岩体稳定性评价

合集下载

岩体结构及其稳定性分析

岩体结构及其稳定性分析

划分岩体结构的目的:定性评价 岩体稳定性。
岩体结构类型及其特征表 7-7
完整状态
地下水
结构类型
1 块状结构
结 构 面 间 完整性系数 距(cm)
50~100 0.35~0.75
作用特征
甚微
2 镶嵌结构 <50 <0.35
含、导水不ຫໍສະໝຸດ 明显3 碎裂结构 <50 <0.35
显著,软、泥
化,渗流
4 层状结构 30~50 薄 0.30~0.60 薄 软 、 泥 化 显 层<30 层<0.40 著
②片岩软弱夹层——薄层云母 片岩、绿泥石片岩等,片理发育、 岩性软弱、矿物易风化。
对边坡、地下工程稳定造成影响。
⑷构造结构面——构造作用形成, 规模大,对岩体稳定性影响很大。
包括: 1 节理 2 断层 产状受构造应力场控制。 3 层间错动面——与岩层一致,
破碎,含泥质。 ⑸次生结构面——岩体受卸荷、风 化、地下水等次生作用形成。次生结 构面易造成边坡岩体破坏。 次生结构面包括:
③原生夹层。 其中①、②两种软弱夹层通常含 泥质物质,松散。形成良好的地下水 通道,夹层的水稳定性差,易软化、 泥化,强度和稳定性差。
⑵火成结构面——在岩浆活动中 形成,包括:
①侵入接触面——与围岩胶结 不良,有变质物质。
②冷凝裂隙——张性裂隙面,粗 糙。
⑶变质结构面——变质作用形成。 包括:
1 片理——沿片理面片状矿物 富集,岩体强度↓
1 赤平极射投影的实质。 2 物体的几何要素(点、线、
面)的投影。 3 结构面走向、倾斜、倾角的
投影表示。 4 赤平极射投影的作图方法。 5 判断岩体结构的稳定性。 ⑶评价岩体稳定性。
4 泥化夹层——地下水作用,使 原软弱夹层(粘土岩、泥灰岩、 页岩等)泥化,产状与岩层一 致。

岩体的工程性质及稳定性评价

岩体的工程性质及稳定性评价

岩体与岩石(庐山二叠泉的岩体)
节理就是裂隙,断裂是一 个大的概念,基本类型包 括了节理(裂隙)、断层, 还有劈理。
节理:是岩石中的裂隙,是没有明显位移的裂隙。也是地壳上 部岩石发育最广的一种构造
节理是很常见的一种构造地质现象,就是我们在岩石露头上所见 的裂缝,或称岩石的裂缝。这是由于岩石受力而出现的裂隙.还 有一种说法:几乎在所以岩石中都可以看到有规律的,纵横交错 的裂隙,他的专门术语就叫节理.节理即断裂岩块沿着破裂面没 有发生或没有明显发生位移的断裂构造. 裂隙应该包括的东西更多,在地学上有构造裂隙,而节理裂隙
Ⅴ级 又称微结构面。常包含在岩块内,主要影响岩 块的物理力学性质,控制岩块的力学性质。
三、 产状
走向、倾向、倾角 结构面与最大主应力
间的关系控制着岩体 的破坏机理与强度。
据单结构面理论,岩体中存在一组结构面时,岩体的极限强 度与结构面倾角间的关系为:
1
3
2(C j 3tg j ) (1 tg j ctg ) sin 2
断裂:地质学马丁尼兹说:“当地壳移动,板块相互撞击时会断裂, 导致其他地区的压力逐渐增加,最终引发地震。”断裂是大的, 深的断层.
(一)结构面
1、结构面的类型
(1)原生结构面 (2)构造结构面 (3)次生结构面
岩体与岩石
近100年来坝体因对岩体软弱面稳定性认
识不足而失事者达45%以上。
法国60m高的坝体, 1959年因左坝肩片麻岩 中的绢云母页岩软弱层滑动而失稳。
只是构造裂隙的一种. 断层是地壳岩层因受力达到一定强度而发生破裂,并沿破裂面
有明显相对移动的构造称断层。 断层是构造运动中广泛发育的构
造形态。它大小不一、规模不等,小的不足一米,大到数百、上 千千米。但都破坏了岩层的连续性和完整性。还有一种解释:断 层是地质学概念,是指因地壳的变动,引起地层发生断裂并沿断 裂面发生水平、垂直或倾斜方向的相对位移现象。

隧道工程中的岩体稳定性评估方法

隧道工程中的岩体稳定性评估方法

隧道工程中的岩体稳定性评估方法隧道工程是现代交通建设的重要组成部分,对于城市交通的畅通起着关键作用。

然而,隧道工程建设过程中,岩体的稳定性一直是一个重要的问题。

岩体的不稳定性可能会引发地质灾害,给工程带来巨大危害。

因此,评估岩体稳定性的方法是隧道工程中不可或缺的一环。

在隧道工程中,岩体稳定性评估方法可以分为定性评估和定量评估两大类。

定性评估主要基于工程地质调查和工程经验,通过对岩体的岩石类型、结构构造、工程地质条件等方面进行综合评估,判断岩体的稳定性。

定性评估的优势在于简单快捷,但缺点是主观性较强,容易出现误判。

因此,为了更准确地评估岩体稳定性,定量评估方法逐渐受到重视。

定量评估岩体稳定性的方法多种多样,下面介绍几种常用的方法。

首先是岩体综合评价法。

该方法综合考虑岩体的岩性、结构构造、节理特征、地应力及地下水等因素,通过量化指标来评估岩体的稳定性。

常用的指标有抗剪强度指标、岩体完整性指标、岩体坚硬性指标等。

综合评价法能够较全面地考虑影响岩体稳定性的各方面因素,因此被广泛应用于工程实践中。

其次是岩体力学参数反演法。

该方法是通过对岩体开展力学试验,获取其弹性模量、抗剪强度等力学参数,并基于这些参数进行岩体稳定性评估。

力学参数反演法的优势在于能够直接获取岩体的力学性质,评估结果准确性高。

但该方法需要对岩体进行大量的力学试验,时间成本较高,适用范围有限。

再次是数值模拟方法。

该方法通过数值模拟软件,将岩体的结构和力学性质输入模型中,模拟岩体受力以及岩体变形、破坏的过程。

数值模拟方法可以较真实地模拟岩体的稳定性,对于复杂的隧道工程尤为重要。

但该方法对模型参数的准确性要求较高,且计算量较大,需要高性能计算机的支持。

最后是现场监测法。

该方法通过在隧道工程建设过程中设置监测点,采集岩体的位移、应力等数据,以实际观测值来评估岩体的稳定性。

现场监测法能够直接获取岩体的变形情况,具有较高的可靠性。

但该方法耗时较长,需要在工程施工过程中持续监测,且监测设备的安装和维护也需耗费一定资源。

深部岩体稳定性评价及支护技术应用前景展望

深部岩体稳定性评价及支护技术应用前景展望

深部岩体稳定性评价及支护技术应用前景展望深部岩体稳定性评价及支护技术应用前景展望随着深部岩体工程的不断发展,深部岩体的稳定性评价和支护技术的研究和应用变得越来越重要。

深部岩体的稳定性评价可以帮助工程师更好地了解岩体的强度和稳定性,为工程设计和支护技术提供理论依据。

支护技术的研究则是为了保证岩体的稳定,减少地质灾害的发生,并提高工程的安全性和可持续发展。

深部岩体的稳定性评价是一个复杂的过程,涉及到岩石力学、地质学、水文地质学等多个学科的知识。

通常,稳定性评价包括岩体的强度评价、岩体的变形和破坏特征分析等内容。

强度评价主要通过室内试验和现场观测来确定岩体的力学特性和物理性质,如抗压强度、抗拉强度、抗剪强度等。

变形和破坏特征分析则是通过采集现场监测数据,结合岩石力学理论,分析岩体的变形和破坏特征,预测岩体的可能稳定性问题。

通过这些评价方法,可以更好地了解岩体的力学特性和稳定性,并为后续的工程设计和支护技术提供参考依据。

在深部岩体支护技术方面,目前已经有很多成熟的技术可供选择,如锚杆支护、加固注浆、喷射混凝土支护等。

这些支护技术往往能够解决岩体的稳定性问题,并能够大大提高岩体的抗压和抗剪强度。

同时,随着科技的不断发展,越来越多的新技术开始被应用于深部岩体支护中。

例如,无人机遥感技术可以用于岩体的监测和勘察,通过对岩体的地形、形变和变色等信息的获取,帮助工程师更好地了解岩体的稳定性问题和变化趋势,从而指导支护技术的应用。

此外,人工智能、大数据等技术也可以应用于岩体的稳定性评估和支护技术的优化,通过对庞大的数据进行分析和建模,为岩体的稳定和工程设计提供更准确和可靠的信息。

展望未来,深部岩体稳定性评价和支护技术的应用前景非常广阔。

随着互联网、大数据和人工智能技术的不断发展,我们可以更好地利用现有的数据和信息,为深部岩体的稳定性评价和支护技术的优化提供更多的可能。

例如,通过远程监测和数据共享,可以实时监测岩体的变形和破坏,及时采取相应的支护措施预防地质灾害的发生。

边坡岩体稳定性分析的计算方法

边坡岩体稳定性分析的计算方法

边坡岩体稳定性分析的计算方法边坡岩体稳定性分析是地质工程设计工作中十分重要的一部分,是评价和研究边坡岩体稳定性的重要方法之一。

随着地质工程的发展,计算机技术的发展和应用,计算边坡岩体稳定性的方法也在不断发展和完善。

本文介绍了边坡岩体稳定性分析的计算方法,以及计算边坡岩体稳定性的重要步骤和要素。

二、边坡岩体稳定性的计算方法1.计算要求计算边坡岩体稳定性的要求是首先进行岩体的力学性质分析,确定岩体的抗剪强度和抗压强度,以及岩体的尺寸、形状、排列结构和构造;随后确定边坡的几何形状参数和水文地质因素,以及重力作用体系的参数;最后,按照边坡分析方法进行计算,确定边坡岩体的稳定系数。

2.计算过程(1)岩体力学性质分析。

首先分析岩体的抗剪强度和抗压强度,其次施加水平和垂直运动,确定岩体的变形特性;(2)边坡几何形状分析。

确定边坡的几何形状参数,包括坡度、坡面宽度、坡面长度等,同时确定水文地质因素,如雨水、渗水、地下水等;(3)重力作用体系分析。

确定边坡岩体的重力作用体系,包括自重、滑移压力、地下水压力、渗水压力等;(4)运用边坡分析方法计算边坡岩体的稳定性。

可以采用等效滑动面法、艾里克斯准则、薛定谔方程等方法,计算边坡岩体的稳定性。

三、边坡岩体稳定性分析的要素1.岩体力学特性岩体的抗剪强度和抗压强度是影响边坡岩体稳定性的主要因素之一。

岩体的抗剪强度可以通过抗拉强度、抗折强度等相关试验来测定,而抗压强度可以通过抗压强度试验、岩石试验等来确定。

2.边坡几何参数边坡几何参数是指边坡的坡度、坡面宽度、坡面长度等参数,这些参数是影响边坡岩体稳定性的重要因素。

一般来说,边坡坡度越陡,边坡稳定性越低;坡面宽度、坡面长度越小,边坡稳定性越低。

3.水文地质条件水文地质条件是指边坡周围的雨水、渗水、地下水等情况,这些条件也是影响边坡岩体稳定性的重要因素。

一般来说,边坡周围有大量雨水、地下水时,边坡稳定性就会变差。

4.重力作用体系重力作用体系是指边坡岩体受到的重力、滑移压力、地下水压力、渗水压力等因素的综合作用,这也是影响边坡岩体稳定性的重要因素。

岩体质量评价方法

岩体质量评价方法

岩体质量评价方法引言:岩体质量评价是地质工程中非常重要的一项工作,通过对岩体质量进行评价,可以为工程设计和施工提供重要的参考依据。

本文将介绍几种常用的岩体质量评价方法,包括现场调查、室内实验和数值模拟等。

一、现场调查现场调查是岩体质量评价的基础,可以通过对岩体的裂缝、节理、岩性、岩层倾角等进行观测和记录,初步了解岩体的力学性质和稳定性。

现场调查要注意对岩体的整体状况进行观察,尽量避免个别点的偏差对评价结果的影响。

二、室内实验室内实验是对岩体进行定量分析的重要手段,常用的室内实验包括岩石力学试验、岩石物性试验等。

通过这些实验可以获得岩体的强度、弹性模量、抗压强度、抗拉强度等重要参数,从而评价岩体的质量和稳定性。

岩石力学试验主要包括压缩试验、拉伸试验和剪切试验。

压缩试验可以获得岩体的抗压强度和应变特性,拉伸试验可以获得岩体的抗拉强度和断裂特性,剪切试验可以获得岩体的剪切强度和滑动特性。

这些试验可以通过加载设备和变形测量仪器进行。

岩石物性试验主要包括密度试验、吸水性试验和渗透性试验。

密度试验可以获得岩体的密度和孔隙度,吸水性试验可以获得岩体的吸水性能和渗透性试验可以获得岩体的渗透性能。

这些试验可以通过浸水设备和测量仪器进行。

三、数值模拟数值模拟方法在岩体质量评价中发挥着重要的作用,可以通过数值模拟对岩体的力学行为进行分析和预测。

常用的数值模拟方法包括有限元法、离散元法和边界元法等。

有限元法是最常用的数值模拟方法之一,通过将岩体划分为有限个单元,利用数学模型和边界条件对岩体的力学行为进行模拟和计算。

离散元法是一种将岩体划分为多个离散单元进行分析的方法,适用于岩体的离散破裂和岩体结构的非连续性问题。

边界元法则是将岩体的力学问题转化为边界上的边值问题进行求解的方法,适用于边界条件已知的问题。

数值模拟方法可以通过计算机软件进行,根据实际工程情况和需要选择合适的模型和参数进行模拟分析。

结论:岩体质量评价是地质工程中重要的一环,通过现场调查、室内实验和数值模拟等方法,可以全面、准确地评价岩体的质量和稳定性。

隧道围岩的稳定性分析与评价

隧道围岩的稳定性分析与评价

隧道围岩的稳定性分析与评价隧道是现代交通建设中不可或缺的一部分,而隧道的稳定性对于交通运输的安全性和效率起着至关重要的作用。

因此,对隧道围岩的稳定性进行分析与评价显得至关重要。

本文将从不同的角度对隧道围岩的稳定性进行探讨。

首先,我们需要了解隧道围岩的特点。

隧道围岩是指隧道开挖时所遇到的周围岩石或土层,其特点主要包括力学性质和岩层结构。

力学性质包括岩石的强度、变形特性和破坏模式,而岩层结构则主要涉及岩层的纵向和横向切割裂缝、节理等。

了解这些特点可以为后续的稳定性分析提供基础。

其次,隧道围岩的稳定性分析可采用多种方法。

其中一种常用的方法是数值模拟,通过使用计算机程序模拟隧道开挖过程中的围岩响应,进而评估其稳定性。

这种方法可以考虑多种因素,如地下水位、地应力分布、围岩强度等,从而较为准确地预测隧道的稳定性。

另外,实验模型也是评价隧道围岩稳定性的重要手段。

通过在实验室中制作隧道围岩模型,并施加不同的荷载,可以观察和测量模型的变形和破坏情况,从而获得对真实工程的参考和指导。

接下来,我们需要关注隧道围岩稳定性评价的指标。

常用的评价指标包括围岩的变形和破坏程度、岩体的开挖后裂隙扩展情况以及周围环境对隧道围岩稳定性的影响等。

这些指标可以通过观测和记录岩体的位移、应力、应变、岩石裂隙的发育情况以及地下水位的变化等来评价。

此外,也可以通过进行各种力学实验获得更准确的参数值,从而提高评价的可靠性和准确性。

最后,我们需要考虑隧道围岩的稳定性评价的应用。

首先,对于已经建成的隧道,在设备和材料条件允许的情况下,可以通过监测围岩的稳定性指标,及时发现问题并采取措施进行修复和加固,以确保隧道的安全使用。

其次,对于正在建设中的隧道,稳定性评价可以帮助设计者选择合适的支护措施和参数,并为施工过程中的安全措施提供依据。

最后,对于规划中的隧道项目,稳定性评价可以帮助决策者选择合适的线路,避免潜在的围岩稳定性问题。

综上所述,隧道围岩的稳定性分析与评价对于交通运输的安全和效率至关重要。

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价
崩塌危岩体是指由于地质、地形、气候等多种不利因素,已有一定形变或受力状态不良的岩体,存在发生破坏和崩塌的危险。

对于崩塌危岩体的稳定性评价,可以通过以下几个方面进行探究。

一、岩体工程地质勘察
岩体工程地质勘察是崩塌危岩体稳定性评价的基础,主要内容包括岩体结构、岩体裂隙、岩体构造、岩质性质、地形地貌、地下水位等因素的详细勘察和记录。

通过岩体工程地质勘察,可以初步确定危岩体的稳定性情况和影响因素,为后续的稳定性评价提供必要的数据基础。

二、岩体力学性质试验
岩体力学性质试验是崩塌危岩体稳定性评价的重要内容之一。

主要包括岩样采集、物理力学试验、水力力学试验、原位监测等多个方面。

这些试验可以了解岩体的强度、稳定性、变形特征、裂隙发育等情况,通过对试验数据的分析及综合评判,可以初步判断危岩体的稳定性。

三、数值模拟分析
数值模拟分析是通过计算机模拟危岩体整体受力特性和变形情况的方法,可以更加深入的探究危岩体的稳定性。

数值模拟分析可以通过有限元法、边界元法、离散元法等方式进行,实现岩体的力学、水文和水力力学相互耦合的模拟。

通过数值模拟分析,可以准确计算出危岩体的稳定性系数,提供科学的决策依据。

综上所述,崩塌危岩体稳定性评价是一个复杂的过程,需要从多个方面进行探究。

岩体工程地质勘察、岩体力学性质试验和数值模拟分析是稳定性评价的主要内容,通过将它们有机结合,丰富多样的数据得以综合分析和判断,为地质工程稳定性问题提供科学的解决方案。

工程岩体试验方法标准

工程岩体试验方法标准

工程岩体试验方法标准工程岩体试验方法标准是指在工程岩体勘察、设计和施工过程中,为了获取准确的岩体力学参数和岩体工程性质,以及评价岩体的稳定性和承载能力,所制定的一系列规范的试验方法和标准。

这些标准的制定和实施,对于保障工程建设的安全和可靠性具有重要意义。

一、岩体勘察。

在进行工程岩体试验前,首先需要进行岩体的勘察工作。

岩体的勘察内容包括岩石的种类、岩体的结构、岩体的变形特征、岩体的强度参数等。

常用的岩体勘察方法包括现场观测、岩芯取样、地质雷达探测等。

通过岩体勘察,可以为后续的试验工作提供必要的数据支撑。

二、岩石力学参数试验。

岩石的力学参数是评价岩体工程性质的重要依据。

常用的岩石力学参数试验包括抗压强度试验、抗拉强度试验、剪切强度试验等。

这些试验方法可以通过岩石试样的实验数据,来确定岩石的力学参数,如弹性模量、泊松比、抗压强度、抗拉强度、剪切强度等。

这些参数对于岩体的稳定性评价和工程设计具有重要的指导作用。

三、岩体变形特性试验。

岩体的变形特性是评价岩体稳定性和变形特征的重要依据。

常用的岩体变形特性试验包括岩石压缩试验、岩石拉伸试验、岩石弯曲试验等。

通过这些试验可以获取岩体的变形模量、抗拉强度、抗压强度等参数,从而对岩体的变形特性有所了解。

四、岩体稳定性评价。

岩体的稳定性评价是工程岩体试验的重要内容之一。

通过对岩体的力学参数、变形特性等试验数据的分析,可以对岩体的稳定性进行评价。

在评价岩体稳定性时,需要考虑岩体的地质构造、岩层倾角、岩体裂隙等因素,综合分析岩体的稳定性。

五、岩体承载能力试验。

岩体的承载能力是评价岩体工程性质的重要指标之一。

常用的岩体承载能力试验包括岩石轴向抗压试验、岩石轴向抗拉试验等。

通过这些试验可以获取岩体的承载能力参数,为工程设计提供重要的参考依据。

六、结论。

工程岩体试验方法标准的制定和实施,对于保障工程建设的安全和可靠性具有重要的意义。

通过对岩体的勘察、力学参数试验、变形特性试验、稳定性评价和承载能力试验等工作的实施,可以为工程设计和施工提供重要的数据支撑,保证工程岩体的安全可靠性。

岩石稳定性分析方法及应用

岩石稳定性分析方法及应用

岩石稳定性分析方法及应用岩石稳定性是岩土工程中非常重要的一个研究方向。

在工程中,岩石的稳定性对于确保工程的安全和可靠性至关重要。

本文将介绍一些常见的岩石稳定性分析方法,并探讨其在工程实践中的应用。

一、岩石稳定性分析方法1. 直观法直观法是最简单常用的一种岩石稳定性分析方法。

它基于对岩体的直观观察和经验判断,主要包括裂缝分布、岩体断面形态、岩体颜色变化等方面的观察。

通过对这些直观指标的分析,可以初步评估岩石的稳定性。

2. 摩尔-库伦准则摩尔-库伦准则是基于极限平衡原理和强度理论的一种经典分析方法。

它将岩石视为具有一定内聚力的等效材料,基于材料的内聚强度和应变能耗散能力进行分析,计算岩体是否稳定。

该方法适用于简单的岩石体或者边坡稳定性分析。

3. 数值模拟法数值模拟法是利用计算机进行岩石稳定性分析的一种方法。

它基于有限元或有限差分法,将岩石体离散化为一系列有限大小的元素或节点,通过求解力学方程得到岩体的应力和应变分布。

数值模拟法可以考虑复杂的岩石结构和边界条件,对于复杂工程问题的分析具有较好的适用性。

二、岩石稳定性分析方法的应用1. 边坡稳定性分析在公路、铁路、水电站等工程中,岩石边坡的稳定性是一个必须要考虑的问题。

通过对边坡进行岩石稳定性分析,可以确定边坡的合理坡度和防护措施,确保工程的长期稳定运行。

2. 堡坎固结场稳定性分析堡坎固结场是矿山开采过程中的一个重要工程环节。

通过对岩石堡坎的稳定性进行分析,可以评估岩石的开挖难度和支护方案,确保矿山开采的安全和高效进行。

3. 岩石坝稳定性分析岩石坝在水利工程中应用广泛,其稳定性对于坝体的安全和工程的可靠性至关重要。

通过岩石稳定性分析,可以确定岩石坝的合理坡度和防护措施,保证坝体长期稳定运行,并防止坝体发生破坏。

总结:岩石稳定性分析是岩土工程中的重要内容,通过合理的分析方法和工具,可以评估岩石体的稳定状况,为工程的设计和施工提供科学依据。

本文介绍了一些常见的岩石稳定性分析方法,并探讨了它们在工程实践中的应用领域。

围岩稳定性评价总结

围岩稳定性评价总结

第6 节

.经典案例.
围岩稳定性评价
渝怀铁路圆梁山隧道:线路重点控制工程,全 长11.068公里,隧道地质条件异常复杂。
隧道进口毛坝向斜和出口桐麻岭背斜有多处大 规模的深埋充填溶洞,出口段为岩堆体。


这是国内隧道建设中首次在深埋、向斜部位、 高压富水、形态类型多变的充满水、粉质泥砂 的深部地区中穿过。隧道施工难度属国内罕见。
(3)长隧洞信息化设计方法的研究 收集国内外已建和在建隧洞设计和施工资料,整理 分析,建立隧洞资料数据库;……… ;

.相关链接.

(4)高地应力和高外水压力作用下岩体特性及隧洞 设计关键问题研究 研究高地应力和高外水压力作用下岩体变形和强度 特征;研究“双高”作用下围岩稳定性;围岩的流变 特性及其对衬砌后期的影响;岩体渗流参数反分析, 渗流场分析及渗流应力场的分析;研究“双高”作用 下压力隧洞的支护设计。
第7 节

洞室位址选择地质论证
1、岩性-- 影响洞室稳定性最基本的因素。

坚硬完整岩体
稳定性好,不需支护能 适应各种断面洞室。
软弱岩体-
力学强度低,遇水易软化、崩 解、膨胀等不良性质,不利于 洞室稳定,围岩易变形破坏。

软硬相间岩体-
其中软岩强度低,或错动成软弱夹层,此类 岩一般性质较差,围岩稳定性也较差。

完整坚硬岩体、裂隙较发育、但闭合且连续性
差、未形成分离体。
第6 节
围岩稳定性评价 Fs:安全系数, 一般取Fs=2
二、定量评价

1、整体稳定性计算--
σθc,σθt --洞壁处环向压、拉应力; 整体状或块状岩体,可视为均质、连续介质 σc ,σt --岩体饱和抗压、拉强度。

岩体边坡稳定性分析

岩体边坡稳定性分析

岩体边坡稳定性分析岩体边坡稳定性分析的基本方法包括稳定性判据方法、数值模拟方法和经验方法。

稳定性判据方法是基于力学和应力分析理论,通过计算边坡上的剪切力和抗剪强度之间的平衡关系判断稳定与否。

常用的稳定性判据方法有穆勒布朗判据、圈内法、切β法等。

数值模拟方法是采用数学模型和计算机模拟手段,通过求解边坡稳定方程来评估稳定性。

经验方法则是基于大量岩体边坡的实测数据和统计分析得出的经验公式,使用方便但适用范围有限。

岩体边坡稳定性分析的主要因素包括地下水、岩体力学性质、边坡几何形状以及外荷载。

地下水对岩体边坡稳定性有着明显影响,当地下水位上升时,岩体边坡的稳定性会降低。

岩体力学性质包括岩石的抗剪强度、内摩擦角、岩石的断裂性质等,这些参数对边坡的稳定性具有重要影响。

边坡几何形状是指边坡的坡度和几何形态,不同几何形状会导致不同的应力分布规律,从而影响边坡的稳定性。

外荷载是指施加在边坡上的荷载,包括重力荷载、地震力、降雨等。

岩体边坡的稳定性评价指标通常包括安全系数、位移、应力等。

安全系数是评价边坡稳定性的定量指标,其定义为边坡承受力与破坏力之比。

一般来说,当安全系数大于1时,边坡处于稳定状态。

位移是指边坡因外力作用而发生的位移量,其用于评估边坡的破坏程度和变形情况。

应力是指边坡内部岩体所受到的力,根据岩石力学理论,应力越大,边坡稳定性越差。

下面以一个具体的岩体边坡案例为例,进行稳定性分析。

假设岩体边坡的长宽比为1:1,坡度为30度,岩体内摩擦角为30度,地下水位在岩体底部,当地下水位上升时岩体的抗剪强度降低。

根据穆勒布朗判据,可以计算出边坡的安全系数。

进一步使用数值模拟方法,进行边坡稳定方程的求解,得到边坡的稳定状态和位移情况。

最后,根据岩体边坡的应力分布情况,评估岩体边坡在不同荷载条件下的稳定性。

综上所述,岩体边坡稳定性分析是岩土工程领域中的一个重要课题,需要综合考虑多个因素,并采用合适的分析方法和评价指标进行分析。

危岩体稳定性分析

危岩体稳定性分析

附件2 危岩体稳定性分析1、WY-01危岩体稳定性定量评价1 计算模型从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。

WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。

图3-1 滑移式危岩示意图图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)2计算公式①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:(cos sin sin )sin cos cos W Q V V tg c lK W Q V θθθφθθθ---+⋅=++221ww h V γ=式中:V ——裂隙水压力(kN/m),;wh ——裂隙充水高度(m),取裂隙深度的1/3。

w γ——取10kN/m 。

Q ——地震力(kN/m),按公式e Q W ξ=⨯确定,式中地震水平作用系数七级烈度地区e ξ取0.075;K ——危岩稳定性系数;c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;θ——软弱结构面倾角(°),外倾取正,内倾取负;W ——危岩体自重(kN/m3)。

3 危岩稳定性计算结果根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。

(1)计算参数:崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数与工程类比得出物理力学参数见表:表3-2岩体物理力学参数表注:由于坡表白云岩、灰岩多为强~弱风化强卸荷岩体,其参数均参考类比相似强~弱风化强卸荷岩体参数。

坠落式、倾倒式崩塌(危岩体)的稳定性评价

坠落式、倾倒式崩塌(危岩体)的稳定性评价
(2)地 层 岩 性 及 产状 区 内 出 露 地 层 岩 性 为 三 叠 系 下 统 安顺 组 (T1a)白云 岩 受 区域 内构 造 影 响 。岩 石 节 理 发 育 .抗 风 化 能 力 弱 .岩 溶 发 育 .岩 层 产 状 85o<68o。
(3)地 质 构 造 。据 区域 地 质 资 料 .位 于 贵 阳 向 斜 轴 部 北 端 东 侧 .图 云 关 断 层 的 断 裂 构 造 带 上 受 地 质 构 造 影 响 .区 内 岩 体 节 理 裂 隙 发 育 。主 要 发 育 有 3组 节 理 ,分 别 为 250o<80o、 210 ̄<43o、145 ̄<48 ̄.呈 开 口状 ,部 分 裂 隙 有 粘 土 充 填 。
4.1 定 ·眭分 析
岩 体 被 结 构 面 切 割 后 已经 形 成 不 稳 定 块 体 .由 于 地 形 坡
度 较 陡 .加 上 岩 体 中应 力 释 放 导 致 结 构 面 上பைடு நூலகம்的剪 应 力 超 过 其
自身 抗 剪 强 度 时 .控 崩 结 构 面 瞬 间 被 贯 通 迅 速 发 生 坠 落 、崩
塌 。通 过 对 危 岩 的 详 细 调 查 .结 合 基 岩 节 理 裂 隙 发 育 程 度 、危
岩 破 坏 模 式 及 已经 出 现 的变 形 破 坏 迹 象 .采 用 地 质 类 比法 对
成 了可 能 失 稳 的崩 塌 体 局 部 危 岩 体 外 倾 结 构 面 较 发 育 。形
成 了块 状 悬 挂 的岩 体 .且 这 类 岩 体 与母 岩 接 触 处 发 育 垂 直 向
的 节 理 裂 隙 。部 分 贯 通 。可 导 致 危 岩 体 坠 落 式 崩 塌 。部 分 危 岩
体 所 在 斜 坡 坡 度 较 陡 .底 部 基 座 连 接 部 分 稳 定 性 差 .为 这 类

任务四-岩体稳定性评价

任务四-岩体稳定性评价
以工程地质比拟法为基础,在总结了大量工 程实践中的经验后、铁路部门在自己的工程技术 规范中提出了评价岩质桥基和隧道围岩的方法, 对岩质边坡设计也提出了一些经验数据。
(一)地基承载力[σ]:
(二)隧道围岩分类:
二、铁路部门应用的某些经验数据
(一)地基承载力[σ]:
岩石地基承载力,应考虑构造因素和地下水长 期软化对承载力降低的影响,一般情况下可比 照表5-10及5-11确定。
当前较常使用的方法是两种:
①用赤平极射投影图解及极限平衡理论计算可能失稳 方向上的安全系数。
②利用有限单元法进行岩体稳定性评价。
3. 试验研究方法
3. 试验研究方法 包括模型试验法和模拟试验法。 常用的有相似材料模型试验和光弹模型模拟试 验。 在相似理论的基础上用人工制造的模型和受力 条件去模仿实际的工程岩体原型及实际的受力 条件,通过室内模型模拟试验观察人工模型的 稳定性来评价实际岩体的稳定性。
但定性分析多而定量分析少。
1.地质分析法:
1.地质分析法: (3)地质力学配套分析:
在岩体稳定性评价中日益得到发展。
分析的基本内容可包括三个方面:一是根据破裂结构面 的力学性质评价结构面的工程性质,例如从结构面抗剪 强度来看,张性结构面较大,压性结构面其次,扭性结 构面较小;变形模量则是压性面大于扭性面,扭性面大 于张性面;透水性是张性面最大,扭性面居中,压性面 最小。二是应用构造体系的理论确定结构面构造组合、 结构体的型式等岩体结构特征。三是根据构造配套恢复 区域构造应力场,为了解岩体的天然应力状态指明方向。
(-)岩体的稳定性及影响岩体稳定性的因素
▪2. 影响岩体稳定性的因素
①岩体所在位置周围地质环境的稳定性对该环境 内的岩体稳定性有宏观控制作用。

工程岩体分级标准

工程岩体分级标准

工程岩体分级标准工程岩体分级标准是指根据岩体的力学性质、岩体结构和岩体稳定性等特征,对岩体进行分类和评定的标准。

岩体在工程施工中扮演着重要的角色,其稳定性直接关系到工程的安全性和可靠性。

因此,对岩体进行科学合理的分级评定,是保障工程施工质量和安全的重要环节。

一、岩体力学性质。

岩体的力学性质是指岩石在外力作用下的变形和破坏特性。

根据岩石的抗压强度、抗拉强度、抗弯强度等指标,可以将岩体分为强、中、弱三个等级。

强岩体具有较高的抗压强度和抗拉强度,适合用于大型工程的基础和支护结构;中岩体的力学性质一般,适合用于中小型工程的基础和支护结构;弱岩体的力学性质较差,需要采取特殊的支护措施才能保证工程的安全施工。

二、岩体结构。

岩体结构是指岩石的裂隙、节理、岩层倾角等特征。

根据岩体结构的复杂程度和对工程施工的影响程度,可以将岩体分为简单、中等、复杂三个等级。

简单岩体结构指岩石中裂隙和节理较少,对工程施工影响较小;中等岩体结构指岩石中存在一定数量的裂隙和节理,对工程施工有一定影响;复杂岩体结构指岩石中存在大量的裂隙和节理,对工程施工影响较大,需要采取相应的支护措施。

三、岩体稳定性。

岩体稳定性是指岩体在外力作用下的稳定性和变形能力。

根据岩体的稳定性和变形能力,可以将岩体分为稳定、较稳定、不稳定三个等级。

稳定岩体指岩石在外力作用下变形能力较强,不易发生破坏;较稳定岩体指岩石在外力作用下变形能力一般,可能发生一定程度的破坏;不稳定岩体指岩石在外力作用下变形能力较差,容易发生破坏,需要采取有效的支护措施。

综上所述,工程岩体分级标准是工程施工中重要的一环,对岩体进行科学合理的分类和评定,有助于制定合理的支护措施,保障工程施工的安全和可靠。

在实际工程中,应根据岩体的力学性质、结构和稳定性等特征,综合评定岩体的分级,并采取相应的支护措施,确保工程施工的顺利进行。

岩体的稳定性分析

岩体的稳定性分析

2016年岩体的稳定性分析一、岩体稳定性与区域稳定性的关系区域稳定性的主要控制因素,也制约岩体的稳定性。

1)地壳板块的相对运动的强弱导致构造变动和产生高构造应力,从大范围控制了区域地层和岩体变形、位移或失稳。

2)活动性深大断裂活动(水平或垂直位移)引起区域地壳及其表层发生水平或升降运动,可引起位于断裂带的岩体变位或失稳。

3)地震活动在我国有些地区十分强烈,常引起大范围的构筑物的失稳和破坏。

幻灯片2二、岩体破坏类型分析1.岩体失稳的主要影响因素①受区域地壳稳定性控制。

②受岩体的结构特征、变形特征、强度特性、水稳性等控制。

③失稳的边界条件:岩体失稳要有一定的边界条件,即存在临空面和结构面组成的分离体。

④荷载的类型、大小和方向决定了岩体的受力状态。

⑤工程类别对岩体失稳方式有重要影响。

幻灯片32. 岩体破坏类型分析①当区域稳定性为相对稳定,工程岩体条件较好时,岩体失稳破坏的类型取决于边界条件、工程类型及工程荷载性质的组合特点,岩体失稳破坏的方式往往以剪切滑移方式为主。

②当区域稳定性为相对活动,工程的场地条件较好时③区域环境和工程场地均处于突出的高水平构造应力状态时④当区域相对稳定,岩体抗压强度较高,不具备滑移的边界条件,地面建筑物承受强大的风荷载时,可能发生张拉破坏导致建筑物倾倒。

幻灯片4⑤区域相对稳定,工程场地为河流之滨,岩体本身条件较差,在建筑物荷载的作用下,建筑持力层将发生过大的压缩沉陷变形,与其侧向膨胀变形相对应的侧向压力将使岸坡前持力层发生压缩破坏,导致建筑物向河中倾覆,或沿可能的滑动面滑动。

幻灯片53. 岩体稳定分析国内外应用于岩体稳定性分析的方法有:地质分析类比法岩体结构分析与计算法岩体稳定性分类法数值模拟计算法地质模拟试验法等。

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价
崩塌危岩体稳定性评价是指对岩体的崩塌危险程度进行定量评估的过程。

崩塌危岩体稳定性评价是岩体工程稳定性评价的一种特殊形式,主要用于评估在工程建设中存在崩塌危险的岩体,以确定相应的危险等级和采取相应的治理措施。

崩塌危岩体稳定性评价主要包括以下几个方面的内容:
1.岩体的物理力学性质评价:包括岩体的岩性、强度、韧性、脆性等方面的评价。

这些物理力学性质对于岩体的稳定性具有重要的影响,需要通过实验和野外观测来获得。

4.岩体变形与破坏特征评价:通过观测与监测岩体的变形与破坏特征,并对其进行判断与评价。

这些评价结果可以用来确定岩体的临界状态和潜在崩塌风险。

崩塌危岩体稳定性评价的方法主要包括定性评价和定量评价两种。

定性评价是根据经验或者判断来进行评价,主要是通过判断岩体的稳定性指标和运动模式来进行评价。

定量评价是通过数学模型和计算方法来进行评价,通常采用稳定性分析方法,如平衡法、等效连续体法和离散元法等。

在进行崩塌危岩体稳定性评价时,需要收集岩体的相关资料和数据,并进行现场勘察与观测,对岩体的物理力学性质和结构特征进行评价,然后根据评价结果进行稳定性分析和评价,确定岩体的稳定性状况和危险等级,并提出相应的治理措施和建议。

崩塌危岩体稳定性评价是岩体工程中重要的一环,可以为工程建设提供科学的指导和决策依据,保障工程的安全稳定进行。

岩体稳定性评价

岩体稳定性评价

岩体稳定性分析与评价1 工程岩体的定义在工程地质中,把工程作用范围内具有一定的岩石成分、结构特征及赋存于某种地质环境中的地质体称为岩体。

岩体是在内部的联结力较弱的层理、片理和节理、断层等切割下,具有明显的不连续性。

这是岩体的重要特点,使岩体结构的力学效应减弱和消失。

使岩体强度远远低于岩石强度,岩体变形远远大于岩石本身,岩体的渗透性远远大于岩石的渗透性[1]。

工程岩体是十分复杂的,它受到自然地质作用和人类活动的共同影响。

工程岩体稳定性评价与利用一直是人们研究的热点话题,国内外相关方面的研究一直没有间断。

工程岩体通常是指与人类活动有关的地下或地表岩体,如地面的斜坡边坡、岩石基础、水库岸坡、地下硐室围岩以及矿区岩体等。

具体而言工程岩体具有以下四个方面的含义:(1)岩体中普遍存在的节理裂隙、断层、层里等软弱面不连续使大部分岩体失去了连续性而呈现出非线性大变形的力学形态。

岩体的变形与强度特征在很多情况下都是由这些结构面控制的,加之岩体介质本身的非均质性,使得岩体的力学形态比土体复杂的多。

(2)由于各种条件的限制,工程岩体往往不可避免地处于高地应力、地下水、地震、地热等环境中,处于多因素控制的受力状态,使其变形与破坏规律更为复杂,经常涉及到固体力学—水力学—热力学场耦合作用。

(3)为满足工程建设要求,经常地对工程岩体进行各种扰动,如开挖、回填、加固处理等,从而使得工程岩体在时间和空间上呈现出复杂的性态特征。

(4)大多数工程岩体均为地表相对较浅的地壳岩体,经历各种地质营力作用,因人类工程活动表现为卸荷岩体力学行为和特征,不同于常规的加载岩体力学特征。

2工程岩体稳定性的影响因素及破坏形式通常来讲,影响岩体稳定性的结构性因素主要是其自身的结构特征,其次是人类工程活动,最后是环境因素,包括地下水、地应力、地震、地热等。

影响工程岩体稳定性的因素主要有以下几个方面:(1)岩块性质的影响包括岩石的坚硬程度、抗风化能力、抗软化能力、强度、组成、透水性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩体稳定性分析与评价1 工程岩体的定义在工程地质中,把工程作用范围内具有一定的岩石成分、结构特征及赋存于某种地质环境中的地质体称为岩体。

岩体是在内部的联结力较弱的层理、片理和节理、断层等切割下,具有明显的不连续性。

这是岩体的重要特点,使岩体结构的力学效应减弱和消失。

使岩体强度远远低于岩石强度,岩体变形远远大于岩石本身,岩体的渗透性远远大于岩石的渗透性[1]。

工程岩体是十分复杂的,它受到自然地质作用和人类活动的共同影响。

工程岩体稳定性评价与利用一直是人们研究的热点话题,国内外相关方面的研究一直没有间断。

工程岩体通常是指与人类活动有关的地下或地表岩体,如地面的斜坡边坡、岩石基础、水库岸坡、地下硐室围岩以及矿区岩体等。

具体而言工程岩体具有以下四个方面的含义:(1)岩体中普遍存在的节理裂隙、断层、层里等软弱面不连续使大部分岩体失去了连续性而呈现出非线性大变形的力学形态。

岩体的变形与强度特征在很多情况下都是由这些结构面控制的,加之岩体介质本身的非均质性,使得岩体的力学形态比土体复杂的多。

(2)由于各种条件的限制,工程岩体往往不可避免地处于高地应力、地下水、地震、地热等环境中,处于多因素控制的受力状态,使其变形与破坏规律更为复杂,经常涉及到固体力学—水力学—热力学场耦合作用。

(3)为满足工程建设要求,经常地对工程岩体进行各种扰动,如开挖、回填、加固处理等,从而使得工程岩体在时间和空间上呈现出复杂的性态特征。

(4)大多数工程岩体均为地表相对较浅的地壳岩体,经历各种地质营力作用,因人类工程活动表现为卸荷岩体力学行为和特征,不同于常规的加载岩体力学特征。

2工程岩体稳定性的影响因素及破坏形式通常来讲,影响岩体稳定性的结构性因素主要是其自身的结构特征,其次是人类工程活动,最后是环境因素,包括地下水、地应力、地震、地热等。

影响工程岩体稳定性的因素主要有以下几个方面:(1)岩块性质的影响包括岩石的坚硬程度、抗风化能力、抗软化能力、强度、组成、透水性等。

(2)岩层的构造与结构的影响,表现在节理裂隙的发育程度及其分布规律、结构面的胶结情况、软弱面和破碎带的分布与边坡的关系、下伏岩土界面的形态以及坡向坡脚等。

(3)水文地质条件的影响,包括地下水的埋藏条件、地下水的流动及动态变化等。

(4)地貌因素,如边坡的高度、坡度和形态等。

(5)风化作用的影响,主要体现为风化作用将减弱岩石的强度,改变地下水的动态。

(6)气候作用的影响,气候引起岩土风化速度、风化厚度以及岩石风化后的机械、化学变化,同时引起地下水、地表水作用的变化。

(7)地震作用除了使岩土体增加下滑力外,还常常引起孔隙水压力的增加和岩体的强度的降低;另外,开挖、填筑和堆载等人为因素同样可能造成工程岩体的失稳。

工程岩体的失稳往往是多种因素共同作用的结果,导致边坡失稳的因素可归结为两类:一是外界力的作用破坏了岩体原来的应力平衡状态,如边坡岩体的开挖及坡顶上作用外荷载、渗流、地震力等;另一类是边坡岩体的抗剪强度由于受外界各种因素的影响而降低。

岩体承受应力,就会在体积、形状或宏观连续性上发生某种变化。

宏观连续性无显著变化者称为变形。

如果宏观连续性发生了显著变化,称为破坏。

岩体变形破坏的方式与过程既取决于岩体的岩性、结构,也与所承受的应力状态及其变化有关。

因为岩体在变形发展与破坏过程中,除岩体内部结构与外形不断发生变化外,岩体的应力状态也随之调整,并引起弹性能的积存和释放等效应。

区域稳定和岩体稳定问题工程地质分析中的一个核心问题就是要对上述变化和效应作出预测和评价,并论证它们对人类工程活动的影响。

2.1岩体破坏的基本形式根据岩体破坏机制可将岩体破坏划分为剪切破坏和张性破坏(或拉断破坏)两类。

图2-1破坏方式影响因素:受荷载条件、岩性、结构以及所处的环境特征及两者相互配合的情况等因素影响。

图2-1 岩体破坏的基本形式2.1.1岩体变形破坏与受力状态的关系岩石的三轴试验表明,岩石破坏形式与围压的大小有明显的关系(见图2-2)。

(1)当在负围压及低围压条件下岩石表现为拉断破坏;(2)随着围压增高将转化为剪断破坏;(3)当围压升高到一定值以后,表现为塑性破坏。

图2-2 岩石的三向应力状态与破坏方式(据伯奈克斯,1974)(a)拉断破坏;(b)剪断破坏;(c) 塑性破坏(b)2.1.2岩体破坏形式与岩体结构特征的关系在低围压条件下岩石的三轴试验表明:(1)在相同的应力状态下,完整块体状坚硬岩石表现为张性破坏,通常释放出较高的弹性应变能;(2)含有软弱结构面的块状岩体,当结构面与最大主应力之间角度合适时,则表现为沿结构面的剪切滑动破坏;(3)碎裂状岩体的破坏方式介于二者之间;(4)碎块状或散体状岩体,表现为塑性破坏。

3 结构面对岩体稳定性的影响70年代以来,国外外工程地质学家和岩体力学专家都注意到各种结构面切割的岩体与完整岩块的性质存在区别,并提出了岩块(Rock)和岩体(Rock Mass)的概念。

其基本观点是,岩石是地壳发展过程中的自然历史产物,是构成地壳的主要独立组分,它可以由一种或几种造岩矿物或天然玻璃组成,具有稳定的外形的固态集合体。

岩石按其成因可分成岩浆岩、沉积岩和变质岩;岩体通常是指不具有成层构造的岩浆岩或混合岩化的变质岩的俗称。

在工程地质学领域,“岩石”和“岩体”是工程性质截然不同的两个术语。

岩体内存在着不同成因、不同特性、不同方向的结构面。

岩体中的结构面依自己的产状,彼此组合将岩体切割成形态不一、大小不等以及成分各异的岩块,这些由结构面所包围的岩块统称为结构体。

岩石仅仅是指构成岩体的物质组成或材料。

岩体的工程性质主要取决于结构体的工程性质和结构面的工程性质,包括岩体赋存的地质环境(地应力、地下水等)和工程作用特点。

其中,结构面是造成岩体工程性质复杂性的根本原因:一方面,结构面的存在破坏了岩体的连续性和完整性,使岩体具有不均一性和各向异性;另一方面,作为岩体组成部分的结构面本身,其几何上和力学上也是错综复杂的。

结构面的存在是岩体作为工程介质区别于其他工程介质的本质根源。

与土体相比,岩体工程性质的特殊性主要表现在以下三个方面:(l)不连续岩体是由不同规模、不同形态、不同成因、不同方向和不同序次的结构面以及被结构面围限而成的结构体共同组成的综合体,岩体在几何上和力学性质上都具有不连续性。

(2)各向异性由于发育在岩体中的各种结构面均具有明显的方向性,受结构面的影响,岩体的工程性质呈现显著的各向异性。

随着岩体中发育的结构面组数的增多,岩体工程性质的各向异性程度趋于减弱。

(3)非均一由于岩体工程性质的不连续、各向异性以及岩体组成物质的非均质,加之结构面在岩体不同部位发育程度和分布规律的差异,不同工程部位的岩体常表现出不同的工程性质。

岩体工程性质的特殊性决定了岩体工程性质的复杂性,要求对岩体工程性质的研究方法应与土体及其他工程介质相区别。

结构面,根据谷德振教授(1979)的定义,它是地质历史发展过程中,在岩体内形成具有一定方向、一定规模、一定形态和特征的面、缝、层、带状的地质界面。

面是指岩块间刚性接触的,无任何充填的劈理、节理、层面、片理等,是自然界最直观、最易被人们认识的一类结构面;缝是指有充填物,而且充填物有一定厚度的裂缝,如泥化夹层、岩脉等。

这类结构面具有清楚的界面,也是人们所熟悉的;层是指岩层中工程性质相对软弱的软弱夹层,如玄武岩中的凝灰岩夹层,灰岩中的泥灰岩夹层,砂岩中的粘土层夹层等,是物质成分和力学性质有明显差异的二种成层岩石在空间上韵律分布形成的。

这类结构面野外容易识别,但按传统的观点,人们并不把它视为结构面。

可以说,这是一类根据力学属性定义的结构面;带是指具有一定厚度(或宽度)的构造破碎带、接触破碎带、顺层或层间错动带、古风化壳(不整合)和风化槽等。

因此,考虑工程稳定性的研究目的,结构面不但包括几何属性和力学属性上的面状构造,还包括在几何上由上、下两个界面所限制,在物质组成上有一定厚度的相对软弱的物质充填,在力学属性上存在明显不连续性的缝、层、带状构造,由于充填于上、下两个界面之间的软弱物质厚度与相邻岩块厚度相比是微不足道的,从宏观上仍可看作是一种面状构造。

结构面对岩体稳定性的影响表现在:1、结构面空间方位的影响结构面空间方位对岩石稳定性的影响取决于结构面的产状要素与岩体所在的斜坡的空间几何关系。

斜坡有倾向坡外、倾角小于坡角的结构面存在;斜坡被两组或两组以上结构面切割,形成不稳定棱体,其底棱线倾向坡外,且倾角小于斜坡坡角;坡足或坡基存在缓倾的软弱加层均可导致岩体的破坏。

结构面方位的表示方法很多,如赤平投影图、玫瑰花图、等角度或等面积散点图、等密度图等。

其中,赤平投影图最常见。

赤平投影图是将结构面的产状投影到通过参考球体中心的赤道平面上的几何图。

它不仅可以分析岩体沿平面的滑动,还可以分析沿楔形体的滑动,比如滑动的单一楔形断面滑体、单滑块和多滑块。

2、结构面几何尺寸的影响结构面集合参数是表征岩体完整性的指标,而完整性的好坏对岩体稳定性影响很大。

通常,结构面几何尺寸参数对岩体稳定性的影响通过“岩石刻度”刻画岩体的完整程度,岩石块度有RQD指标表示。

RQD也称岩石质量指标,定义为用直径为75mm的金刚石钻头和双层岩芯管在岩石中钻进,连续取芯,回次钻进所取岩芯中,长度大于10cm的岩芯段长度之和与该回次进尺的比值,以百分比表示。

公式为:()钻孔长度度以上整段岩芯的累计长10cm100%RQ⨯=DRQD 与岩石质量的关系如表:3、结构面抗剪强度的影响研究表明,结构面抗剪强度对隧道围岩稳定性影响显著,特别当隧道轴线走向与结构面走向平行或近平行时。

影响结构面抗剪强度的因素主要有充填胶结特征、表面粗糙起伏程度、壁岩强度以及结构面贯通性等。

(1) 非贯通结构面的抗剪强度对非贯通的结构面而言,沿剪切面所通过的结构面和未贯通的“岩桥”均起抗剪作用,因此,其抗剪强度比贯通结构面高。

假定沿整个剪切面上应力均匀分布,则其抗剪强度可表示为:()[]()[]r j r j f n f C n C -++-+=1n 1n στ 式中,n 为连通率;j C 为结构面内聚力;j f 为结构面内摩擦系数;r C 为岩隽的内聚力;r f 为岩块的内摩擦系数。

(2) 有充填结构面的抗剪强度有充填结构面的抗剪强度取决于充填物的厚度及其物质组成。

孙广忠(1988)通过粘土矿物充填结构面的抗剪强度试验发现,抗剪强度随充填物的厚度增厚而迅速降低,当充填物厚度大于一定值后,结构面的抗剪强度主要取决于充填物的力学性质川。

如果充填物为方解石或石英,则结构面抗剪强度会由于“焊接”作用而提高,但岩体会再次遭受破坏(如地震、人类活动等)而形成新的不连续面;方解石或石膏充填的结构面,当它们呈多孔状或鳞片状时,会随着时间而溶解,即结构面抗剪强度会随时间延长而降低甚至消失阁;粘土质充填的结构面,如泥化夹层或夹泥的结构面,由于本身就是一种润滑剂,结构面抗剪强度一般很低。

相关文档
最新文档