对称图形的是()*7. (2008年武汉)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF =150°,则∠AFE+∠BCD的大小是()A. 150°B. 300°C. 210°D. 330°**8. (2008年全国数学竞赛浙江预赛)如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。

八年级第十三章《轴对称》知识点及典型例题

八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

轴对称经典中考试题及答案解析一

轴对称经典中考试题及答案解析一

轴对称经典中考试题及答案解析一知识点1:轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.这条直线就是它的 .这时我们就说这个图形关于这条直线(或轴)对称.如图12-2所示,△ABC是轴对称图形.【答案】直线、对称轴、1.(2006广东深圳)下列图形中,是.轴对称图形的为( D )ABCD知识点2:两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够及重合,那么就是说这两个图形关于这条直线对称(也叫轴对称),这条直线叫做,折叠后的点是对应点,叫做对称点.如图12-3所示,△ABC及△A′B′C′关于直线l对称,直线l叫做对称轴.A和A′,B和B′,C和C′是对称点.【答案】另一个图形、对称轴、互相重合2.如图12-8所示,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.【答案】图(1)(3)(4)(6)(8)(10)是轴对称图形;图(2)(5)(7)(9)成轴对称.知识点3:轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .类似地,轴对称图形的对称轴,是任何一对对应点所连线段的 .(2)成轴对称的两个图形,如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形,这两个图形。

3.(2006扬州)如图,这是小亮制作的风筝,为了平衡做成轴对称图形,已知 OC是对称轴,∠A=35°,∠ACO=30°,那么∠BOC=°.【提示】由轴对称图形的性质可知:ACO BCO∆≅∆,得∠BOC=∠AO C=180°-∠A-∠ACO=115°知识点4:线段的垂直平分线定义和性质及判定定义:经过线段并且于这条线段的直线叫做这条线段的垂直平分线.性质:线段垂直平分线上的点及这条线段两个端点的距离 .判定:及一条线段两个端点距离相等的点在这条线段的上.【答案】中点、垂直、相等、垂直平分线4.(2006淮安)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( B )A.6 B.8 C.9 D.10【答案】由垂直平分线的性质可知:EA EC,所以△CDE的周长=CD+DE+EC=CD+DE+EA=CD+DA=AB+BC=3+5=8,选B。

八年级数学轴对称知识点整理及练习

八年级数学轴对称知识点整理及练习

教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。

16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。

人教版八年级下册数学专题复习及练习(含解析):轴对称

人教版八年级下册数学专题复习及练习(含解析):轴对称

专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。

这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。

4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。

知识点2:轴对称的性质(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。

(完整)初二数学八上第十三章轴对称知识点总结复习和常考题型练习,推荐文档

(完整)初二数学八上第十三章轴对称知识点总结复习和常考题型练习,推荐文档

第十三章轴对称、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形就叫做轴对称图形•⑵两个图形成轴对称:把一个图形沿某一条直线折叠, 如果它能够与另一个图形重合, 那么就说这两个图形关于这条直线对称 •铀对称图形AA\L区別只对f —冲-)ft-fKmr150对裤轴CF 一佥只冇一舉>(“轴对称旳睛(WK 予秤瓚的俭M 工菲.矗麹»JSt :t 鹽个、曲擢: 心)只有1一頭〉对務柄联系却晁把射对材囲宼泊对禅轴 曲卿撷甘"么卿牛曲癣 轶夭于迭条 W 鑽處抽对耕-如杲把.阿十庇抽对秤的国招 拼& — 妊呑虑一* 益林.外 也亡赣足一亍轴对STSJ 搭-(4) 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直 平分线• (5) 等腰三角形:有两条边相等的三角形叫做等腰三角形 •相等的两条边叫做腰, 另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角(6) 等边三角形:三条边都相等的三角形叫做等边三角形 2.基本性质:⑴对称的性质:① 不管是轴对称图形还是两个图形关于某条直线对称, 对称轴都是任何一对对应点所连线段的垂直平分线.② 对称的图形都全等•③ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

④ 两个图形关于某条直线成轴对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上。

⑵线段垂直平分线的性质:① 线段垂直平分线上的点与这条线段两个端点的距离相等 ② 与一条线段两个端点距离相等的点在这条线段的垂直平分线上 ⑶关于坐标轴对称的点的坐标性质①点(x, y )关于x 轴对称的点的坐标为(x, -y ).②点(x, y )关于y轴对称的点的坐标为(-x, y ).③点(x, y )关于原点对称的点的坐标为(-x,- y )⑷等腰三角形的性质:①等腰三角形两腰相等•②等腰三角形两底角相等(等边对等角)③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合•④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等•②等边三角形三个内角都相等,都等于60 °③等边三角形每条边上都存在三线合一④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形•②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)•⑵等边三角形的判定:①三条边都相等的三角形是等边三角形•②三个角都相等的三角形是等边三角形•③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短•常考例题精选1. (2015 •三明中考)下列图形中,不是轴对称图形的是()2. (2015 •日照中考)下面所给的交通标志图中是轴对称图形的是()ABC3. (2015 •杭州中考)下列“表情图”中,属于轴对称图形的是()4. (2015 •凉山州中考)如图,/ 3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证/ 1的度数为()A.30 °B.45 °C.60 °D.755. (2015 •德州中考)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()771 ~1 ~2 ~~ ~~6 ~7 d F A.(1,4) B.(5,0) C.(6,4)D.(8,3)6. (2015 •南充中考)如图,△ ABC中, AB=AC Z B=70,则/A的度数是()A.70 ° B.55C.50 °D.407. (2015 •玉溪中考)若等腰三角形的两边长分别为4和8,贝尼的周长为()A.12B.16C.20D.16 或208. (2014 •海门模拟)如图,在边长为1的正方形网格中,将△ ABC向右平移两个单位长度得到△ A B' C',则与点B'关于x轴对称的点的坐标是()A.(0,-1) B.(1,1) C.(2,-1)D.(1,-1)9. (2015 •绵阳中考)如图,AC BD相交于O, AB// DC AB=BC / D=40,/ ACB= 35°,则/ AOD= ______ .10. (2015 •丽水中考)如图,在等腰厶ABC中,AB=AC Z BAC=50,/ BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则/ CEF的度数1. (2015遵义)观察下列图形,是轴对称图形的是()2. 点P(5,—4)关于y轴的对称点是()A. (5,4)B. (5,—4)C. (4,—5)D. (—5,—4)3. 如图,△ ABC与厶ADC关于AC所在的直线对称,/ BCD= 70° ,/ BA B C D=80°,则/ DAC的度数为()D. 854. 如图,在Rt A ABC 中,/ C= 90° ,/ B = 15° ,DE 垂直平分AB 交BC于点E,BE = 4,则AC长为(),第4题图)A. 2B. 3C. 4 D .以上都不对6. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图 所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是8. 如图,D ABC 内一点,CD 平分Z ACB ,BE 丄CD ,垂足为D ,交AC 于点 E ,Z A ABE ,AC = 5,BC = 3,贝U BD 的长为()9.如图,已知S A ABC = 12, AD 平分Z BAC ,且AD 丄BD 于点D ,则S ^ADC的值是( )5. 如图,AB = AC = AD ,若/ BAD = 80则/ BCD =(C. 140 D . 1607. (2015玉林)如图,在厶ABC正确的是( )EC C . 中,AB = AC ,DE // BC ,则下列结论中不 Z ADE = Z C D . DE = *BC,第5题图)(A . 10 B. 8 C . 610. 如图,C为线段AE上一动点(不与点A , E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD 与BE交于点O, AD与BC交于点P,BE 与CD交于点Q,连接PQ.以下五个结论:①AD = BE;②PQ// AE ;③AP= BQ; ④DE= DP;⑤/ AOB = 60° .其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个12. 如图,D, E ABC两边AB , AC的中点,将厶ABC沿线段DE折叠,使点A落在点F处,若/ B = 55° ,则/BDF等于____________ .A「,第12题图)13. ____________________________________________________________ 如图,在3X 3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________________________ 种.14. 如图,在厶ABC中,AB = AC , AB的垂直平分线交BC于点D ,垂足15. _______ 在厶ABC中,AC = BC,过点A作厶ABC的高AD ,若/ ACD = 30 贝B = __________ .16. ____ 如图,△ ABC中,D, E分别是AC , AB上的点,BD与CE交于点O. 给出下列三个条件:①/ EBO = /DCO;②/ BEO = /CDO:③BE = CD.上述三个条件中,哪两个条件可判定△ ABC是等腰三角形(用序号写出一种情形):.,第16题图)17. _________________________ 如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是 .' ,第17题图)18. __ 如图,已知/AOB = 30° ,OC平分/ AOB,在OA上有一点M,OM =10 cm,现要在OC, OA上分别找点Q,N,使QM + QN最小,则其最小值为.,第18题图)19. 如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.不写作法,保留作图痕迹)23.如图,△ ABC,△ ADE是等边三角形,B,求证:(1)CE=AC + DC; (2)Z ECD = 60° . C,D在同一直线上.20. 如图,在平面直角坐标系中,A( —2, 2), B( —3, —2).(1) 若点D与点A关于y轴对称,则点D的坐标为__________ ;(2) 将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为________ ;(3) 求A,B,C,D组成的四边形ABCD的面积.■I r厂m ! I I_ ■i == = Ji1 l:-一十一4二* t: 1 ER I r21. 如图,在厶ABC 中,AB = AC, D 为BC 为上一点,/ B = 30° ,/ DAB45(1) 求/ DAC的度数;(2)求证:DC = AB.22. (2015潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB = CB,AD = CD,角或者对角线有关的一个结论,并证明你的结论.请你写出与筝形ABCD的24. 如图,在等腰Rt A ABC中,/ ACB = 90° , D为BC的中点,DE丄AB , 垂足为E,过点B作BF // AC交DE的延长线于点F,连接CF.(1) 求证:AD丄CF;(2) 连接AF ,试判断△ ACF的形状,并说明理由.25. 如图,已知AE丄FE,垂足为E,且E是DC的中点.(1) 如图①,如果FC丄DC, AD丄DC,垂足分别为C, D,且AD = DC,判断AE是/ FAD的角平分线吗?(不必说明理由)(2) 如图②,如果(1)中的条件“ AD = DC”去掉,其余条件不变,⑴中的结论仍成立吗?请说明理由;(3) 如图③,如果⑴的条件改为“ AD // FC” , (1)中的结论仍成立吗?请说明理由.。

初二数学上册(人教版)第十三章轴对称13.2知识点总结含同步练习及答案

初二数学上册(人教版)第十三章轴对称13.2知识点总结含同步练习及答案

描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.2 画轴对称图形一、学习任务1. 能够作一个图形关于一条直线的轴对称图形.体会轴对称和线段垂直平分线的性质.2. 在平面直角坐标系中,会求图形轴对称后的点坐标,能够用轴对称设计简单美观的图案.3. 感受轴对称的美,感受数学的美.二、知识清单轴对称 点的坐标与坐标系三、知识讲解1.轴对称轴对称相关概念如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形(axisymmentric figure ),这条直线就是它的对称轴(axis of symmetry ).把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点(symmetric points ).轴对称的性质① 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;② 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.轴对称作图例题:下列图形成轴对称图形的有( )A. 个B. 个C. 个D. 个解:A.一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形,所以成轴对称图形有 个.54325如图,某小区花坛的形状是左右对称的六边形 ,若 ,则 的度数为( )A. B. C. D. 解:B.根据四边形内角和 ,可得 ,再根据轴对称的性质,.ABCDEF ∠AF C +∠BCF =150∘∠E +∠D 200∘210∘230∘250∘360∘∠A +∠B =−=360∘150∘210∘∠E +∠D =∠A +∠B =210∘作图题:(写出做法,保留作图痕迹)、 为 为 、 上的两个顶点,请你在 边上找一点 ,使 周长最小?分析:由于 的周长 ,而 是定值,故只需在 上找一点,使 最小.如果设 关于 的对称点为 ,所以只要使 最小即可.作法:① 作 关于 的对称点 ;② 连接 交 于 点;③ 连接 ,则 周长最小, 为所求.M N △ABC AB AC BC P P MN △P MN =P M +P N +MN MN BC P P M +P N M BC M ′P +P N M ′M BC M ′N M ′BC P MP △PMN P描述:2.点的坐标与坐标系有序数对有顺序的两个数 与 组成数对,叫做有序数对(ordered pair ),记作 .当 时, 和 是不同的两个有序实数对.平面直角坐标系在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinatesystem ).水平的数轴称为 轴或横轴,习惯取向右为正方向,竖直的数轴称为 轴或纵轴,习惯取向上为正方向,两坐标轴的交点为平面直角坐标系的原点. 轴和 轴把坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限(quadrant ),按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.点的坐标对于平面内任意一点 ,过点 向 轴、 轴作垂线,垂足在 轴、 轴上对应的数 ,分别叫做点 的横坐标和纵坐标,有序数对 叫做点 的坐标,记作 .坐标轴上的点不属于任何象限.点到坐标轴的距离点 到 轴的距离是点的纵坐标的绝对值,即 ;点 到 轴的距离是点的横坐标的绝对值,即 .各象限的点的坐标点 在第一象限 ,;点 在第二象限 ,;点 在第三象限 ,;点 在第四象限 ,.坐标轴上点的坐标点 在 轴上, 为任意实数;点 在 轴上, 为任意实数;点 既在 轴上,又在 轴上,,即点 的坐标为 .象限角平分线上的点当点在第一、三象限夹角平分线上时,则点的横纵坐标相等;当点在第二、四象限夹角平分线上时,则点的横纵坐标互为相反数.a b (a ,b )a ≠b(a ,b )(b ,a )x y x y P P x y x y a b P (a ,b )P P (a ,b )P (a ,b )x |b |P (a ,b )y |a |P (x ,y )⇔x >0y >0P (x ,y )⇔x <0y >0P (x ,y )⇔x <0y <0P (x ,y )⇔x >0y <0P (x ,y )x ⇔y =0x P (x ,y )y ⇔x =0y P (x ,y )x y ⇔x =0y =0P (0,0)例题:平行于坐标轴的直线上的点平行于 轴直线上的两点,其纵坐标相等,横坐标不相等;平行于 轴直线上的两点,其横坐标相等,纵坐标不相等.关于 轴、 轴、原点对称的点① 两点关于 轴对称 两点坐标横坐标相同,纵坐标互为相反数;② 两点关于 轴对称 两点坐标横坐标互为相反数,纵坐标相同;③ 两点关于原点对称 两点坐标横坐标互为相反数,纵坐标互为相反数.点的平移平移口诀:在横坐标上左减右加,在纵坐标上上加下减.x yx yx⇔y⇔⇔如果将一张“ 排 号”的电影票简记为 ,那么 表示的电影票是___排___号.解:,.68(6,8)(15,20)1520如图,写出 、、、 各点的坐标.解:,,,.A B C DA(1,1)B(3,−2)C(−4,4)D(−2,−3)若点 在第二象限,则:(1) 点 在第___象限;(2) 点 在第___象限;(3) 点 在第___象限;(4) 点 在第___象限.解:(1)三;(2)一;(3)四;(4)四.先根据第二象限点的横、纵坐标的特点,判断 , 的符号,再判断其余点所在的象限.P(a,b)(a,−b)P1(−a,b)P2(−a,−b)P3(b,a)P4a b点 到 轴的距离为____,到 轴的距离为_____.解:;.到 轴的距离就是该点纵坐标的绝对值,到 轴的距离就是该点横坐标的绝对值.P(5,−6)x y65x y已知:点 、,若 轴,则 _____;若 轴,则 _____.解: ;.过 、 两点的直线平行于 轴,显然两点的纵坐标相同,所以 .同理,当 轴时,可知 .E(a,1)F(−3,b)EF∥x b=EF∥y a= 1−3E F x b=1EF∥ya=−3在平面直角坐标系,点 关于 轴对称的点的坐标为_____,关于 轴对称的点的坐标为_____,关于原点对称的点的坐标为_____.解:;;.A(2,3)x y(2,−3)(−2,3)(−2,−3)在平面直角坐标系,点 向上平移 个单位长度,向右平移 个单位长度后的坐标是_______.P(−1,2)13四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:.在横坐标上左减右加,在纵坐标上上加下减.(2,3)答案:1. 如图,有一矩形纸片 ,将纸片折叠,使 边落在 边上,折痕为 ,再将 以 为折痕向右折叠, 与 交于点 ,则 的面积为.A .B .C .D .C ABCD ,AB =10,AD =6AD AB AE △AED DE AE BC F △CEF ()46810答案:2. 如图,在坐标平面上, 为直角三角形, , 垂直 轴, 为 的外心.若点坐标为 , 点坐标为 ,则 点坐标为 .A .B .C .D .B △ABC ∠B =90∘AB x M △ABC A (3,4)M (−1,1)B ()(3,−1)(3,−2)(3,−3)(3,−4)答案:3. 下列图形中,轴对称图形的个数是 .A .B .C .D .B ()12344. 如图,正方形地砖的图案是轴对称图形,该图形的对称轴有 .()高考不提分,赔付1万元,关注快乐学了解详情。

初三3-2画轴对称图形知识点、经典例题及练习题带答案

初三3-2画轴对称图形知识点、经典例题及练习题带答案

环球雅思教育学科教师讲义讲义编号:______________ 副校长/组长签字:签字日期:【考纲说明】1、掌握轴对称图形及图形轴对称的画法;2、能利用轴对称及垂直平分线的性质解决实际问题。

【趣味链接】图中是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入几号球袋呢?【知识梳理】1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:D'D C'B'A'K J I H(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

【经典例题】【例1】(大连课改) 在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A’点,则A 与A′的关系是( ) A 、关于x 轴对称 B 、关于y 轴对称C 、关于原点对称D 、将A 点向x 轴负方向平移一个单位【例2】(2011湖北天门)将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )mCAB【例3】(2012大连)如图,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为( )【例4】已知点P1(a-1,5)与点P2(2,b+2)关于x轴对称,则a-b=________.【例5】(2010大连) 如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称。

北师大版五年级数学上册第2单元 《轴对称和平移》 知识点单元义+经典例题(含解析) (1)

北师大版五年级数学上册第2单元 《轴对称和平移》 知识点单元义+经典例题(含解析) (1)

一、知识梳理知识点一:轴对称再认识1. 认识轴对称图形及其对称轴判断一个图形是不是轴对称图形,关键是看沿一条直线对折后,这条直线两边的部分是否完全重合。

2.画轴对称图形的方法(1)确定关键点;(2)找出关键点的对称点;(3)顺次连接各对称点。

知识点二:平移1.图形平移的画法:(1)找出关键点;(2)按指定方向和格数平移关键点;(3)连接各点。

2. 欣赏与设计-运用轴对称或平移设计图案利用平移、轴对称设计图案时,可以只用一种方法,也可以两种都用。

平移图形时,注意方向和距离;画轴对称图形时,先找到对称点,再连线。

二、精练精讲考点 1轴对称再认识【例1】(2019春•南丰县期中)猜一猜,选一选.能剪出的是⑥号,能剪出的是②号.【思路分析】根据轴对称图形的特征,画出、的对称轴,对称轴左边部分与哪个图形相吻合就是哪个图形剪出的.【规范解答】解:可知能剪出的是⑥号,能剪出的是②号.故答案为:⑥,②.【名师点评】此题是考查轴对称图形的特征.轴对称的两个图形,必定是全等图形.1.(2018秋•高碑店市期末)明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.【思路分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【规范解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【名师点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.2.先画出下面图形的所有对称轴,再数一数分别有几条.1条;4条;1条;1条.【思路分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【规范解答】解:故答案为:1,4,1,1.【名师点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.3.(2019秋•西安期中)如图,等边三角形网格中,已有两个小等边三角形被涂黑,请将图中其余小等边三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【思路分析】因为如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,据此解答.【规范解答】解:解答如下答:使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【名师点评】此题是考查了轴对称图形的意义.考点 2平移【例2】图中圆的位置发生了什么变化?(1)从位置A向上平移4个方格到位置B,再向右平移4个方格到位置C.(2)从位置C向右平移6个方格到位置D,再向下平移4个方格到位置E(3)从位置A先向上平移1个方格,再向右平移7个方格或先向右平移7个方格,再向上平移1个方格到位置F.【思路分析】(1)B在A的上边,相距4格,即从位置A向上平移4个方格到位置B;C在B的右边,相距4格,即B向右平移4个方格到位置C.(2)D在C的右边,相距6格,即从位置C向右平移6个方格到位置D;E在D的下边,相距4格,即D向下平移4个方格到位置E.(3)A先上向(或右)平移1格(或7格),再向右(或上)平移7格(或1格)到F的位置.【规范解答】解:如图(1)从位置A向上平移4个方格到位置B,再向右平移4个方格到位置C.(2)从位置C向右平移6个方格到位置D,再向下平移4个方格到位置E(3)从位置A先向上平移1个方格,再向右平移7个方格或先向右平移7个.方格,再向上平移1个方格到位置F.故答案为:上,4,右,4;右,6,下,4;上,1,右,7,右,7,上,1.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.1.(2018春•端州区月考)细心观察,完成填空.(1)向上平移了2格.(2)向左平移了4格.(3)向右平移了6格.【思路分析】(1)根据平移的特征,两个三角形形状、方向相同,实线三角形与虚线三角形对应点相距2格,根据箭头的指向可知原三角形向上平移了2格.(2)同理,实线三角形与虚线三角形对应点相距4格,根据箭头的指向可知原三角形向左平移了4格.(3)同理,实线三角形与虚线三角形对应点相距4格,根据箭头的指向可知原三角形向右平移了6格.【规范解答】解:如图(1)向上平移了2格.(2)向左平移了4格.(3)向右平移了6格.故答案为:上,3;左,4;右,6.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.2.(2018春•湛江期末)帆船图向上平移了6格.【思路分析】根据图中两只“帆船”对应部分间的格数及箭头的指向即可确定平移的方程和格数.【规范解答】解:如图帆船图向上平移了6格.故答案为:上,6.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.3.(2018秋•雁塔区期中)如图,方格纸上的轴对称图形沿对称轴被分成了左右两部分,如何平移右半部分把它们拼成一个完整的轴对称图形?把右半部分先向左(或上)平移4格,再向上(或左)平移4格.【思路分析】根据平移的特征,把右图先向左平移4格,再向上平移4格或先向上平移4格,再向左平移4格,即可组成一个对称图形.【规范解答】解:如图方格纸上的轴对称图形沿对称轴被分成了左右两部分,如何平移右半部分把它们拼成一个完整的轴对称图形?把右半部分先向左(或上)平移4格,再向上(或左)平移4格.故答案为:左(或上),4,上(或左),4.【名师点评】在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置).三、巩固提升1.如图的图形中,对称轴条数最多的是()A.B.C.D.【思路分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【规范解答】解:A、有1条对称轴;B、有3条对称轴;C、有5条对称轴;D、有8条对称轴;故选:D.【名师点评】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.2.(2020春•英山县期末)如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个D.4个【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:选项A、B、D都是轴对称图形,而C不是轴对称图形;故选:C.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.3.(2020•石阡县)下列交通标志图案中,不是轴对称图形的是()A.B.C.D.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;由此解答即可.【规范解答】解:下列交通标志图案中,不是轴对称图形的是;故选:B.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.(2020•安新县)下列现象中,属于平移现象的的是()A.滑冰B.乘坐电梯C.猎豹奔跑D.荡秋千【思路分析】旋转就是围绕着一个中心转动,运动方向发生改变;平移就是直直地移动,移动过程中只改变图形的位置,而不改变图形的形状、大小和方向,据此解答即可.【规范解答】解:根据分析,乘坐电梯属于平移现象,滑冰、猎豹奔跑都不确定,荡秋千属于旋转;故选:B.【名师点评】本题是考查平移的意义.平移不改变图形的形状和大小,只是位置发生变化.5.(2020•古冶区)火车在铁轨上运动,车轮的运动是()A.旋转B.平移C.轴对称D.既平移又旋转【思路分析】根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转;根据平移的意义,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动.【规范解答】解:火车在铁轨上运动时,车厢的运动是平移,车轮的运动是旋转.故选:A.【名师点评】本题是考查图形的旋转、平移的意义.旋转与平移的相同点:位置发生变化,大小不变,形状不变,都在一个平面内.不同点:平移,运动方向不变.旋转,围绕一个点或轴,做圆周运动.6.(2020春•桃江县期末)如图,欢欢在对折的纸上剪去一个小圆和一个三角形,打开后是()A.B.C.【思路分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【规范解答】解:根据分析可得,欢欢在对折的纸上剪去一个小圆和一个三角形,打开后是;其它选项都是错误的,因为三角形的形状与题干中的三角形不对应.故选:A.【名师点评】此题主要考查轴对称图形意义的灵活运用.7.一辆汽车的车牌在水中的倒影如图,则该车牌的号码是MT7936.【思路分析】此题属于水面对称,实际景物与水中的景物关于水面对称,其特征是上、下方向相反,根据这一特征即可解答.【规范解答】解:如下图所示.所以一辆汽车的车牌在水中的倒影如图,则该车牌的号码是MT7936.故答案为:MT7936.【名师点评】镜面对称是景物左、右方向相反,水面对称是上、下方向相反.8.如图哪些图形是轴对称图形?在下面的括号里画“√”,不是的画“×”.【思路分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【规范解答】解:【名师点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.9.(2020•陇县)等腰梯形有1条对称轴.【思路分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行判断.【规范解答】解:由轴对称图形的意义可知:等腰梯形有1条对称轴.故答案为:1.【名师点评】此题主要考查轴对称图形的意义.10.(2020春•连云区校级期中)长方形有2条对称轴,正十边形有10条对称轴.【思路分析】长方形有2条对称轴,即过对边中点的直线;正十边形有10条对称轴,即过边中点的直线,对角线所在的直线.【规范解答】解:如图长方形有2条对称轴,正十边形有10条对称轴.故答案为:2,10.【名师点评】此题是考查确定轴对称图形对称轴的条数及位置.关键是轴对称图形的意义及图形的特征.11.(2020春•浑源县期末)等边三角形有3条对称轴,正方形有4条对称轴.【思路分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此即可确定这两个图形的对称轴条数.【规范解答】解:等边三角形有3条对称轴;正方形有4条对称轴.故答案为:3;4.【名师点评】此题主要考查轴对称图形的定义以及对称轴的条数的确定方法.12.(2019秋•永城市期中)先向上平移5格,又向右平移6格.【思路分析】根据平面图中的箭头和方格图可知,箭头是先向上平移5格,再向右平移6格,据此即可填空.【规范解答】解:先向上平移5格,又向右平移6格.故答案为:上,5,右,6.【名师点评】此题考查了简单图形平移,找到关键点,进行关键点的平移,向什么方向平移,平移多少是解决此题的关键.13.(2019秋•定西期中)平移后的图形与原图形相比较,只改变位置,不改变形状和大小.【思路分析】平移是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,但位置不同.【规范解答】解:平移后的图形与原图形相比较,只改变位置,不改变形状和大小;故答案为:位置,形状,大小.【名师点评】本题考查了平移的性质,属于基础题,要熟记.14.(2018秋•醴陵市期末)如图,由图A到图B是向右平移了6格,由图B到图C是向下平移了2格.【思路分析】根据图中两图的相对距离及箭头指向即可确定平移的方向和距离,所以图A到图B是向右平移了6格,由图B到图C是向下平移了2格;由此解答即可.【规范解答】解:如图,由图A到图B是向右平移了6格,由图B到图C是向下平移了2格.故答案为:右,6,下,2.【名师点评】作图形平移要注意三要素:即原位置、平移方向、平移距离.15.(2020春•徐水区期末)所有的梯形都不是轴对称图形.×.(判断对错)【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:所有的梯形都不是轴对称图形,说法错误,只有等腰梯形是轴对称图形;故答案为:×.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.16.(2020春•蓬溪县期末)不是轴对称图形.√(判断对错)【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【规范解答】解:不是轴对称图形;故答案为:√.【名师点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.17.(2020•惠来县)长方形有2条对称轴,正方形有4条对称轴,半圆有无数条对称轴.错误(判断对错)【思路分析】根据轴对称图形的定义,分别找出题干中的图形的所有对称轴条数,即可进行判断.【规范解答】解:长方形有2条对称轴;正方形有4条对称轴;半圆只有1条对称轴;所以原题说法错误.故答案为:错误.【名师点评】此题考查了利用轴对称图形的定义确定轴对称图形的对称轴的条数的灵活应用.18.(2018秋•新蔡县校级月考)电梯的运动时平移现象.√.(判断对错)【思路分析】根据平移的含义可知,图形的平移只改变图形的位置,而不改变图形的形状和大小,据此选择即可.【规范解答】解:据分析可知:电梯的升降属于平移现象,故原题说法正确;故答案为:√.【名师点评】本题考查了平移的定义,应注意理解和应用.19.(2018春•盐都区期中)荡秋千是平移现象.×(判断对错)【思路分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【规范解答】解:根据平移和旋转的意义可知:荡秋千是旋转运动,所以本题说法错误;故答案为:×.【名师点评】此题是对平移与旋转理解及在实际当中的运用.20.小妍和爸爸准备去图书馆,出门时,在镜子中看到的钟面如左图:回来时,在镜子中看到的钟面如右图.算一算,小研和爸爸出去了多长时间?【思路分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.小妍和爸爸去图书馆出门的实际时刻是下午2时,回来时,实际时刻是下午5时30分,用小妍和爸爸回来时的时刻减出门时的时刻就是小研和爸爸出的时间.【规范解答】解:如图出门时刻:下午2:00回来时刻:下午5:305时30分﹣2时=3时30分答:小研和爸爸出去了3小时30分.【名师点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【规范解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【名师点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.22.(2018秋•福田区期末)太极图在中国传统文化中含义深邃.其形状为阴阳两鱼互纠在一起,象征两级和合.照样子在空白圆里画一个.【思路分析】作这个圆的直径,再以两个半径的中点为圆心,以大圆半径的为半径,在圆直径的两旁各画一半圆,然后再画上“鱼眼”,涂色即可.【规范解答】解:太极图在中国传统文化中含义深邃.其形状为阴阳两鱼互纠在一起,象征两级和合.照样子在空白圆里画一个:【名师点评】此题是作图题,关键是掌握画法.23.(2019•岳阳模拟)画如图图形的对称轴【思路分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.据此画出即可.【规范解答】解:【名师点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.24.(2014秋•上饶县月考)根据对称轴画出给定图形的轴对称图形.【思路分析】据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出图形的关键对称点,连结即可.【规范解答】解:作图如下:【名师点评】此题是考查作轴对称图形.关键是确定对称点(对应点)的位置.25.涂一涂.①把图形向右平移7格后得到的图形涂上颜色.②把图形向右平移7格后得到的图形涂上颜色.【思路分析】根据平移图形的特征,看哪个虚线图形与这个图形的各对应点相距7格,涂上颜色即可.【规范解答】解:【名师点评】解决本题的关键是查清两图的对应点相距的格数.26.把图1向右平移5格.画出图2的另一半,使它成为轴对称图形.【思路分析】根据平移图形的特征,把图1的各顶点分别向右各平移5格,再依次连结各点即可得到向右平移5格后的图形;根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的左边画出右图的关键对称点,连结即可.【规范解答】解:根据题意画图如下:【名师点评】本题是考查作平移后的图形、轴对称图形.平移作图要注意:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动;求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各特征点即可.27.(2018秋•青龙县期末)如图所示的是由小正方形组成的L形图形,请你用两种不同的方法在图中添画一个小正方形,使它称为轴对称图形,并分别画出它的对称轴.【思路分析】轴对称图形定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.即可在图中添画一个小正方形,使它称为轴对称图形,并画出它的对称轴.【规范解答】解:如图所示的是由小正方形组成的L形图形,用两种不同的方法在图中添画一个小正方形,使它称为轴对称图形,并分别画出它的对称轴(蓝色部分为所画的正方形,红色虚线是对称轴):【名师点评】解答此题的关键是轴对称图形的意义或特征.28.按要求在下面画出三组图形的对称轴.每组各由两个圆组成.(1)只有一条对称轴.(2)只有两条对称轴.(3)有无数条对称轴.【思路分析】(1)画出半径不相等的不同圆心的两个圆;(2)画出半径相等的不同圆心的两个圆;(3)画出半径不相等的同圆心的两个圆.【规范解答】解:(1)如图所示:(2)如图所示:(3)如图所示:【名师点评】本题考查了作轴对称图形的对称轴,确定轴对称图形的关键的正确确定图形的对称轴.29.一只钟的对面有一面镜子,镜子里的钟表如下图,镜子里的钟表是1:30分,那么钟表上正确的时间是几时?钟表上现在时间是几时?【思路分析】因为镜子中的影像与实际的物像左右相反,如果镜子里的钟表是1:30分,那么分针位置是一样的,指在“6”上,时针应指在“10”H和“11”的中间.即:钟表上正确的时间是10:30,【规范解答】解:在镜子里看到的图象刚好是轴对称图象,镜子里的钟表是1:30分,所以钟表上正确的时间是10:30分.钟表上现在时间是10:30分.答:钟表上正确的时间是10:30分,钟表上现在时间是10:30分.【名师点评】此题考查了镜面对称在现实生活中的应用.30.画一画请你在下面的方格图中设计一个具有对称美的图形.一定要漂亮哦!【思路分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫轴对称图形,这条直线叫做这个图形的对称轴,由此即可解决问题.【规范解答】解:紧扣轴对称图形的定义,可绘制出具有对称美的图形如右图所示.【名师点评】抓住轴对称图形的特点,即可解决此类问题.。

第十三章 轴对称【复习课件】

第十三章 轴对称【复习课件】
轴对称章节复习
(人教版)
知识框架
知识清单详解
知识点一:轴对称图形和轴对称
1.轴对称图形:一个图形沿着某一条直线对折,直 线两旁的部分能够完全重合,有这样形状的图形叫 轴对称图形。 2.轴对称:有两个图形,如果沿着某条直线对折这 两个图形能够完全重合,那么这两个图形的位置关 系叫做轴对称。 3.对称轴:对折的直线为轴对称图形或轴对称的对 称轴。 4.轴对称图形和轴对称图形的性质:
ACBC. .行 义 换C. .∠ ∠.13线 得 后1700EA900° °的 到 有DCc0°CDm°∠性 角==或,∠∠,A质 相17OBB204BDD和 等CCc0°. .=DDm°∠角 ,, ,2400平 进E又 即° °DO分 行D∠,E线 等∥E即CD的 量DB.证=C∠定 代,在△E所9EDcOC以mD,或为,1等2c腰m之三间角形。 分 三 ∠ 解 ∴ 又 ∴ ∴ 故分 所 解 底 ( 1故D分 和 要 证 解 角 当 边 故解 理 ∵ ∴ ∴ ∴A析 角 E∠ ∠ 选: ∵0.解 又 ∴ ∴ 又 ∴ 答 所 DDD角析 以 : 选20进 关析 能 : 形 腰 选5: 由 DO∠△E⊥C: 形 AE:∵A) °7cEE=A∠ 以: ∵ △ ∵ :=DDD: 要 ( :,0m: 否 当 的 长 :行 系∥ =△ :EA3C∠根 的在BEC=A若 ,°,DOOc=E,∵ EADAC==A为因 分1D讨 ,题 组 腰 三 是B∵EODEDAmEECCA8∠E据 性△ ,) 44,而B=O为∥△由 的 ,EC=D,D0为 两700论 此目 成 长 边5∠DO+=2是CA题 质AA°° °若07没c为等DE∠cB长 即CEDBD-∠种4°0给 三 是 关m, 时E平等CmCCD意 可∠ 是CC角40;°有时D等腰=BD是 可平 , ,中 -B情°,0还 周出 角 系2∴分O2C是腰可 得∠ ∠AA为°或明c,腰三+分求DD5CD,况角7等 形 ,要 长m∠∠3Ec, 等三=判EAB∠底0角1确时 因三角=∠得=m4DA. D进没°0应 是腰 . 应5EA3即 腰角断EC为A0角为0腰, 为cDO角形cA。=D的 °行有;°三 排用1OBmmC三∠形出9EB,顶、2因5=形B, ;0=,角C讨明,三角 除c+∠角, E,∠A中 °则角m底为5C平D论确4角形 ;> .B形∴ ∴DA⊥-点另,0分2∴O=E分8.是°有形+2D∠∠,CDB,0外则别2,∠E=C°线顶的两<E=AC,8A两另是符ADDCE0,=B角条三5ODCE==根° 1个处多,合D=D, ,A0还边边=∠E据, °C角两少不三∠,,是长关B等所.为个,符角DC又底系为OD腰以角所合形B, A角验2E是以三三c=,m2cm,

八年级数学上册第十三章轴对称经典大题例题(带答案)

八年级数学上册第十三章轴对称经典大题例题(带答案)

八年级数学上册第十三章轴对称经典大题例题单选题1、如图,三条笔直的公路两两相交,交点分别在点A、B、C处,有两户村民分别在点D和点E处,现准备建造一个蓄水池,要求水池到两条公路AB、BC的距离相等,且到两户村民D、E的距离相等,则水池修建的位置应该是()A.在∠B的平分线与DE的交点处B.在线段AB、AC的垂直平分线的交点处C.在∠B的平分线与DE的垂直平分线的交点处D.在∠A的平分线与DE的垂直平分线的交点处答案:C分析:根据角平分线的性质得到水池修建在∠ABC的平分线上,根据线段的垂直平分线的性质得到水池修建在DE的垂直平分线上,从而可对各选项进行判断.解:作∠ABC的平分线和DE的垂直平分线,它们相交于P点,如图,则水池修建的位置应该为P点.故选:C.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了线段垂直平分线的性质.2、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=7,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为()A.3B.2√3C.3.5D.3√3答案:A分析:作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,利用含30°角的直角三角形的性质,即可得到PM+ PN的最小值.解:如图所示,作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,∴PN+PM=PN+PM′,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,此时,∵Rt△AM′N中,∠A=30°,∴M′N=12AM′=12(7−1)=3,∴PM+PN的最小值为3,故选择A.小提示:本题主要考查了最短路线问题,30°直角三角形性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、若点P (a +1,2−2a )关于x 轴的对称点在第四象限,则a 的取值范围为( )A .a >−1B .a <1C .−1<a <1D .a <−1答案:C分析:根据关于x 轴对称的点,横坐标不变,纵坐标互为相反数,求出对称点,再由第四象限内点的坐标符号为(+,-),据此列不等式解答.解:∵点P (a +1,2−2a )关于x 轴的对称点坐标为(a +1,2a -2),且在第四象限,∴a +1>0,且2a -2<0,解得-1<a <1,故选:C .小提示:此题考查了轴对称的性质,各象限内点的坐标特点,熟记各象限内点的坐标符号特点是解题的关键.4、将三角形纸片(△ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知AB =AC =3,BC =4,若以点B 、D 、F 为顶点的三角形与△ABC 相似,那么CF 的长度是( )A .2B .127或2C .127D .125或2答案:B分析:分两种情况:若∠BFD=∠C或若∠BFD=∠A,再根据相似三角形的性质解题∵△ABC沿EF折叠后点C和点D重合,∴FD=CF,设CF=x,则FD=CF=x,BF=4−x,以点B、D、F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则BFBC =FDAC,即4−x4=x3,解得x=127;②若∠BFD=∠A,则BFAB =FDAC,即4−x3=x3,解得x=2.综上,CF的长为127或2,故选:B.小提示:本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.5、如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,BF=8,则DE的长为()A.2B.3C.4D.5答案:C分析:根据等腰三角形的性质可得CD=BD,从而得到S△ABC=2S△ABD,从而得到12AC⋅BF=2×12AB⋅DE,即可求解.解:∵AB=AC,AD⊥BC,∴CD=BD,∴S△ABC=2S△ABD,∵DE⊥AB,BF⊥AC,∴S△ABC=12AC⋅BF,S△ABD=12AB⋅DE,∴12AC⋅BF=2×12AB⋅DE,∵BF=8,∴DE=4.故选:C小提示:本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.6、如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=7∠BAE,则∠C的度数为()A.41°B.42°C.43°D.44°答案:B分析:设∠BAE=x°,则∠C=7x°,根据ED是AC的垂直平分线,有AE=EC,即有∠EAC=∠C=7x°,根据直角三角形中两锐角互余建立方程,解方程即可求解.设∠BAE=x°,则∠C=7x°,∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C=7x°,∵∠B=90°,∴∠C+∠BAC=90°,∴7x+7x+x=90,解得:x=6,∴∠C=7×6°=42°,故选:B.小提示:本题考查了直角三角形的性质,等腰三角形的性质,线段垂直平分线的性质等知识点,能根据线段垂直平分线性质求出AE=CE是解此题的关键.7、如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=∠DAC;③CF⊥AB;④若BF=2EC,则△FDC周长等于AB的长.其中正确的有()A.①②B.①③④C.①③D.②③④答案:B分析:证明△BDF≌△ADC,可判断①;求出∠FCD=45°,∠DAC<45°,延长CF交AB于H,证明∠AHC=∠ABC+∠FCD=90°,可判断③;根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质可判断④.解:∵△ABC中,AD,BE分别为B C、AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,FD=CD,故①正确,∵∠FDC=90°,∴∠DFC=∠FCD=45°,∵∠DAC=∠DBF<∠ABC=45°,∴∠FCD≠∠DAC,故②错误;延长CF交AB于H,∵∠ABC=45°,∠FCD=45°,∴∠AHC=∠ABC+∠FCD=90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=1AC,2∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.小提示:本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30∘,则CE的长是()A.1cmB.2cmC.3cmD.4cm答案:B分析:根据等边三角形的性质得AC=AB=4,由等边三角形三线合一得到CD,由∠ACB=60°,∠E=30°,求出∠CDE,得出CD=CE,即可求解.∵△ABC是等边三角形,∴AC= AB=BC=4cm,∠ACB = 60°,∵BD平分∠ABC,∴AD=CD(三线合一)∴DC=12AC=12×4=2cm,∵∠E = 30°∴∠CDE=∠ACB-∠E=60°-30°=30°∴∠CDE=∠E所以CD=CE=2cm故选:B.小提示:本题考查的是等边三角形的性质、等腰三角形的判定,直角三角形的性质,直角三角形中30°角所对的直角边等于斜边的一半.9、如图,点P为∠AOB内一点,分别作点P关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为()A.16B.15C.14D.13答案:B分析:根据轴对称的性质可得P1M=PM,P2N=PN,然后根据三角形的周长定义,求出△PMN的周长为P1P2,从而得解.解:∵点P关于OB、OA的对称点P1,P2,∴P1M=PM,P2N=PN,∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15∴△PMN的周长为15.故选:B.小提示:本题考查轴对称的性质,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10、△ABC为等边三角形,点E为边AB的中点,点Q为边BC上一动点,以EQ为边作等边△EQF(点F在EQ 的右侧),连接AF、FC,点P在射线CB上,且满足PE=EQ,有以下四个结论①∠FQC=∠QEB;②FQ=FC;③PB+QC=AE;④当AF⊥AB时,BC=4PB,其中正确的结论的个数是()A.1个B.2个C.3个D.4个答案:C分析:取BC中点H,连接EH、FH,作EG⊥BC于G,根据三角形内角和定理和平角的定义得出∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,进而可得∠FQC=∠QEB,故①正确;根据点E为边AB的中点,点H为边BC的中点,可得AE=EB=BH=HC,△EBH是等边三角形,然后求出PB=HQ即可得出PB+QC=HC=AE,故③正确;通过证明△PEH≌△FEH可得∠EHP=∠EHF=60°,求出∠EHF=∠CHF,再证△EHF≌△CHF,求出FC =EF即可得出FQ=FC,故②正确;当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误.解:取BC中点H,连接EH、FH,作EG⊥BC于G,∵△ABC为等边三角形,△EQF为等边三角形,∴∠EQF=∠EBQ=60°,∵∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,∴∠FQC=∠QEB,故①正确;∵EG⊥BC,PE=EQ,∴PG=GQ,∵点E为边AB的中点,点H为边BC的中点,∠ABC=60°,∴AE=EB=BH=HC,∴△EBH是等边三角形,∵EG⊥BH,∴BG=GH,∴PB=HQ,∴PB+QC=HC=AE,故③正确;∵EG⊥BC,PE=EQ,△EBH是等边三角形,∴∠BEG=∠HEG,∠PEG=∠QEG,∠BEH=∠EHB=60°,EH=EB,∴∠PEB=∠QEH,∵在等边三角形△EQF中,∠FEQ=60°,EF=EQ=FQ,∴∠PEH=∠FEH,PE=FE,又∵EH=EH,∴△PEH≌△FEH(SAS),∴∠EHP=∠EHF=60°,∴∠FHC=60°,即∠EHF=∠CHF,∵AE=EB=BH=HC,EH=EB,∴EH=HC,又∵HF=HF,∴△EHF≌△CHF(SAS),∴FC=EF,∴FQ=FC,故②正确;④∵BH=CH,BG=GH,BP=HQ,∴当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误;综上,正确的有3个,故选:C.小提示:本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质等知识,作出合适的辅助线,构造出等边三角形和全等三角形是解题的关键.填空题11、如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为________.答案:2分析:根据线段垂直平分线的性质得到AD=BD,∠ABD=∠A=30°,求得∠CBD=30°,即可求出答案.解:∵∠C=90°,∴∠A+∠ABC=90°,∵线段AB的垂直平分线分别交AC、AB于点D、E,∴AD=BD,∴∠ABD=∠A=30°,∴∠CBD=30°,∵CD=1,∴AD=BD=2CD=2,所以答案是:2.小提示:此题考查线段垂直平分线的性质,直角三角形30度角的性质,熟记线段垂直平分线的性质是解题的关键.12、在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.答案: 5 圆、正六边形、五角星、等边三角形、锐角分析:根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线就叫做对称轴,进行求解即可.解:锐角时轴对称图形,对称轴为1条;五角星是轴对称图形,对称轴有5条;等边三角形是轴对称图形,对称轴有3条;圆是轴对称图形,对称轴有无数条;正六边形是轴对称图形,对称轴有6条,所以答案是:5;圆,正六边形,五角星,等边三角形,锐角.小提示:本题主要考查了轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.13、如图,在ΔABC中,AB=7cm,BC=5cm,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上的任意一点,则ΔBCF周长的最小值是________cm.答案:12分析:当F点于D重合时,ΔBCF的周长最小,根据垂直平分线的性质,即可求出ΔBCF的周长.∵DE垂直平分AC,∴点C与A关于DE对称,∴当F点于D重合时,即A、D、B三点在一条直线上时,BF+CF=AB最小,(如图),∴ΔBCF的周长为:CΔBCF=BD+CD+BC,∵DE是垂直平分线,∴AD=CD,又∵AB=7cm,∴BD+AD=BD+CD=7cm,∴CΔBCF=7+5=12cm,所以答案是:12.小提示:本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.14、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=108°,则图1中的∠DEF的度数是______.答案:24°##24度分析:先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠DEF=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=108°.解得a=24°.即∠DEF=24°,所以答案是:24°.小提示:本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.15、如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=_________°.答案:30分析:根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.解:∵EF垂直平分BC,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.所以答案是:30.小提示:本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.解答题16、如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高AD;(2)画出先将△ABC向左平移5格,再向下平移2格后的△A1B1C1;(3)画一个△BCP(要求各顶点在格点上,P不与A点重合),使其面积等于△ABC的面积.并回答,满足这样条件的点P共______个.答案:(1)见解析;(2)见解析;(3)见解析;2分析:(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)过点A作平行于BC的直线,同样结合网格的特点在直线BC的另一侧也可以找出符合条件的格点P,共(1)解:如图:作BF⊥BC,再过A点作BF的平行线,交BC于点D,(2)解:如图:(3)解:如图符合条件的格点共有4个,小提示:本题用到的知识点为:三角形一边上的高为这边所对的顶点向这边所引的垂线段,对称的性质;图形的平移要归结为各顶点的平移,平行线间距离处处相等.17、如图,在△ABC中,AB=AC,∠B=30°,线段AB的垂直平分线MN交BC于D,求证:CD=2BD.答案:见解析分析:连接AD,首先根据垂直平分线的性质得到∠DAB=∠B=30°,然后根据AB=AC,求出∠B=∠C=30°,∠DAC=90°,最后根据30°角所对的直角边是斜边的一半即可证明出CD=2BD.证明:连接AD,∵直线MN是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B,又∵∠B=30°,∴∠DAB=30°,又∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴∠DAC=90°,又∵∠C=30°,∴CD=2AD,又∵AD=BD,∴CD=2BD.小提示:此题考查了等腰三角形的性质,30°角直角三角形的性质,解题的关键是连接AD求出∠DAB=∠B=30°.18、如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.答案:见解析分析:延长AD交BC于点F,由BE是角平分线、AD⊥BE可知△ABF是等腰三角形且∠2=∠AFB,根据∠AFB=∠1+∠C可得证.证明:如图,延长AD交BC于点F,∵BE是∠ABC的角平分线,AD⊥BE,∴AB=FB,∴∠2=∠AFB,∵∠AFB=∠1+∠C,∴∠2=∠1+∠C.小提示:本题主要考查等腰三角形的判定与性质,解题的关键是掌握等腰三角形三线合一的性质.。

轴对称知识点总结及经典练习

轴对称知识点总结及经典练习

轴对称知识点总结及练习1、轴对称图形:一个图形沿一条直线对折,直线两旁的局部能够 ;这条直线叫做 。

互相重合的点叫 。

2、成轴对称:两个图形沿一条直线对折,其中一个图形能够与 完全重合;这条直线叫做对称轴。

3、轴对称图形与轴对称的区别与联系:〔1〕区别:轴对称图形讨论的是“一个图形与一条直线的对称关系〞 ;轴对称讨论的是“两个图形与一条直线的对称关系〞。

〔2〕联系:把轴对称图形中“对称轴两旁的局部看作两个图形〞便是两图成轴对称;把成轴对称的“两个图形看作一个整体〞便是轴对称图形。

4、轴对称的性质:如图(1)成轴对称的两个图形 。

(2)连结“对应点的线段〞 被对称轴 。

(3)对应点到对称轴的距离 。

(4)〔4〕对应点的连线互相 或在同一直线。

5、线段的垂直平分线:〔1〕定义:经过线段的中点且 的直线,叫做线段的垂直平分线。

符号语言:如图∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 〔2〕性质: 。

m C A B D'D C'A'K J I H m P∵直线m 垂直平分AB ,点P 是直线m 上的点。

符号语言:如图∴PA=PB 。

〔3〕判定:与线段两端点距离相等的点在线段的 上。

如图,∵PA=PB ,∴点P 在 上 。

6、等腰三角形:〔1〕定义:有两边 的三角形,叫做等腰三角形。

相等的两条边叫做 。

第三条边叫做 。

两腰的夹角叫做 。

腰与底的夹角叫做 。

说明:底角顶角⨯-=2180 顶角顶角底角21-902180︒=-︒= 〔2〕性质: 等腰三角形是轴对称图形,其对称轴是 ,一般有 条。

等腰三角形的两个底角 ;简称 。

符号语言:如图,在△ABC 中 ∵AB=AC∴∠B=∠C 〔等边对等角〕。

三线合一:顶角平分线、 与 相互重合。

符号语言:如图,在△ABC 中 ∵AB=AC AD ⊥BC〔3〕判定方法:定义法:有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。

第二章轴对称图形知识点归纳+典型例题+提优(汇编)

第二章轴对称图形知识点归纳+典型例题+提优(汇编)

2.1轴对称与轴对称图形姓名_______学号_______班级_______ 学习目标:1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念.2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系.学习重点:了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值.学习难点:能正确地区分轴对称图形和轴对称,进一步发展空间观念.学习过程:一、创设情境观察如下的图案, 它们有什么共同的特征?二、探索活动活动一折纸印墨迹问题1.你发现折痕两边的墨迹形状一样吗?问题2.两边墨迹的位置与折痕有什么关系?概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.如图,△ABC和△DEF关于直线MN对称,直线MN是对称轴,点A与点D、点B与点E、点C与点F都是关于直线MN的对称点.活动二切藕制作成轴对称的两个截面联系实际,你能举出一些生活中图形成轴对称的实例吗?活动三把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________.请你找出图1-5中的各图的对称轴.联系实际,你能举出一个轴对称图形的实例吗?活动五轴对称与轴对称图形的区别和联系三、课堂练习1. 分别画出下列轴对称型字母的对称轴以及两对对称点.2.画出下列各轴对称图形的对称轴.四、课堂小结了解轴对称图形和轴对称的概念,并能简单识别. 能正确区分轴对称图形和轴对称..五、课后作业1.下列奥运会会徽是轴对称图形吗?如果是,画出对称轴.2.(1)正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图①中画一条对角线得到图②,图②有几条对称轴?(3)如果再图②中再画一条对角线,那么所得图形有几条对称轴?3.请你为学校设计一幅轴对称图形的校运动会会徽。

轴对称知识点及对应例题(经典)

轴对称知识点及对应例题(经典)

第十三章轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点四、线段垂直平分线的性质6.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

7.如图,△ABC 中,AB =AC ,PB =PC ,连AP 并延长交BC 于D ,求证:AD 垂直平分BC8.如图,DE 是∆ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则∆EBC 的周长为【 】A.16厘米B.18厘米C.26厘米D.28厘米C EBDA9.如图,∠BAC =30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD =30 , 则AM =MD P BCA轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到. 轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.作一个图形关于某条直线的轴对称图形(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.关于坐标轴对称点P (x ,y )关于x 轴对称的点的坐标是(x ,-y )点P (x ,y )关于y 轴对称的点的坐标是(-x ,y )关于原点对称点P (x ,y )关于原点对称的点的坐标是(-x ,-y )关于坐标轴夹角平分线对称点P (x ,y )关于第一、三象限坐标轴夹角平分线y =x 对称的点的坐标是(y ,x )点P (x ,y )关于第二、四象限坐标轴夹角平分线y = -x 对称的点的坐标是(-y ,-x ) 关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);考点二、轴对称变换及用坐标表示轴对称1.点 A(-3 ,2)关于 y 轴对称点的坐标是( )A (-3 ,-2)B (3 ,2)C (-3 ,2)D (2 ,-3)2.点P(a,b)关于 x 轴的对称点为P'(1,-6),则A、B的值分别为( )A 1 ,6B -1 ,-6C -1 ,6D 1 ,-63.点P关于x 轴对称点P'的坐标为(4,-5),那么点P关于y轴对称点P"的坐标为:A (-4,5)B (4,-5)C (-4,-5)D (-5,-4)4.平面内点A(-1,2)和点B(-1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=-15.下列关于直线 x=1 对称的点是( )A 点(0 ,-3)与点(-2 ,-3)B 点(2 ,3)与点(-2 ,3)C 点(2 ,3)与点(0 ,3)D 点(2 ,3)与点(2 ,-3 )6.已知A(-1,-2)和B(1,3),将点A向______平移_______个单位长度后得到的点与点B 关于y轴对称.7.如下图:若正方形 ABCD 关于 x 轴与 y 轴均成轴对称图形,点A的坐标为(2,1),标出点 B 、C 、D 的坐标分别为:B( , ),C( , ),D( , )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点四、线段垂直平分线的性质6.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

7.如图,△ABC 中,AB =AC ,PB =PC ,连AP 并延长交BC 于D ,求证:AD 垂直平分BC8.如图,DE 是∆ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则∆EBC 的周长为【 】A.16厘米B.18厘米C.26厘米D.28厘米C EBDA9.如图,∠BAC =30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD =30 , 则AM =MD P BCA轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到. 轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.作一个图形关于某条直线的轴对称图形(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.关于坐标轴对称点P (x ,y )关于x 轴对称的点的坐标是(x ,-y )点P (x ,y )关于y 轴对称的点的坐标是(-x ,y )关于原点对称点P (x ,y )关于原点对称的点的坐标是(-x ,-y )关于坐标轴夹角平分线对称点P (x ,y )关于第一、三象限坐标轴夹角平分线y =x 对称的点的坐标是(y ,x )点P (x ,y )关于第二、四象限坐标轴夹角平分线y = -x 对称的点的坐标是(-y ,-x ) 关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);考点二、轴对称变换及用坐标表示轴对称1.点 A(-3 ,2)关于 y 轴对称点的坐标是( )A (-3 ,-2)B (3 ,2)C (-3 ,2)D (2 ,-3)2.点P(a,b)关于 x 轴的对称点为P'(1,-6),则A、B的值分别为( )A 1 ,6B -1 ,-6C -1 ,6D 1 ,-63.点P关于x 轴对称点P'的坐标为(4,-5),那么点P关于y轴对称点P"的坐标为:A (-4,5)B (4,-5)C (-4,-5)D (-5,-4)4.平面内点A(-1,2)和点B(-1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=-15.下列关于直线 x=1 对称的点是( )A 点(0 ,-3)与点(-2 ,-3)B 点(2 ,3)与点(-2 ,3)C 点(2 ,3)与点(0 ,3)D 点(2 ,3)与点(2 ,-3 )6.已知A(-1,-2)和B(1,3),将点A向______平移_______个单位长度后得到的点与点B 关于y轴对称.7.如下图:若正方形 ABCD 关于 x 轴与 y 轴均成轴对称图形,点A的坐标为(2,1),标出点 B 、C 、D 的坐标分别为:B( , ),C( , ),D( , )。

8. 若A(m-1,2n+3)与B(n-1,2m+1)关于y轴对称,则m= ,n=9.已知a<0,那么点P(-a²-2,2-a)关于x轴对称的对应点P'在第象限三、解答题10.已知点M(1-a,2a+2),若点M关于x轴的对称点在第三象限,求a的取值范围?11.已知点A的坐标为(2x+y-3,x-2y)。

它关于x轴对称的点A'的坐标为(x+3,y-4),求点A关于y轴对称的点的坐标。

12.如图,从△ABC到△A′B′C′是进行的平移变换还是轴对称变换,如果是轴对称变换,找出对称轴,如果是平移变换,是怎样平移的?13.如图,△ABC,求顶点A、B、C关于y轴对称点的坐标并在坐标系中画出△ABC关于x轴对称的△EDF。

14.已知两点A(–1,2) B(3,1)(1)P点在X轴上移动。

求PA+PB的最小值。

(2)Q点在Y轴上移动。

求QA+QB的最小值。

(3)并求出P.Q的坐标。

考点三、作一个图形关于某条直线的轴对称图形(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形4.如图,Rt△ABC,∠C=90°,∠B=30°,BC=8,D为AB中点,P为BC上一动点,连接AP、DP,则AP+DP的最小值是5.已知等边△ABC,E在BC的延长线上,CF平分∠DCE,P为射线BC上一点,Q为CF上一点,连接AP、PQ.若AP=PQ,求证∠APQ是多少度作点Q关于BE的对称点R,交BE于点H,从而可得ΔQCH≌ΔRCH,∠QCH=∠RCH=60度。

A ,C,R在同一直线上。

易证ΔPCQ≌ΔPCR,从而∠QPH=∠RPH,PR=PQ, ∠PQC=∠PRC.又由于AP=PQ,从而AP=PR,得到∠PRA=∠PAR∴∠BAP+∠PAC=∠PQC+∠QPC∴∠BAP=∠QPC即有:∠BAP+∠B=∠QPC+∠APQ即∠APQ=60º等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.(2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.考点五、等腰三角形的特征和识别11.如图,△ABC中,AB=AC=8,D在BC上,过D作DE ∥AB交AC于E,DF∥AC交AB于F,则四边形AFDE的周长为______ 。

12.如图,△ABC中,BD、CD分别平分∠ABC与∠ACB,EF过D且EF∥BC,若AB = 7,BC = 8,AC = 6,则△AEF周长为【】A. 15 B . 14 C. 13 D. 1813.如图,点B、D、F在AN上,C、E在AM上,且AB=BC=CD=ED=EF,∠A=20o,则∠FEB=________度.14.已知等腰三角形一腰上的高与另一腰的夹角为40°,则它的一个底角的度数是_______15.如图:在△ABC 中,AB =AC ,AD ⊥BC , DE ⊥AB 于点E, DF ⊥AC 于点F 。

试说明DE =DF 。

16.如图,E 在△ABC 的AC 边的延长线上,D 点在AB边上,DE 交BC 于点F ,DF =EF ,BD =CE.求证:△ABC 是等腰三角形.17.已知:如图,△ABC 中,∠ACB 的平分线交AB 于E ,EF ∥BC 交AC 于点F ,交∠ACB 的外角平分线于点G .试判断△EFC 的形状,并说明你的理由.AB D GF E等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形.等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°等边三角形的判定方法(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.考点六、等边三角形的特征和识别22.下列推理中,错误的是【】A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形23.如图,等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。

求证:M是BE的中点。

24.已知△ABC是等边三角形,分别在AC、BC上取点E、F,且AE=CF,BE、AF交于点D,则∠BDF= _________度26.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是【】A.等边三角形 B.腰和底边不相等的等腰三角形 C.直角三角形 D.不等边三角形DAF角平分线的性质:在角平分线上的点到角的两边的距离相等.AB CP M N O角平分线的判定:到角的两边距离相等的点在角的平分线上.AB CP M N O三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.考点七、30°所对的直角边是斜边的一半29.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =8m ,∠A =30°,则DE 等于【 】A .1mB .2mC .3mD .4m11 E DC BA31.一张折叠型方桌如图甲,其主视图如图乙,已知AO =BO =40cm ,C0=D0=30 cm ,现将桌子放平,两条桌腿叉开的角度∠AOB 刚好为120°,求桌面到地面的距离是多少?乙B32.如图,AB=AC ,DE⊥AB 于E ,DF⊥AC 于F ,∠BAC=120o ,BC =6,则DE +DF =33.在ABC △中,120AB AC A =∠=︒,,AB 的垂直平分线交BC 于点F ,交AB 于点E .如果1EF =,求BC 的长F34.已知:在△ABC 中,AB =AC ,∠BAC =120°,AB 的垂直平分线交AB 于E ,交BC 于F. 求证:CF =2BF.甲。

相关文档
最新文档