电路分析基础ppt课件
合集下载
第2章电路分析基础13节PPT课件
2
2.1.1 基尔霍夫定律
名词,电路如图所示
IS
a I1
- US1+ b I4
①结点:电路中三个或三个以上电路
IS
元件的连接点。如图a、b、c点。
②支路:连接两个结点之间的电路。如图
1
R2 d I3
R1 2
+ US2
R3
I2 e
3
R4
中adb、bec等。图中有5条支路。
c
③回路:电路中任一闭合路径。图中1、2、3都是回路。共有6个回路。
I2134A
对结点c,列KCL
b
-
U1 + R2
1Ω R4
I2 2Ω
3Ω
R5
- U2+ R3
I4 4V
2Ω I5 6V
+ US
-1 -d
US
+2
3A 1Ω c I3
I3I53U RS5236 230
U1为 U 1 R 1 1 U S 1 R 2 I 2 1 1 4 3 ( 4 ) 1 7 V
可见,电流源放出功率等于电阻消耗功率与电压源吸收 功率之和,符合功率平衡关系。
—电工电子学—
8
上页 下页
8
基尔霍夫定律应用
习题2.1.1 求图示电路中电流I1、I2、I3和电压U1、U2。
解:根据电压源、电流源的特点,得
1A R1 a I1
对结点a,列KCL
I1I41U RS 4114 211A
对结点b,列KCL
i 0 其中:流入的取“-”、流 出的取“+”;或相反。
对结点b得 I1I2I40 整理后得 对结点c得 ISI3I2I40 整理后得
电路分析基础ppt课件
详细描述
欧姆定律是电路分析中最基本的定律 之一,它指出在纯电阻电路中,电压 、电流和电阻之间的关系为 V=IR,其 中 V 是电压,I 是电流,R 布问题的 定律
VS
详细描述
基尔霍夫定律包括两个部分:基尔霍夫电 流定律(KCL)和基尔霍夫电压定律( KVL)。基尔霍夫电流定律指出,对于电 路中的任何节点,流入节点的电流之和等 于流出节点的电流之和;基尔霍夫电压定 律指出,对于电路中的任何闭合回路,沿 回路绕行一圈,各段电压的代数和等于零 。
电路分析基础PPT 课件
目 录
• 电路分析基础概述 • 电路元件和电路模型 • 电路分析的基本定律和方法 • 交流电路分析 • 动态电路分析 • 电路分析的应用实例
01
电路分析基础概述
电路分析的定义
电路分析
电路分析的方法
通过数学模型和物理定律,研究电路 中电压、电流和功率等参数的分布和 变化规律的科学。
时不变假设
电路中的元件参数不随时间变化, 即电路的工作状态只与输入信号的 幅度和相位有关,而与时间无关。
02
电路元件和电路模型
电阻元件
总结词
表示电路对电流的阻力,是电路中最基本的元件之一。
详细描述
电阻元件是表示电路对电流的阻力的一种元件,其大小与材料的电导率、长度 和截面积等因素有关。在电路分析中,电阻元件主要用于限制电流,产生电压 降落和消耗电能。
二阶动态电路的分析
总结词
二阶RLC电路的分析
详细描述
二阶RLC电路是指由一个电阻R、一个电感L和一个电容C 组成的电路,其动态行为由二阶微分方程描述。通过求解 该微分方程,可以得到电路中电压和电流的变化规律。
总结词
二阶动态电路的响应
欧姆定律是电路分析中最基本的定律 之一,它指出在纯电阻电路中,电压 、电流和电阻之间的关系为 V=IR,其 中 V 是电压,I 是电流,R 布问题的 定律
VS
详细描述
基尔霍夫定律包括两个部分:基尔霍夫电 流定律(KCL)和基尔霍夫电压定律( KVL)。基尔霍夫电流定律指出,对于电 路中的任何节点,流入节点的电流之和等 于流出节点的电流之和;基尔霍夫电压定 律指出,对于电路中的任何闭合回路,沿 回路绕行一圈,各段电压的代数和等于零 。
电路分析基础PPT 课件
目 录
• 电路分析基础概述 • 电路元件和电路模型 • 电路分析的基本定律和方法 • 交流电路分析 • 动态电路分析 • 电路分析的应用实例
01
电路分析基础概述
电路分析的定义
电路分析
电路分析的方法
通过数学模型和物理定律,研究电路 中电压、电流和功率等参数的分布和 变化规律的科学。
时不变假设
电路中的元件参数不随时间变化, 即电路的工作状态只与输入信号的 幅度和相位有关,而与时间无关。
02
电路元件和电路模型
电阻元件
总结词
表示电路对电流的阻力,是电路中最基本的元件之一。
详细描述
电阻元件是表示电路对电流的阻力的一种元件,其大小与材料的电导率、长度 和截面积等因素有关。在电路分析中,电阻元件主要用于限制电流,产生电压 降落和消耗电能。
二阶动态电路的分析
总结词
二阶RLC电路的分析
详细描述
二阶RLC电路是指由一个电阻R、一个电感L和一个电容C 组成的电路,其动态行为由二阶微分方程描述。通过求解 该微分方程,可以得到电路中电压和电流的变化规律。
总结词
二阶动态电路的响应
电路分析基础ppt课件
强度,简称电流,表示为 i dq dt
习惯上把正电荷运动的方向规定为电流的实际方向 。 但在具体电路中,电流的实际方向常常随时间变化, 即使不随时间变化,对较复杂电路中电流的实际方 向有时也难以预先断定,因此,往往很难在电路中 标明电流的实际方向。
19
电流的参考方向 在分析电路时,先指定某一方向为电 流方向,称为电流的参考方向,用箭头表示,如图中 实线箭头所示。
2
课程的重要性及任务(续)
•该课程的任务,就是使学生掌握电类技 术人员必须具备的电路基础理论、基本分 析方法;掌握各种常用电工仪器、仪表的 使用以及基础的电工测量方法;为信号与 系统、电子技术基础、高频电子线路等后 续课程的学习和今后踏入社会后的工程实 际应用打下坚实的基础。
3
课程特点
• 概念性强; • 内容杂; • 应用数学知识较多; • 分析方法灵活;
7
考核与成绩评定
考核性质:考试课,百分制 考试方法:闭卷、笔试 考核用时:期末120分钟 考核模式:三段制模式 成绩评定: 期末总评成绩=平时成绩×20%+实验×10% +期末成绩×70% 补考方法:总评成绩低于60分的学生,须参加学校统一组 织的补考。 补考总成绩=平时成绩×20%+补考成绩×80%
11
1.1.2 电路模型
1)实际电路与电路模型
图1.1(a)是一个简单的实际照明电路。
实际
电路 组成:
①是提供电能的能源,简称电源。
它的作用是将其他形式的能量转换 为电能。 ②是用电装置,统称其为负载。 它将电源供给的电能转换为其他形 式的能量 。
金③属是导连线接,电简源称与导负线载。传图输中电S能是的为图1.1 (a) 手电筒电路
29
1.3 电阻元件及欧姆定律
习惯上把正电荷运动的方向规定为电流的实际方向 。 但在具体电路中,电流的实际方向常常随时间变化, 即使不随时间变化,对较复杂电路中电流的实际方 向有时也难以预先断定,因此,往往很难在电路中 标明电流的实际方向。
19
电流的参考方向 在分析电路时,先指定某一方向为电 流方向,称为电流的参考方向,用箭头表示,如图中 实线箭头所示。
2
课程的重要性及任务(续)
•该课程的任务,就是使学生掌握电类技 术人员必须具备的电路基础理论、基本分 析方法;掌握各种常用电工仪器、仪表的 使用以及基础的电工测量方法;为信号与 系统、电子技术基础、高频电子线路等后 续课程的学习和今后踏入社会后的工程实 际应用打下坚实的基础。
3
课程特点
• 概念性强; • 内容杂; • 应用数学知识较多; • 分析方法灵活;
7
考核与成绩评定
考核性质:考试课,百分制 考试方法:闭卷、笔试 考核用时:期末120分钟 考核模式:三段制模式 成绩评定: 期末总评成绩=平时成绩×20%+实验×10% +期末成绩×70% 补考方法:总评成绩低于60分的学生,须参加学校统一组 织的补考。 补考总成绩=平时成绩×20%+补考成绩×80%
11
1.1.2 电路模型
1)实际电路与电路模型
图1.1(a)是一个简单的实际照明电路。
实际
电路 组成:
①是提供电能的能源,简称电源。
它的作用是将其他形式的能量转换 为电能。 ②是用电装置,统称其为负载。 它将电源供给的电能转换为其他形 式的能量 。
金③属是导连线接,电简源称与导负线载。传图输中电S能是的为图1.1 (a) 手电筒电路
29
1.3 电阻元件及欧姆定律
《电工电子学》电路分析基础ppt
IS
+
a I1
R2Ua-b US1
-
+b
I4
结点:三个或三个以上电路
+
+
元件的连接点称为
Uac I3
d + I2
结点。
IS
4
US2
支路:连接两个结点之间的 电路称为支路。
1 R1 2
-
e Ubc 3
R4
回路:电路中任一闭合路径
称为回路。
-
网孔:电路中最简单的单孔
回路。
R3
-
c
1. 基尔霍夫电流定律(Kirchhoff’s Current Law)
解之
回路U 1 U S 2 R1RI12I2 R3RI33I3U S1 UON 0
I1
U(6S11U 1ON.5 2 1.53)V
R11.4(41V )R3
6 0.7
I1
75I1(10.0530m) A2 0.03mA +
I3 I(311.5)3Im1 A51 0.03
US1 -
R1
+7V
1
R3 1kΩ
6V
βI1 I3
2
I2
R2 1kΩ + US2
1.53mA
6V -
2.2 叠加定理与等效电源定理
应用叠加定理与等效电源定理,均要求电路必须 是线性的。线性电路具有什么特点呢?
线性电路的特点:
⑴ 齐次性 设电路中电源的大小为x(激励),因该激励 在电路某支路产生的电流或电压为y(响应),则有: y=kx k为常数
⑵ 叠加性 设电路中多个激励的大小分别为x1、x2、 x3…,在电路某支路产生相应的电流或电压(响应) 为y1(=k1x1)、y2=(k2x2)、y3=(k3x3) …,则全响应为:
电路分析基础PPT课件
i Cdu1064105 0.4A dt
编辑版ppt
11
解答
从0.75ms到1.25ms期间
du 200 4 105 dt 0.5
i C du dt
106 4 105 0.4 A
编辑版ppt
12
例5-2
设电容与一电流源相接,电流 波形如图(b)中所示,试求电
容电压。设u(0)=0。
编辑版ppt
6
❖ 把两块金属极板用介质隔开就可构成一个简单的电 容器。
❖ 理想介质是不导电的,在外电源作用下,两块极板 上能分别存储等量的异性电荷。
❖ 外电源撤走后,电荷依靠电场力的作用互相吸引, 由于介质绝缘不能中和,极板上的电荷能长久地存 储下去。因此,电容器是一种能存储电荷的器件。
❖ 电容元件定义如下:一个二端元件,如果在任一时
(2)当信号变化很快时,一些实际器件已不能再用电阻模型 来表示,必须考虑到磁场变化及电场变化的现象,在模型 中需要增添电感、电容等动态元件。
❖ 至少包含一个动态元件的电路称为动态电路。
❖ 基尔霍夫定律施加于电路的约束关系只取决于电路的连接 方式,与构成电路的元件性质无关。
编辑版ppt
3
§5-1 电容元件
• 电容元件是一种反映电路及其附近存在电场而可以储存电 能的理想电路元件 。
• 电容效应是广泛存在的,任何两块金属导体,中间用绝 缘材料隔开,就形成一个电容器。工程实际中使用的电容 器虽然种类繁多、外形各不相同,但它们的基本结构是一 致的,都是用具有一定间隙、中间充满介质(如云母、涤 纶薄膜、陶瓷等)的金属极板(或箔、膜)、再从极板上 引出电极构成。这样设计、制造出来的电容器,体积小、 电容效应大,因为电场局限在两个极板之间,不宜受其它 因素影响,因此具有固定的量值。如果忽略这些器件的介 质损耗和漏电流,电容器可以用电容元件作为它们的电路 模型。
电路分析基础完整ppt课件
可否短路?
恒压源特性中不变的是:__ __U_S________
恒压源特性中变化的是:_____I________
___外__电__路__的__改__变____ 会引起 I 的变化。
I 的变化可能是 _大__小____ 的变化,
或者是__方__向___ 的变化。
22.04.2020
.
24
电工基础教学部
电路的基本分析方法。
22.04.2020
.
电工基础教学部
4
目录
电工电子技术
1.1 电路元件
1.1.1 电路及电路模型
电路——电流流通的路径。
1.电路的组成和作用
电路是由若干电路元件或设备组成的,能够传输能 量、转换能量;能够采集电信号、传递和处理电信号 的有机整体。
①电路的组成:
电源 信号源
中间环节
目录
电工电子技术
②理想电流源(恒流源): RO= 时的电流源.
Ia
Uab
外
Is
U RL
特
I性
b
o
IS
特点:(1)输出电流 I 不变,即 I IS (2)输出电压U由外电路决定。
22.04.2020
.
电工基础教学部
25
目录
电工电子技术
(3)恒流源的电流 IS为 零时,恒流源视为开路。
IS=0
(4)与恒流源串联的元件对外电路而言为可视为短路。
E
+ _
R2
Is
a
R1 b
Is
a R1
b
例 设: IS=1 A
则: R=1 时, U =1 V Is R=10 时, U =10 V
I UR
第二章 电路分析基础PPT课件
2. 独立方程的列写
(1)从电路的n个结点中任意选择n-1个结点列写KCL方程 (2)选择基本回路列写b-(n-1)个KVL方程
30
例
有6个支路电流,需列写6个方程。
2 KCL方程:
i2 R2 i3
1
1
R4
2 i4
R3
3
1 i1 i2 i6 0
2 i2 i3 i4 0 3 i4 i5 i6 0
15
5 等效电阻针对电路的某两
b
端而言,否则无意义。
13
例 求: Rab
a
b
20
100 10
40
60 50
a
20
120
b
100 60
60
80
a
b
20 100
a
b
100
Rab=70
20 40
100 60
14
例 求: Rab
20
5
a
15 b
20 缩短无电阻支路
5
a
15 b
7
6
6
7 6 6
Rab=10
例
两个电阻的分压:
i º ++
u-1 R1 u_ u+2 R2
º
u1
R1 R1 R2
u
u2
R2 R1 R2
u
注意方向 !
5
(4) 功率
p1=R1i2, p2=R2i2,, pn=Rni2 p1: p2 : : pn= R1 : R2 : :Rn
表明
总功率
p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 =p1+ p2++ pn
电路分析基础全套课件完整版ppt教程
2020/5/10
7
第1章 电路的基本概念和定律
电路的组成:由电源、负载和中间环节所组成。 电源:是向电路提供能量和信号的元件。如电池、发电机等; 负载:是使用电能和输出信号的器件。如电灯、电炉、显像管
等;
中间环节:是把电源和负载连接在一起。如导线、开关、电视
机内部电路等。
电路举例:
开关
电池
灯泡
手电筒实际电路
2020/5/10
8
第1章 电路的基本概念和定律
1.1.2 电路图
• 电路原理图:
是为分析电路而将电路中的元器件用电路模型与符号来代 替实物而画的电路图。
如下图是手电筒的电路原理图。
开关
S
电池
E 灯泡
S
+
US
-
R
R0
(a) 实物图
(b) 原理图
(c) 电路模型图
实际电路与电路模型
电流的实际方向
电流的参考方向 i
i>0
电流的参考方向 i
i<0
电流参考方向和实际方向的关系
2020/5/10
17
第1章 电路的基本概念和定律
5.电流的分类
直流电流,简称直流(DC或dc)
交流电流,简称交流(AC或ac)
i
i
t
恒定直流电流
i
T
2
O
Tt
正弦交流电流
O
Tt
脉动直流电流
i
O
t
无规律变化交流电流
2020/5/10
18
1.2.2
第1章 电路的基本概念和定律
电压
• 1. 电压的定义与单位:
• 在电路中,电荷能定向移动是因为电路存在电场。在电场 力的作用下,把单位正电荷从电路的a点移到b点所做的功, 称为从a→b的电压。即:
《电路分析基础》PPT课件..课件
基尔霍夫电压方程也叫回路电压方程(KCL方程)
精品
基尔霍夫电压定律(KVL)
基尔霍夫电压定律的另一种描述:集总参数电
路中,沿任意闭合回路绕行一周,电压降的代数 和=电压升的代数和。
基尔霍夫电压定律是能量守恒的结果,体现了
电压与路径无关这一性质,是任一回路内电压必 须服从的约束关系。
精品
KVL示例
电阻消耗的瞬时功率
参考方向一致时 参考方向不一致时
电阻消耗的能量
精品
1.5 独立电源
术语
电路中的电源:
独立电源:就是电压源的电压或电流源的电流不受外电 路的控制而独立存在的电源。 受控电源:是指电压源的电压和电流源的电流,是受电 路中其它部分的电流或电压控制的电源。 电压源和电流源
精品
电压源
精品
支路、节点、回路、网孔
支路: 1、2、3、4、5、6、7 节点: ①、②、③、④、⑤ 简单节点: ④
回路: ①-②-③-④-① ①-②-⑤-① ①-②-⑤-③-④-①等等。 网孔: ①-②-③-④-① ①-②-⑤-① ②-③-⑤-② 思考:①-②-③-⑤-①是网孔吗? 网孔一定是回路,但回路不一定是网孔。精品
电路的组成(component)
激励与响应
精品
1.1电路和电路模型
电路的作用:能量和信息两大领域
1.电力系统:实现电能的传输和转换。 能量是主要的着眼点。涉及大规模电能的产生、 传输和转换(为其他形式的能量),构成现代工业生产、 家庭生活电气化等方面的基础。
精品
1.1电路和电路模型
电路分析基础
精品
电路分析基础教学PPT
课间休息
1-3 支路电流法
支路电流法是以基尔霍夫定律为基础的、用 于分析复杂电路的一种有效方法。
❖ 列方程时,必须先在电路图标出电流的参考方向, 这个方向是任意的。
❖ 求解过程 (1) 应用KCL,列出结点电流方程,n个结点列 n-1个方程; (2) 应用KVL,列出回路电压方程。
❖ 注意 在列回路电压方程时,选用单孔回路,这样才能
供给外电路的端电压保持为
电动势E不变,该电源称为
理想电压源。
理想电压源提供的电压没有 内部损耗。
R0I
U
I
1-1 电路的基本概念
2、开路 开路即是将电路断开。 电路电流为0,I=0 负载电压为0,U=0
S I=0
R0
U0
E
RU
电源端电压依然存在,并且U=E-R0I=E,该
电压称为开路电压,用U0表示,即U0=E。
第1章 电路分析基础
概述 本章所讲述的电路分析知识对后续直
流电路、交流电路、电机电路和电子电路 都具有实用意义,请务必充分重视。
第1章 电路分析基础
1-1 电路的基本概念
一、电路的组成
电路是电流的通路。是为了某种需要由某些电 工设备或元件按一定方式组合起来的。 根据电流性质分类
➢ 直流电路 ➢ 交流电路
位高10V。
b-
❖ 电位是一个相对概念,单纯的电位没有意义。 必须选取一个参考点,才能谈及电位。
❖参考点可任意选取,被选取的参考点是被作为 一个标准,这个参考点的电位称为参考电位,通 常设为零。
❖参考点在电路图中标以“接地”符号,但并不 是真正意义上的接地。
作业: P10:思考题1-2-2、1-2-3
1-1 电路的基本概念
电路分析基础ppt课件
叠加定理
叠加定理是指在分析暂态电路时,可以将激励(即输入)信号分解为多个正弦波信号,然后分别求解 每个正弦波信号引起的响应(即输出),最后将各个响应叠加起来得到总的响应。
综合应用案例分析
07
综合应用案例一:一个实际电路的分析
总结词
这是一个实际电路,我们需要运用所学 的电路分析基础来理解和分析它的工作 原理。
的性能是否符合要求。
THANKS.
VS
详细描述
首先,我们可以根据电路图识别出各个元 器件及其作用,然后根据欧姆定律、基尔 霍夫定律等基本原理来计算电流、电压等 参数,从而理解电路的工作过程。
综合应用案例二:一个复杂电路的分析
总结词
这是一个复杂电路,我们需要运用所学的电 路分析基础来理解和分析它的工作原理。
详细描述
对于复杂电路,我们需要采用一些高级的分 析方法,如支路电流法、节点电压法等,来 计算各个支路上的电流、各个节点的电压等 参数,从而理解电路的工作过程。
RL电路
在RL电路中,电感L和电阻R串联,当开关从闭合状态变为断开状态时,电感L会通过电阻R放电,电流i(t)可以用 以下公式表示:i(t)=I_0(1-exp(-t/τ)),其中I_0为初始电流,τ为时间常数。
暂态电路的基本分析方法
节点电压法
在暂态电路中,节点电压是指在该节点处的电压降。节点电压法是通过求解节点电压来分析暂态电路 的一种方法。
电路分析基础ppt课件
目 录
• 电路分析概述 • 电阻电路分析 • 电容电路分析 • 电感电路分析 • 交流电路分析 • 暂态电路分析 • 综合应用案例分析
电路分析概述
01
电路分析的基本概念
电路分析的定义
电路分析是对电路进行建模、分 析和计算的过程,以了解电路的 性能和优化其设计。
叠加定理是指在分析暂态电路时,可以将激励(即输入)信号分解为多个正弦波信号,然后分别求解 每个正弦波信号引起的响应(即输出),最后将各个响应叠加起来得到总的响应。
综合应用案例分析
07
综合应用案例一:一个实际电路的分析
总结词
这是一个实际电路,我们需要运用所学 的电路分析基础来理解和分析它的工作 原理。
的性能是否符合要求。
THANKS.
VS
详细描述
首先,我们可以根据电路图识别出各个元 器件及其作用,然后根据欧姆定律、基尔 霍夫定律等基本原理来计算电流、电压等 参数,从而理解电路的工作过程。
综合应用案例二:一个复杂电路的分析
总结词
这是一个复杂电路,我们需要运用所学的电 路分析基础来理解和分析它的工作原理。
详细描述
对于复杂电路,我们需要采用一些高级的分 析方法,如支路电流法、节点电压法等,来 计算各个支路上的电流、各个节点的电压等 参数,从而理解电路的工作过程。
RL电路
在RL电路中,电感L和电阻R串联,当开关从闭合状态变为断开状态时,电感L会通过电阻R放电,电流i(t)可以用 以下公式表示:i(t)=I_0(1-exp(-t/τ)),其中I_0为初始电流,τ为时间常数。
暂态电路的基本分析方法
节点电压法
在暂态电路中,节点电压是指在该节点处的电压降。节点电压法是通过求解节点电压来分析暂态电路 的一种方法。
电路分析基础ppt课件
目 录
• 电路分析概述 • 电阻电路分析 • 电容电路分析 • 电感电路分析 • 交流电路分析 • 暂态电路分析 • 综合应用案例分析
电路分析概述
01
电路分析的基本概念
电路分析的定义
电路分析是对电路进行建模、分 析和计算的过程,以了解电路的 性能和优化其设计。
《电路分析基础》PPT课件
•网孔电流经过的各条支路,若某支路上仅流过一个网孔电 流,且方向与网孔电流一致时,则这条支路电流在数值上应 等于该网孔电流,若方向相反应为回路电流的负值;若某公 共支路上通过两个网孔电流时,则支路电流在数值上应等于 这两个网孔电流之代数和,其中与该支路电流方向一致的网 孔电流取正值,与该支路电流方向相反的网孔电流取负值。
求各元件上吸收的功率,进行功率平衡校验
R1上吸收的功率为:PR1=62×7=252W R2上吸收的功率为:PR2=(-2)2×11=44W R3上吸收的功率为:PR3=42×7=112W US1上吸收的功率为:PS1=-(6×70)=-420W 发出功率 US2上吸收的功率为:PS2=-(-2)×6=12W 吸收功率 元件上吸收的总功率:P=252+44+112+12=420W
电路分析基础
第2章 电路的基本分析方法
2.1 支路 电流法
2.2 回路 电流法
2.3 结点 电压法
2.5 戴维南 定理
2.4 叠加 定理
返章目录
本章的学习目的和要求
熟练掌握支路电流法,因为它是直接应 用基尔霍夫定律求解电路的最基本方法之一; 理解回路电流及结点电压的概念,掌握回路电 流法和结点电压法的内容及其正确运用;深刻 理解线性电路的叠加性,了解叠加定理的适用 范围;理解有源二端网络和无源二端网络的概 念及其求解步骤,初步学会应用维南定理分析 电路的方法。
• 应用KCL列写n-1个独立结点方程式。
• 应用KVL列写m-n+1个独立电压方程式。 • 联立求解方程式组,求出m个支路电流。
支路电流法应用举例
• 举例一
用支路电流法求解下图所求电路中各支路电流,并用功
率平衡校验求解结果。
求各元件上吸收的功率,进行功率平衡校验
R1上吸收的功率为:PR1=62×7=252W R2上吸收的功率为:PR2=(-2)2×11=44W R3上吸收的功率为:PR3=42×7=112W US1上吸收的功率为:PS1=-(6×70)=-420W 发出功率 US2上吸收的功率为:PS2=-(-2)×6=12W 吸收功率 元件上吸收的总功率:P=252+44+112+12=420W
电路分析基础
第2章 电路的基本分析方法
2.1 支路 电流法
2.2 回路 电流法
2.3 结点 电压法
2.5 戴维南 定理
2.4 叠加 定理
返章目录
本章的学习目的和要求
熟练掌握支路电流法,因为它是直接应 用基尔霍夫定律求解电路的最基本方法之一; 理解回路电流及结点电压的概念,掌握回路电 流法和结点电压法的内容及其正确运用;深刻 理解线性电路的叠加性,了解叠加定理的适用 范围;理解有源二端网络和无源二端网络的概 念及其求解步骤,初步学会应用维南定理分析 电路的方法。
• 应用KCL列写n-1个独立结点方程式。
• 应用KVL列写m-n+1个独立电压方程式。 • 联立求解方程式组,求出m个支路电流。
支路电流法应用举例
• 举例一
用支路电流法求解下图所求电路中各支路电流,并用功
率平衡校验求解结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同,其等效电阻网络中3个电阻的阻值也相等,有
RY1 3R,或 R3RY
RAB=50+(50+150)//(50+150)=150Ω
书上例1.6
.
1.6 电压源和电流源的串联和并联
1. 理想电压源的串1_
R = 3RY
13
( 外大内小 )
注意 :
(1) 等效对外部(端钮以外)有效,对内不成立。
(2) 等效电路与外部电路无关。
.
Y网络与Δ网络等效举例
150Ω 150Ω 150Ω
A
求RAB A
50Ω 50Ω 50Ω
150Ω 150Ω
150Ω 150Ω
B
B
解 无论是Y电阻网络还是Δ电阻网络,若3个电阻的阻值相
流,则称这一电路为二端网络(或一端口网络)。
无
ii
无源 i i
源
一
2. 二端电路等效的概念
端 口
两个内部结构不同的二端网络,端口具有完
全相同的电压、电流关系,则称它们是等效的电
路。
.
A
i
-+u
等效
B i -+u
A
C
B
C
明 (1)电路等效变换的条件 确
(2)等效变换指对外等效
(3)电路等效变换的目的
.
[例5](1)求ab两点间的电压uab;(2)若ab用理 想导线短接,求流过该短路线上的电流iab。
.
若ab短接,如图所示。这时,R1与R3为并联,R2 与R4为并联。
.
Y形网络与Δ形网络之间的等效
1
I1 U12 R1
R3
R2
3
2
R1
R 12
R 12 R 31 R 23 R 31
R2
R 12
R1
i1 R2
i2
i1
Reqi R1
R2i R1 R2
i2
Reqi R2
R1i . R1R2
三. 电阻的串并联 关键在于识别各电阻的串联、并联关系!
例1. º
R º
4 2 3 6
R = 4∥[2+(3∥6) ]= 2
.
例2. 40
º
40 º
40
R
R
30
º
º
30
R = (40∥40+30∥30∥30) = 30
如下图
u1
R1 R1 R2
u
u2
R2 R1 R2
u
.
( 注意方向 !)
二、电阻并联 (Parallel Connection)
i
+
i1 i2
ik
in
u R1 R2
Rk
Rn
_
1. 电路特点: (a) 各电阻两端分别接在一起,两端为同一电压 ; (b) 总电流等于流过各并联电阻的电流之和 。
.
2. 等效电阻Req
(b) 总电压等于各串联电阻的电压之和 。
u u 1 u k u n .
2. 等效电阻Req
R1
Rk
Rn
i + u1 _ + uk _ + u1 _ 等效 i
+
u
_
KVL u= u1+ u2 +…+uk+…+un
+
Req u_
由欧姆定律 uk = Rk i ( k=1, 2, …, n ) u= (R1+ R2 +…+Rk+…+ Rn) i = Reqi
R 23 R 12 R 23 R 31
R3
R 12
R 31 R 23 R 23 R 31
1
I1
U12
R31
R12
R23
3
2
R 12
R1 R 2
R2R3 R3
R 3 R1
R 23
R1 R 2
R2R3 R1
R 3 R1
R 31
R1 R 2
R2R3 R2
R 3 R1
.
特例:若三个电阻相等(对称),则有
i
i
+
i1 i2
ik
in 等 +
u R1 R2
Rk
Rn
效u
Req
_
_
由KCL:
i = i1+ i2+ …+ ik+ in
i = u/R1 +u/R2 + …+u/Rn=u(1/R1+1/R2+…+1/Rn)
u/Req=i= u(1/R1+1/R2+…+1/Rn) 即 1/Req= 1/R1+1/R2+…+1/Rn
令 G =1 / R, 称为电导
Geq=G1+G2+…+Gk+…+Gn= Gk= 1/Rk
.
n
G eqG 1G 2G n G kG k k1
1
11 1
R eq G eq R 1R 2R n
即 R eq R k
并联电阻的等效电阻的倒数等于各电阻倒数之
和,或者说等效电导等于并联的各电导之和。
并联后总电阻小于任何一个电阻。
两电路具有相同的端 口VCR 未变化的外电路 C 中的电压、电流和功 率均保持不变。
化简电路,方便计算 .
电阻的串联、并联和串并联
一、 电阻串联 ( Series Connection of Resistors )
1. 电路特点:
R1
Rk
Rn
i + u1 _ + uk _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流 ;
[例1.4]电路中,已知R1=2kΩ,R2=500Ω, R3=200Ω,uS=12V。求电阻R3两端的电压u3。
i1
+ uS
-
R1
①
R3
i2 + u3 -
5i1
+
I
u2 R2
-
②
.
1.6 电路的等效变换
1. 二端网络(一端口)
任何一个复杂的电路, 向外引出两个端钮,
且从一个端子流入的电流等于从另一端子流出的电
30 30
.
c
d
a 6 5
求: Rab , Rcd
15 5 b
R a b(5 5 )/1 / 5 6 1 2 R cd (1 55)/5 /4 等效电阻针对电路的某两端而言,否则无意义。
.
例4 计算各支路的电流。
6
i1 5
i1 5
+ 165V
-
i2 6 i3
+
18
165V
4
i4
i5 12
-
i2
i3
18 9
i11615 11A 5
9
i2
155A 189
i31 551A 0
12
i51 07.52.5A
i4
1
1 24
07.5A
.
从以上例题可得求解串、并联电路的一般步骤: (1) 求出等效电阻或等效电导; (2)应用欧姆定律求出总电压或总电流; (3)应用欧姆定律或分压、分流公式求各电阻上 的电流和电压.
º Rin=? 1.3 6.5 13
Rin=1.3∥6.5∥13
由 G =1/1.3+1/6.5+1/13 = 1S º
故 R=1/G=1
.
3. 并联电阻的电流分配
由
ik u/ Rk Gk i u/ Req Geq
知 ik Gk i 即 电流分配与电导成正比 Gk
对于两电阻并联,有: i
Req1R1 11R2 RR 11RR 22
Req=( R1+ R2 +…+Rn) = Rk 结论: 串联电路的总电阻等于各分电阻之和。
.
3. 串联电阻上电压的分配
由 uk Rki Rk Rk
u Reqi Req Rk
故有
uk
Rk Rj
u
说明电压与电阻成正比,因此 串联电阻电路可作分压电路
例:两个电阻分压,
i º ++
u-1 R1 u_ +u2 R2 º
RY1 3R,或 R3RY
RAB=50+(50+150)//(50+150)=150Ω
书上例1.6
.
1.6 电压源和电流源的串联和并联
1. 理想电压源的串1_
R = 3RY
13
( 外大内小 )
注意 :
(1) 等效对外部(端钮以外)有效,对内不成立。
(2) 等效电路与外部电路无关。
.
Y网络与Δ网络等效举例
150Ω 150Ω 150Ω
A
求RAB A
50Ω 50Ω 50Ω
150Ω 150Ω
150Ω 150Ω
B
B
解 无论是Y电阻网络还是Δ电阻网络,若3个电阻的阻值相
流,则称这一电路为二端网络(或一端口网络)。
无
ii
无源 i i
源
一
2. 二端电路等效的概念
端 口
两个内部结构不同的二端网络,端口具有完
全相同的电压、电流关系,则称它们是等效的电
路。
.
A
i
-+u
等效
B i -+u
A
C
B
C
明 (1)电路等效变换的条件 确
(2)等效变换指对外等效
(3)电路等效变换的目的
.
[例5](1)求ab两点间的电压uab;(2)若ab用理 想导线短接,求流过该短路线上的电流iab。
.
若ab短接,如图所示。这时,R1与R3为并联,R2 与R4为并联。
.
Y形网络与Δ形网络之间的等效
1
I1 U12 R1
R3
R2
3
2
R1
R 12
R 12 R 31 R 23 R 31
R2
R 12
R1
i1 R2
i2
i1
Reqi R1
R2i R1 R2
i2
Reqi R2
R1i . R1R2
三. 电阻的串并联 关键在于识别各电阻的串联、并联关系!
例1. º
R º
4 2 3 6
R = 4∥[2+(3∥6) ]= 2
.
例2. 40
º
40 º
40
R
R
30
º
º
30
R = (40∥40+30∥30∥30) = 30
如下图
u1
R1 R1 R2
u
u2
R2 R1 R2
u
.
( 注意方向 !)
二、电阻并联 (Parallel Connection)
i
+
i1 i2
ik
in
u R1 R2
Rk
Rn
_
1. 电路特点: (a) 各电阻两端分别接在一起,两端为同一电压 ; (b) 总电流等于流过各并联电阻的电流之和 。
.
2. 等效电阻Req
(b) 总电压等于各串联电阻的电压之和 。
u u 1 u k u n .
2. 等效电阻Req
R1
Rk
Rn
i + u1 _ + uk _ + u1 _ 等效 i
+
u
_
KVL u= u1+ u2 +…+uk+…+un
+
Req u_
由欧姆定律 uk = Rk i ( k=1, 2, …, n ) u= (R1+ R2 +…+Rk+…+ Rn) i = Reqi
R 23 R 12 R 23 R 31
R3
R 12
R 31 R 23 R 23 R 31
1
I1
U12
R31
R12
R23
3
2
R 12
R1 R 2
R2R3 R3
R 3 R1
R 23
R1 R 2
R2R3 R1
R 3 R1
R 31
R1 R 2
R2R3 R2
R 3 R1
.
特例:若三个电阻相等(对称),则有
i
i
+
i1 i2
ik
in 等 +
u R1 R2
Rk
Rn
效u
Req
_
_
由KCL:
i = i1+ i2+ …+ ik+ in
i = u/R1 +u/R2 + …+u/Rn=u(1/R1+1/R2+…+1/Rn)
u/Req=i= u(1/R1+1/R2+…+1/Rn) 即 1/Req= 1/R1+1/R2+…+1/Rn
令 G =1 / R, 称为电导
Geq=G1+G2+…+Gk+…+Gn= Gk= 1/Rk
.
n
G eqG 1G 2G n G kG k k1
1
11 1
R eq G eq R 1R 2R n
即 R eq R k
并联电阻的等效电阻的倒数等于各电阻倒数之
和,或者说等效电导等于并联的各电导之和。
并联后总电阻小于任何一个电阻。
两电路具有相同的端 口VCR 未变化的外电路 C 中的电压、电流和功 率均保持不变。
化简电路,方便计算 .
电阻的串联、并联和串并联
一、 电阻串联 ( Series Connection of Resistors )
1. 电路特点:
R1
Rk
Rn
i + u1 _ + uk _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流 ;
[例1.4]电路中,已知R1=2kΩ,R2=500Ω, R3=200Ω,uS=12V。求电阻R3两端的电压u3。
i1
+ uS
-
R1
①
R3
i2 + u3 -
5i1
+
I
u2 R2
-
②
.
1.6 电路的等效变换
1. 二端网络(一端口)
任何一个复杂的电路, 向外引出两个端钮,
且从一个端子流入的电流等于从另一端子流出的电
30 30
.
c
d
a 6 5
求: Rab , Rcd
15 5 b
R a b(5 5 )/1 / 5 6 1 2 R cd (1 55)/5 /4 等效电阻针对电路的某两端而言,否则无意义。
.
例4 计算各支路的电流。
6
i1 5
i1 5
+ 165V
-
i2 6 i3
+
18
165V
4
i4
i5 12
-
i2
i3
18 9
i11615 11A 5
9
i2
155A 189
i31 551A 0
12
i51 07.52.5A
i4
1
1 24
07.5A
.
从以上例题可得求解串、并联电路的一般步骤: (1) 求出等效电阻或等效电导; (2)应用欧姆定律求出总电压或总电流; (3)应用欧姆定律或分压、分流公式求各电阻上 的电流和电压.
º Rin=? 1.3 6.5 13
Rin=1.3∥6.5∥13
由 G =1/1.3+1/6.5+1/13 = 1S º
故 R=1/G=1
.
3. 并联电阻的电流分配
由
ik u/ Rk Gk i u/ Req Geq
知 ik Gk i 即 电流分配与电导成正比 Gk
对于两电阻并联,有: i
Req1R1 11R2 RR 11RR 22
Req=( R1+ R2 +…+Rn) = Rk 结论: 串联电路的总电阻等于各分电阻之和。
.
3. 串联电阻上电压的分配
由 uk Rki Rk Rk
u Reqi Req Rk
故有
uk
Rk Rj
u
说明电压与电阻成正比,因此 串联电阻电路可作分压电路
例:两个电阻分压,
i º ++
u-1 R1 u_ +u2 R2 º