安徽省九年级下学期数学第一次月考试卷

合集下载

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。

安徽省宿州市宿城一中2020-2021学年九年级第一次月考数学试题

安徽省宿州市宿城一中2020-2021学年九年级第一次月考数学试题
A. B.2C. D.2
二、填空题
11.一元二次方程 的根________.
12.若关于x的一元二次方程 有两个不相等的实数根,则k的取值范围是______.
13.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是______.
14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.
(3)当DG为何值时,△FCG的面积最小.
参考答案
1.C
【解析】
A.a=0时,不是一元二次方程,错误;B.原式可化为2x+1=0,是一元一次方程,错误;C.原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D.是分式方程,错误.故选C.
A.若四边形EFGH是平行四边形,则AC与BD相等
B.若四边形EFGH是正方形,则AC与BD互相垂直且相等
C.若AC=BDቤተ መጻሕፍቲ ባይዱ则四边形EFGH是矩形
D.若AC⊥BD,则四边形EFGH是菱形
8.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()
18.阅读,我们可以用换元法解简单的高次方程,解方程x4﹣3x2+2=0时,可设y=x2,则原方程可比为y2+3y+2=0,解之得y1=2,y2=1,当y1=2时,则x2=2,即x1= ,x2=﹣ ;当y2=1时,即x2=1,则x1=1,x2=﹣1,故原方程的解为x1= ,x2=﹣ ,x3=1,x4=﹣1,仿照上面完成下面解答:
三、解答题

安徽省2020-2021学年度第一学期九年级数学第一次月考试卷及答案

安徽省2020-2021学年度第一学期九年级数学第一次月考试卷及答案

2020-2021学年度第一学期九年级质量检测试卷(一)数学(沪科版)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.下列y 和x 之间的函数表达式中,是二次函数的是( ) A.y =(x +1)(x -4) B.y =x 2+2 C.y =x 2+x1D.y =x -12.已知点A (-8,y 1),B (4,y 2),C (-3,y 3)都在反比例函数y =(k <0)的图象上,则 A.y 1<y 2<y 3 B.y 3<y 2<y 1 C.y 3<y 1<y 2D.y 2<y 1<y 33.已知二次函数y =mx 2+x +m (m -2)的图像经过原点,则m 的值为( ) A.0或2B.0C.2D.无法确定4.如图,过反比例函数y =x6(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,则 S △AOB =( ) A.3B.2C.6D.85.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ) A.向下,(0,-4) B.向下,(0,4) C.向上,(0,4)D.向上,(0,-4)6.如图,二次函数y =ax 2-bx +3图象的对称轴为直线x =1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程ax 2=bx -3的根是( ) A.x 1=x 1=3B.x 1=1,x 2=3C.x 1=1,x 2=-3D.x 1=-1,x 2=37.共享单车为市民出行带来了方便,某单车公司第一月投放a 辆单车,计划第三个月投放单 车y 辆,设该公司第二、第三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系式为( ) A.y =a (1+x )2B.y =a (1-x )2C.y =(1-x )2+aD.x 2+a8.某广场有一个小型喷泉,水流从垂直于地面的水管QA 喷出,0A 长为1.5m.水流在各个方 向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到0的距离为3m 。

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。

总分:120分。

姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。

±6.B。

6.C。

-6.D。

162.计算a^2a^4的结果是()A。

a^5.B。

a^6.C。

2a^6.D。

a^83.半径为6的圆的内接正六边形的边长是()A。

2.B。

4.C。

6.D。

84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。

2π。

B。

3π。

C。

2/3π。

D。

1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。

乘车的人数是()A。

180.B。

270.C。

150.D。

2006.函数y=(x-2)/x的自变量X的取值范围是()A。

x>2.B。

x<2.C。

x≥2.D。

x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。

一次函数。

B。

二次函数。

C。

三次函数。

D。

反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。

10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。

11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。

(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。

0)。

13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

安徽省九年级下学期数学第一次月考试卷

安徽省九年级下学期数学第一次月考试卷
17.(1分)(2020九下·凤县月考)如图,A点在反比例函数 的图象上,B点在反比例函数 的图象上,直线AB过0点,且OA:OB=1:2,则k的值.
18.(1分)(2019七下·新华期末)如图是由四个完全相同的小正方形排成的正方形网格,正方形的顶点叫格点,以其中的格点为顶点可以构成不全等的三角形共有种.
(3)已知 分别是直线 和抛物线上的动点,当 为顶点的四边形是平行四边形时,直接写出所有符合条件的 点的坐标.
参考答案
一、单选题(共8题;共16分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、
考点:
解析:
答案:6-1、
考点:
解析:
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
27.(15分)(2019·鹿城模拟)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.
(1)求证:∠ACD=∠F;
A .
B .
C .
D .
二、填空题(共10题;共11分)
9.(1分)(2021八上·茶陵期末)肥皂泡沫的泡壁厚度大约是0.00075 mm,则数据0.00075用科学记数法表示为.
10.(1分)(2021·朝阳模拟)分解因式: .
11.(1分)(2020七上·房山期末) 与是同类项.
12.(1分)(2020·东城模拟)已知关于x的一元二次方程mx2+2x﹣1=0(m为常数)有两个不相等的实数根,则m的取值范围是.

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

2019—2020学年度第二学期九年级质量检测试卷(一)数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.下列事件中的不可能事件是( )A.三角形的两个内角的和小于第三个内角B.未来3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2cm 、3cm 、5cm 的木棒摆成三角形2.二次函数y =2x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y =2x 2+3 B.y =-2x 2+3 C.y =2(x -3)2 D.y =-2(x -3)23.如图所示的几何体,从上边看得到的图形是( )4.如图,一个小球由地面沿着坡角为30°的坡面向上前进了10m ,此时小球距离地面的 高度为( ) A.5mB.35mC.355 D.3510 5.下列说法中,不正确的是( )A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦6.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,73AB AD , 则EC 的长是( ) A.4.5 B.8 C.10.5 D.147.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BAC=20°,则∠D的度数为()A.100°B.110°C.120°D.130°8.从-2,3,-8,10,12中任意选两个数,记作a和b,那么点(a,b)在函数y=x24-的图象上的概率是()A.41B.51C.52D.619.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为25,AC=4,则sinB的值是()A.53B.54C.85D.6110.如图,在△ABC中,LACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP’,连接DP’,则DP’的最小值是()A.222- B.224- C.222- D.12-二、填空题(本大题共4小题,每小题5分,满分20分)11.已知A(-1,6)与B(2,m-3)是反比例函数xky=图象上的两个点,则m的值是_______。

安徽省阜阳市临泉县2024-—2025学年上学期第一次月考九年级数学试题

安徽省阜阳市临泉县2024-—2025学年上学期第一次月考九年级数学试题

安徽省阜阳市临泉县2024-—2025学年上学期第一次月考九年级数学试题一、单选题1.下列各式中,y 是x 的二次函数的是( ) A .213y x =- B .23y x =-C .23y x =-D .y =2.若点A 不在双曲线8y x=-上,则点A 的坐标可能为( ) A .(2,4)-B .(2,4)--C .(4,2)-D .(8,1)-3.当0x >时,下列函数中,y 随x 的增大而增大的是( ) A .42y x =-+ B .3y x= C .22y x =-D .224y x =+4.抛物线23(4)y x =--与抛物线212y x =的相同点是( ) A .对称轴相同 B .顶点相同 C .顶点都在x 轴上 D .形状相同5.如图,反比例函数ky x=(k 是常数且0k ≠)的图象经过点(4,1)A --,则下列说法错误的是( )A .4k =B .该函数图象经过点(4,1)C .当0x >时,y 随x 的增大而减小D .当<4x -,1y <-6.下列关于抛物线223y x x =--+的判断中,正确的是( ) A .形状与抛物线22y x =-相同 B .对称轴是直线1x =-C .当2x >-时,y 随x 的增大而增大D .该抛物线与x 轴没有交点7.在平面直角坐标系中,平移抛物线2(2)1y x =+-使其经过原点,下列操作不正确的是( ) A .向上平移1个单位长度 B .向下平移3个单位长度 C .向右平移1个单位长度D .向右平移3个单位长度8.如图,直线l 与x 轴平行且与反比例函数2(0)y x x =-<与6(0)y x x =>的图象分别交于点A和点B ,点P 是x 轴上一个动点,则APB △的面积为( )A .8B .6C .4D .39.一种大模型飞机模型表演中,已知该种飞机登陆后滑行的距离y (单位:米)与滑行时间(单位:秒)之间的函数关系表达式为2802y t t =-,则该种模型飞机登陆后滑行停止所需要的时间为( ) A .20秒B .25秒C .30秒D .40秒10.二次函数21y ax bx c =++(,,a b c 是常数)的图象如图,则双曲线2a b cy x-+=和直线3y cx abc =-的位置可能为( )A .B .C .D .二、填空题 11.双曲线4y x=经过点(,)A m n ,则代数式102mn -的值为. 12.抛物线2(2)3y x =-++关于y 轴对称的抛物线的表达式为.13.某地每年六月有举办龙舟比赛的习俗,比赛路线需要经过一个抛物线型的拱桥,该抛物线的函数表达式为211248y x =-+,如图,AB 是水平面,某商家在点E ,F 处悬挂了广告条幅,已知EF AB ∥,点E 到AB 的距离为9米,则点E 到点F 的距离为米.14.如图,AOB V 和ACD V 都是等腰直角三角形,90ABO ADC ∠=∠=︒,点B 是y 正半轴上一点,点C 是反比例函数16y x=的图象上一点,点D 是AB 上一点,OA 与该反比例函数的图象交于点E .(1)点E 的坐标为;(2)AOB V 与ACD V 的面积之差AOB ACD S S -=V V .三、解答题15.已知反比例函数26a y x+=(a 为常数). (1)若该反比例函数的图象位于第二、四象限,求a 的取值范围;(2)当0x >时,y 随x 的值增大而减小,求a 的取值范围. 16.在平面直角坐标系中,已知抛物线265y x x =-+-. (1)求该抛物线的顶点坐标; (2)求该抛物线与x 轴的交点坐标.17.下表是二次函数2y x mx n =++的部分取值:(1)求a 的值; (2)求b c +的值.18.某工程队修建一条村村通公路,所需天数y (单位:天)与每天修建该公路长度x (单位:米)是反比例函数关系,已知该函数关系的图象经过点()30,40,如图.(1)求y 与x 之间的函数表达式(不用写出自变量的取值范围);(2)其它条件不变,求该工程队每天修建该公路30米要比每天修建24米提前多少天完成此项工程?19.已知二次函数223y x x =--+,完成下列任务. (1)完成下表,并画出该函数的图象;(2)根据图象,完成下列填空:①当1x >-时,y 随x 的增大而__________; ②当34y ≤≤时,x 的取值范围是__________.20.如图,一次函数11y k x b =+(1k 是常数且10k ≠)与反比例函数22k y x=的图象交于(2,2)A -,(4,1)B -两点.(1)求1k ,2k 和b 的值;(2)直接写出关于x 的不等式21k k x b x+>的解集:_______; (3)点P 是y 轴上的一个动点,若ABP V 的面积为9,则点P 的坐标为_________.21.某校用60米长的隔离网沿着院墙围成一个矩形形状的劳动实践基地ABCD ,中间有隔离网EF ,已知EF AD ⊥,可利用的院墙长为35米.(隔离网的宽度不考虑)(1)若该劳动实践基地的面积为288平方米,求AB 的长;(2)求基地宽度AB为多少时,该劳动实践基地的面积最大,并求出其最大值.22.根据某个体经营商店销售某种农副产品所提供的素材,请你解决下列任务:3统计该商店每天的销售量()kgy与销售单价x(元/kg),所绘制出的函数图象是一条线段,如图.23.如图1,抛物线2y x bx c=-++与x轴交于点(1,0)A-和点B(点A位于点B左侧),与y 轴交于点(0,3)C.(1)求点B 的坐标;(2)连接BC ,点P 位于线段BC 上方且是该抛物线上的一点.①如图2,连接AP 与BC 交于点T ,连接AC ,BP ,若4A C T B P TS S =+V V ,求点P 的横坐标; ②如图3,过点P 作PD y ∥轴交BC 于点D ,将直线PD 向右平移1个单位且交该抛物线于点Q ,交线段BC 于点E ,连接PC ,BQ ,求PCD BEQ S S +V V 的值.。

安徽省滁州市天长市实验中学教育集团2023-2024学年九年级下学期月考数学试题

安徽省滁州市天长市实验中学教育集团2023-2024学年九年级下学期月考数学试题

安徽省滁州市天长市实验中学教育集团2023-2024学年九年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.二次函数()2216y x =--+的顶点坐标是( ) A .()1,6--B .()1,6-C .()1,6-D .()1,62.一个圆的内接正多边形中,一条边所对的圆心角为72°,则该正多边形的边数是( ) A .4B .5C .6D .73.如图所示的几何体的左视图是( )A .B .C .D .4.线段8AB =,P 是AB 的黄金分割点,且AP BP <,则BP 的长度为( )A .8B .8C .4D .45.下列事件中,是随机事件的是( ) A .用两条线段组成一个三角形B .在只装了红色卡片的袋子里,摸出一张白色卡片C .抛掷一枚正六面体骰子,朝上一面的点数小于7D .经过任意三点画一个圆6.在Rt ABC △中,90C ∠=︒,6BC =,10AB =,则tan B =( )A .34B .43C .45D .547.如图,AB 是⊙O 的直径,点C 、D 是⊙O 上的点,OD ⊥AC ,连接DC ,若∠COB =30°,则∠ACD 的度数为( )A .30°B .37.5°C .45°D .60°8.若0m n <<,且关于x 的方程2230ax ax m -+-=()0a <的解为1x ,212()x x x <,关于x 的方程2230ax ax n -+-=()0a <的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<< B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<< 9.如图,在Rt ABC △中,90C ∠=︒,5AB =,3BC =,点A 在y 轴的正半轴上,点C 在第一象限,且AC x ∥轴,点B 在点C 的下方,经过点B 的反比例函数ky x=的图象交AC 于点D .若1AD =,则k 的值为( )A .1B .2C .3D .410.如图,在ABC V 中,点D 、E 在AC BC 、边上,连接DE 并延长交AB 延长线于点G .过D 作DF AG ⊥于F .若2A D F G ∠=∠,:2:1CE BE =,AD =2AF =,4GE =,则AB 的长为( )A B .C .9 D .12二、填空题11.面积为30的一个三角形,它的底边y 随着这边上的高x 的变化而变化.则y 与x 之间的关系式为.12.如图,AOB V 绕点O 逆时针旋转65︒得到COD △,若100A ∠=︒,50D ∠=︒,则B O C ∠的度数是.13.如图,若圆锥的底面圆半径为r ,圆锥的母线长为l ,且35rl =,则该圆锥侧面展开的扇形的圆心角大小是.14.如图,△ABC ∽△ADE ,∠BAC =∠DAE =90°,AB=6,AC =8,点D 在线段BC 上运动(1)当BD =1时,则CE =;(2)设P 为线段DE 的中点,在点D 的运动过程中,CP 的最小值是.三、解答题15.已知::2:3:4a b c =,且3215a b c +-=,求a b c +-的值.16.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润? 17.如图,在平面直角坐标系中,四边形OABC 的顶点分别是(0,0)O ,(6,0)A ,(3,6)B ,(3,3)C -.(1)以原点O 为位似中心,在x 轴的下方画出四边形OABC 的位似图形四边形111OA B C ,使它与四边形OABC 的相似比是1:3,并写出点1B 的坐标;(2)若四边形OABC 内部一点M 的坐标为(,)a b .则点M 在四边形111OA B C ,中的对应点1M 的坐标是.18.如图,一次函数3y x =+的图像与反比例函数()0ky k x=≠的图像交于点A 与点(),1B a -.(1)求反比例函数的表达式;(2)若点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线,与直线AB 相交于点C ,连接OC ,若POC △的面积为3,求点P 的坐标. 19.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7520.通常情况下酚酞遇酸性和中性溶液不变色,遇碱性溶液变红色.一次化学课上,学生用酚酞溶液检测四瓶标签被污染无法分辨的无色溶液的酸碱性.已知四瓶溶液分别是A :盐酸(呈酸性),B :硝酸钾溶液(呈中性),C :氢氧化钠溶液(呈碱性),D :氢氧化钾溶液(呈碱性).(1)小周将酚酞溶液随机滴入一种溶液,结果变红色的概率是多少?(2)小周同时将任选的两瓶溶液滴入酚酞溶液进行检测,请你用列表或画树状图的方法,求两瓶溶液恰好都变红色的概率是多少?21.如图,AB 为O e 的直径,E 为O e 上一点,EAB ∠的平分线AC 交O e 于C ,过点C 作CD AE ⊥交AE 的延长线于D .直线CD 与射线AB 交于P .(1)求证:DC 为O e 的切线;(2)若1DC =,AC =AB 的长.22.如图,在矩形ABCD 中,点E 为CD 的中点,连接BE ,过点A 作AF BE ⊥,垂足为F .(1)求证:ABF BEC V V ∽;(2)若sin CBE ∠=8EF =,求AB 的长; (3)连接DF ,求证:AD DF =. 23.综合与探究如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点,与y 轴相交于点C ,点B 的坐标是()40-,,点C 的坐标是()04,,M 是抛物线的顶点.(1)求抛物线的解析式.(2)P 为线段MB 上的一个动点,过点P 作PD x ⊥轴于点D ,D 点坐标为(),0m ,PCD V 的面积为S .①求PCD V 的面积S 的最大值.②在MB 上是否存在点P ,使P C D V 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.。

九年级下学期第一次月考数学试卷

九年级下学期第一次月考数学试卷

九年级(下)第一次月考数学试卷一.选择题(共10小题,30分)1.﹣9的绝对值等于()A.﹣9 B.9 C.D.2.如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD=75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°3.下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1 D.(a+b)2=a2+b24.如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方体①移动到小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生变化B.俯视图发生变化C.主视图发生改变D.左视图、俯视图和主视图都发生改变5.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC6.关于x的分式方程的解为负数,则a的取值范围为()A.a>1 B.a<1 C.a<1且a≠2 D.a>1且a≠2 7.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°8.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1 B.C.D.9.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论,其中正确结论的个数有()①abc<0;②3a+c>0;③(a+c)2<b2;④4ac﹣8a<b2.A.1个B.2个C.3个D.4个二.填空题(共6小题,18分)11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.用科学记数法表示1个天文单位是km.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为cm2.13.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”则物价为.14.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=40x﹣2才能停下来.15.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC=4,点P是对角线AC上的一个动点,E(0,3),当△EPD 周长最小时,点P的坐标为.16.在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为.三.解答题(共9小题,72分)17.先化简,再求值:(﹣x+1)÷,其中x=﹣2.18.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.19.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离AB是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离CD是0.7米,看旗杆顶部E的仰角为45°.两人相距7米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF;(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据: 1.4, 1.7)20.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?21.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A (﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.23.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m 16乙n 18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2.5a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值(精确到十分位).24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D 重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB 边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.25.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+b≤﹣n的取值范围.(直接写出结果即可)。

安徽省铜陵市第十中学联合体2019-2020学年下学期第一次月考九年级数学试卷

安徽省铜陵市第十中学联合体2019-2020学年下学期第一次月考九年级数学试卷

铜陵十中联合体2019-2020学年第一次月考九年级数学试卷(考试时间:120分钟满分:150分)一.选择题(本大题共10小题,共40分)1.(4分)下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2﹣1=02.(4分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±13.(4分)在下列二次函数中,其图象对称轴为直线x=2的是()A.y=(x+2)2﹣3B.y=2x2﹣2C.y=﹣2x2﹣2D.y=2(x﹣2)24.(4分)“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.12x(x﹣1)=2105.(4分)在平面直角坐标系中,如果抛物线y=2x2不动,而坐标轴向上,向右平移2个单位长度,那么新坐标系抛物线的解析式是()A.y=2(x﹣2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x+2)2+26.(4分)关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1B.x1=0,x2=5C.x1=﹣3,x2=5D.x1=﹣6,x2=27.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣18.(4分)已知函数y=(k﹣1)x2﹣4x+4与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1B.k<2且k≠1C.k=2D.k=2或19.(4分)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.(4分)如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c 的图象可能为()第1页共4页A .B .C .D .二.填空题(本大题共4小题,共20分)11.(5分)已知抛物线y =ax 2﹣3x +a 2﹣1经过坐标原点,且开口向下,则实数a 的值为.12.(5分)如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +3上运动,过点A作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为.13.(5分)关于x 的方程kx 2﹣4x ﹣4=0有两个不相等的实数根,则k 的最小整数值为.14.(5分)已知抛物线y 1=﹣2x 2+2,直线y 2=2x +2,当x 任取一值时,对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M =0.下列判断:①当x >0时,1y M =;②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在;④使得M =1的x 值是−12或22.其中正确的是______________(把所有正确结论的序号都填在横线上)三.计算题(本大题共1小题,共8分)15.(8分)用适当的方法解下列方程(1)(x +3)2=5(x +3)(2)01322=--x x .四.解答题(本大题共8小题,共82分)16.(8分)设α,β是一元二次方程x2+3x﹣7=0的两个根,求α2+4α+β的值.17.(8分)如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从点C出发沿着CB方向以1cm/s的速度运动,另一动点Q从A出发沿着AC边以2cm/s的速度运动,P,Q两点同时出发,运动时间为t(s).(1)当t为几秒时,△PCQ的面积是△ABC面积的14?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.18.(8分)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?19.(10分)铜陵市为打造“绿色城市”降低空气中PM2.5的浓度,积极投入资金进行园林绿化工程,已知2017年投资1000万元,预计2019年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)经过评估,空气中PM2.5的浓度连续两年较上年下降10%,则两年后PM2.5的浓度比最初下降了百分之几?20.(10分)如图,二次函数的图象的顶点坐标为(1,23,现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.21.(12分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)方程0+xx_________“勾系一元二次方程”(填“是”或“不是”);+32=254(2)求证:关于x的“勾系一元二次方程”ax2+2cx+b=0必有实数根.(3)若x=﹣1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是62,则△ABC 面积为_____________.22.(12分)已知关于x的一元二次方程x2+mx+m﹣2=0.(1)求证:无论m取任何实数,此方程总有两个不相等的实数根;(2)设x2+mx+m﹣2=0的两个实数根为x1,x2,若y=x12+x22+4x1x2,求出y与m的函数关系式;(3)在(2)的条件下,若﹣1≤m≤2时,求y的取值范围.23.(14分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.。

安徽省阜阳市九校联盟2022-2023学年九年级下学期第一次月考数学试卷

安徽省阜阳市九校联盟2022-2023学年九年级下学期第一次月考数学试卷
试卷第 4 页,共 6 页
组别 时间(小时) 频数(人数) 频率
A
0 t<0.5
40
0.1
B
0.5 t<1
a
0.3
C 1 t<1.5
140
b
D 1.5 t<2
80
0.2
E
2 t<2.5
20
0.05
(1)表中的 a , b ; (2)补全频数分布直方图; (3)结合调查信息,请你估计今年该区初三学生中,每天课外阅读小于 1 小时的学生约有 多少人? 22.为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕 业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件 100 元,每件政府补贴 20 元,每月销售量 y (件)与销售单价 x (元)之间的关系近似 满足一次函数: y 3x 900 . (1)若第一个月将销售单价定为 160 元,政府这个月补贴多少元? (2)设获得的销售利润(不含政府补贴)为 w (元),当销售单价为多少元时,每月可获 得最大销售利润? (3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于 28800 元, 求该月销售单价的最小值. 23.在 Rt△ABC 中,∠BAC=90°,D 是 BC 的中点,E 是 AD 的中点,过点 A 作 AF ∥BC 交 BE 的延长线于点 F.
试卷第 3 页,共 6 页
旗杆顶的俯角为 45 ,请你帮忙求出该编辑部办公楼的高度 AB .
18.习近平总书记来到陕西省柞水县小岭镇金米村实地考察,得知木耳喜获丰收.小木 耳作出大产业,2019 年王极东木耳一项净收入 4 万元,2021 年净收入达到 5.76 万元, 则两年的平均增长率是多少? 19.观察下列等式: 第 1 个等式: 2 22 23 2 ; 第 2 个等式: 2 22 23 24 2 ; 第 3 个等式: 2 22 23 24 25 2 第 4 个等式: 2 22 23 24 25 26 2 , …… 请根据以上规律,解决下列问题 (1)试写出第 5 个等式; (2)请证明第 4 个等式. 20.如图,直线 l 与 e O 相离, OA l 于点 A,与 e O 相交于点 P, OA 5 .C 是直线 l 上一点,连接 CP 并延长,交 e O 于点 B,且 AB AC .

【数学试卷+答案】2022年安徽省合肥市包河区九年级下学期教学质量检测数学试题

【数学试卷+答案】2022年安徽省合肥市包河区九年级下学期教学质量检测数学试题

2021-2022学年第二学期教学质量检测(一)九年级数学试题卷一、选择题(本大题共10小题,每小恩4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.在数2,-2,12,12-中,最小的数为()A.-2 B.12 C.12- D.22.在合肥各区县2021年经济数据中,包河区GDP 及人均可支配收入都领先于其他各区,成绩耀眼,包河区GDP 达到1547亿元,全体居民人均可支配收入高达6.15万元,其中1547亿用科学记数法表示为()A.1.547×1012 B.1.547×1011 C.1547×108 D.0.1547×10123.下列运算中,正确的是()A.32633a a a -⋅=- B.222a b ab ab ÷=C.()33928a a -=- D.222532a b ab a b-+=-4.如图,该几何体的左视图是()A. B.C. D.5.如图,一块含有60°角的直角三角板放置在两条平行线上,若∠α=24°,则∠β为()A.106°B.96°C.104°D.84°6.为了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜受情况,小鹏采用了抽样调查,在绘制扇形图时,由于时问仓促,还有足球、网球等信息没有绘制完成,己知喜欢网球的人数少于喜欢足球的人数,根据如图所示的信息,这批被抽样调查的学生中喜欢足球的人数可能是()A.120人B.140人C.150人D.290人7.为满足人们对防疫物资的需求,某口罩加工厂增加设备,努力提高口罩生产量,2021年10月份该工厂的口罩产量为500万个,12月份产量为604万个,若月平均增长串相同,则月平均增长率约是()A.9% B.10% C.12% D.21%8.如图,点A在双曲线y=6x(x>0)上,点B在双曲线y=kx(x>0)上,//AB x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是15,则k的值为()A.21B.18C.15D.99.如图,O是矩形ABCD的对角线交点,AE平分∠BAD,∠AOD=120°,∠AEO的度数为()A.15°B.25°C.30°D.35°10.将函数y=-2x+b(b为常数)的图象位于x轴上方的部分沿x轴翻折至其下方,所得的折线记为图象C,若图象C在直线y=-3上方所有点(含交点)的横坐标x均满足0≤x≤4,则b的取值范围是()A.3≤b≤5B.0≤b≤3C.0<b<3D.3<b<5二、填空题(共4小题,每小题5分,满分20分)11.计算:3+-=_________12.是一个著名的常数,别称为Plastic number ,它是一元三次方程x =x +1,已知n -1<n (n 为正整数),则n 的值是________13.如图,在等腰 ABO 中,AO =AB ,OB =6,以OB 为半径作⊙O 交AB 于点C ,若BC =4,则cos A =_______14.在 ABC 中,∠C =60°,D 是边AB 的中点,E 是边BC 上一点,连接DE ,DE =2(1)若点E 为BC 的中点,则AC =_____;(2)若DE 平分 ABC 的周长,则AC =_____三、(本大题共2小题,每小题8分,满分16分)15.解不等式:12x ->x +116.先化简、再求值:2221(1)111a a a a a a --÷+--+-,其中a =2四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A (-2,1)、B (-1,4)、C (-3,3)(1)画出 ABC 关于y 轴对称的 A 1B 1C 1;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出将 ABC 放大后的 A 2B 2C 2;直接写出点C 2的坐标.18.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)参考数据:(sin67°≈1213;cos67°≈513;tan67°≈125)五、(本大题共2小题,每小题10分,满分20分)19.如图,某学校准各新建一个读书长廊,井用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地砖的边长均为0.5米.(1)按图示规律,第3图案的长度l 3=;第3个图案中没有花纹的正方形地砖数为.(2)若某个图案中带有花纹的地砖为n块,则没有花纹的地砖为块.(用含n的代数式表示)(3)若学校读书长廊的长度为Ln=100.5米,求没有花纹的正方形地砖有多少块?20.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.六、(本题满分12分)21.某校近期对七、八年级学生进行了“新型冠状病毒防治知识”线上测试,为了解他们的掌握情况,从七、八年级各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息:a、七年级的频数分布直方图如图(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b、七年级学生成绩在80≤x<90的这一组是:80;80.5;81;82;82;83;83.5;84;84;85;86;86.5;87;88;89;89c、七、八年级学生成绩的平均数、中位数、众数如表:年级平均数中位数众数七年级85.3m 90八年级87.28591根据以上信息,回答下列问题:(1)表中m 的值为;(2)在随机抽样的学生中,七年级小张同学与八年级小李同学的成绩都为84分,请问谁在自己的年级排名更靠前?请说明理由;(3)七年级学生中,有2位女同学和1位男同学获得满分,这3位同学被授予“疫情防控标兵”称号,并安排在领奖台上随意排成一排拍照留念,求两名女生不相邻的概率.七、(本题满分12分)22.己知:抛物线()21=-+++y x b x c 经过点P (−1,−2b ).(1)若b =−3,求这条抛物线的顶点坐标;(2)若b <−3,过点P 作直线PA ⊥y 轴,交y 轴于点A ,交抛物线于另一点B ,且BP =3AP ,求这条抛物线所对应的二次函数关系式.八、(本题满分14分)23.如图①,BD 为四边形ABCD 的对角线, BDE 与 BDA 关于直线BD 对称,BE 经过CD 的中点F ,连接CE ,∠1=∠2+∠3.(1)求证:∠4=∠BCE ;(2)若BF =CE +EF ,求证:DE ·BE =CE ·BC ;(3)如图②,任(2)的条件下,连接AC 交BD 于点O ,若OB =2,求OD 的长.答案解析【1题答案】【答案】A【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:∵22-=,1122-=,∴-2<12-<12<2,故选A .【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.【2题答案】【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:1547亿=154700000000=1.547×10故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.【3题答案】【答案】C【解析】【分析】根据合并同类项、单项式乘以单项式,单项式除以单项式,幂的乘方等运算,对选项逐个判断即可.【详解】解:32533a a a -⋅=-,A 选项错误,不符合题意;222a b ab a ÷=,B 选项错误,不符合题意;()33928a a -=-,C 选项正确,符合题意;25a b -和23ab 不是同类项,不能合并,D 选项错误,不符合题意;故选C【点睛】此题考查了合并同类项、单项式乘以单项式,单项式除以单项式,幂的乘方等运算,掌握相关运算法则是解题的关键.【4题答案】【答案】C【解析】【分析】找到从几何体的左边看到的图形即可【详解】解:从左边看,是一个矩形,矩形的上部分有一条虚线。

安徽省六安市金安区六安市轻工中学2023-2024学年九年级下学期月考数学试题

安徽省六安市金安区六安市轻工中学2023-2024学年九年级下学期月考数学试题

安徽省六安市金安区六安市轻工中学2023-2024学年九年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.下列计算正确的是( )A .22423m m m +=B .5210m m m ⋅=C .222(3)6mn m n =D .32422m m m ÷=3.截至2月10日2时,2024年春节联欢晚会媒体累计触达142亿人次,较去年增长29%,收视传播人次等数据创下新纪录.数据“142亿”用科学记数法表示为( ) A .101.4210⨯ B .111.4210⨯ C .914.210⨯D .120.14210⨯41最接近的整数是( ) A .4 B .5C .6D .75.方程3121123x x -+-=去分母正确的是( ) A .()()2313216x x --+= B .()()3312211x x --+= C .93426x x --+=D .()()3312216x x --+=6.已知关于x ,y 的方程组335x y mx y +=⎧⎨+=⎩的解满足2x y +=,则m 的值为( )A .3-B .2-C .3D .27.若关于x 的一元二次方程230x x m -+=有两个相等的实数根,则实数m 的值为( ) A .9-B .94-C .94D .98.下列所给函数中,y 随x 的增大而减小的是( ) A .y=﹣x ﹣1 B .y=2x 2(x≥0) C .2y x=D .y=x+19.已知三个实数a ,b ,c 满足0a b c ++=,10ab c ++=则下列结论正确的是( ) A .若a b =,则221a b =+B .若a c =,则1b =C .若b c =,则1a =D .若1a =,则240b c -≥10.小冬和小天沿同一条笔直的公路相向而行,小冬从甲地前往乙地,小天从乙地前往甲地,两人同时发出,当行驶5分钟时小冬发现重要物品忘带,立刻掉头提速返回甲地,用时4分钟,拿到物品后以提速后的速度继续前往乙地(掉头和拿物品的时间忽略不计),小天始终以一个速度保持行驶,二人相距的路程y (米)与小冬出发时间x (分钟)之间的关系如图所示,则下列说法中不正确的是( )A .小冬返回甲地的所用时间为4分钟B .小冬和小天出发时的速度分别为160米/分钟和200米/分钟C .小天出发14.5分钟两人相遇D .小冬最终达到乙地的时间是20分钟二、填空题11.分解因式:2232a -=.12x 的取值范围是. 13.若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是. 14.已知关于x 的两个一次函数11y ax a =-+,224(y kx k =+-其中k ,a 均为非零常数).(1)若两个一次函数的图象都经过y 轴上的同一个点,则2a k += ; (2)若对于任意实数x ,12y y >都成立,则k 的取值范围是 .三、解答题15.计算:02(3)(2)π--. 16.解不等式组:23535x x x x+⎧>⎪⎨⎪-<+⎩.17.先化简22211121a a a a a a ⎛⎫--+÷ ⎪+++⎝⎭,再从不等式22a -<<.中选择一个适当的整数,代入求值.18.3月12日,六安市轻工中学开展“植初心树未来”主题活动,先安排32人去拔草,18人去植树,后又增派19人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人数各是多少?19.已知y kx b =+,当0x =时,2y =;当1x =时,4y =. (1)求出k 和b 的值.(2)判断点()1,3--是否在这个函数图像上. 20.观察下列各式: 第1个等式:11322234+⨯=+⨯; 第2个等式:22343336+⨯=+⨯; 第3个等式:33364438+⨯=+⨯; L请你根据上面三个等式提供的信息,解决下列问题. (1)请你写出第4个等式:;(2)请你根据以上等式寻找规律,猜想第n 个等式,并给出证明.21.在国家积极政策的鼓励下,中国新能源汽车的市场需求呈螺旋式上升,某汽车企业2020到2022这两年A 型汽车年销售总量增加了69%年销售单价下降了19%. (1)设2020年销售A 型汽车总量为a 万辆,销售单价为b 万元,请用代数式填表:(2)该汽车企业A 型汽车这两年销售总额的年增长率相同,求年增长率.22.鲜花是云南的名片,更是云南送给世界的礼物.在日新月异的技术加持下,云南鲜花为各地带去了来自高原的芬芳与绚烂.元旦前夕,某批发商购进AB 、两种类型的玫瑰花共100束,其中A 种类型的玫瑰花价格为每束25元,购买B 种类型的玫瑰花所需费用y (单位:元)与购买数量x (单位:束)的函数关系图象如图所示.(1)求y与x的函数关系式;(2)若购买B种类型玫瑰花所需的数量不超过60束,但不少于A种类型玫瑰花的数量,试问如何购买能使购买费用最少,并求出最少费用.23.如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成、,请你计算:10个大小不同的正方形,其中标注1、2的正方形边长分别为x y(1)第3个正方形的边长=_______;第5个正方形的边长=______;第10个正方形的、的代数式表示)边长=________.(用含x y(2)当2x 时,第9个正方形的面积=____________.、均为正整数时,求这个完美长方形的最小周长.(3)当x y。

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)一.单选题。

(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若反比例函数y=的图象经过点(1,-2),则k=()A . -2B . 2C . 、D . ―2. (2分)某班一些学生做图钉随机抛掷的实验,求图钉尖触地还是图钉面触地的概率,下列做法正确的是()A . 甲做了4000次,得出针尖触地的频率约为42%,于是他断定在做第4001次时,针尖肯定不会触地;B . 乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的个数,这样大大提高了速度;C . 老师安排每位同学回家做实验,各人的图钉大小、质地均匀程度都不一样,同学交来的结果,老师进行统计;D . 老师安排同学回家做实验,图钉统一发(完全一样的图钉),同学交来的结果,老师进行统计。

3. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④4. (2分) (2017八上·涪陵期中) 等腰三角形一边长等于4,一边长等于9,则它的周长等于()A . 17B . 22C . 17或22D . 135. (2分)用一张长15厘米,宽8厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。

A . 120B . 60C . 376.8D . 47.16. (2分)如图,过轴上任意一点,作轴的平行线,分别与反比例函数的图象交于点和点,若为轴上任意一点,连接,,则的面积为()A . 3B . 4C . 5D . 67. (2分)(2012·茂名) 如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()A . 3B . 4C . 5D . 68. (2分)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A . 袋子一定有三个白球B . 袋子中白球占小球总数的十分之三C . 再摸三次球,一定有一次是白球D . 再摸1000次,摸出白球的次数会接近330次9. (2分)如图,⊙O的半径为2,点A的坐标为(),直线AB为⊙O的切线,B为切点。

则B点的坐标为()A .B .C .D .10. (2分)已知反比例函数y=,下列结论中不正确的是()A . 图象经过点(﹣,﹣2)B . 图象位于第一、三象限C . y随x的增大而减小D . 当1<x<3时,y的取值范围是<y<1二、填空题 (共8题;共8分)11. (1分)(2017·蒙自模拟) 正六边形的边长为3,则它的半径为________.12. (1分)将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为________.13. (1分)(2019·吴兴模拟) 如图,在△ABC中,DE∥BC,,AD=2,则BD长为________.14. (1分)如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,如果⊙M与y轴所在直线相切,那么m=________,如果⊙M与y轴所在直线相交,那么m的取值范围是________.15. (1分) (2019八下·北京期中) 已知双曲线在第二、四象限内,则m的取值范围是________.16. (1分) (2020九上·沭阳期中) 如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA,PB于点C、D,若△PCD的周长为24,⊙O的半径是5,则点P到圆心O的距离________.17. (1分) (2019九上·凤山期中) 已知二次函数,在内,函数的最小值为________.18. (1分) (2019八上·浦东期末) 如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为________.三、解答题 (共10题;共82分)19. (15分)(2020·高台模拟) 已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO= .(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC交线段AB于点C,交x轴于点D.若C点坐标为(-6.m),求:直线AB的表达式和经过点C得反比例函数表达式.20. (5分) (2019九上·莘县期中) 已知:如图,在菱形ABCD中,DE⊥AB于E,BE=16cm,求此菱形的周长.21. (2分) (2018九上·楚雄期末) 甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.(1)请用树状图或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2﹣5x+6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2﹣5x+6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.22. (2分) (2018八下·永康期末) 如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为 .(1)当时,正方形ABCD的边长 ________.(2)连结OD,当时, ________.23. (2分)(2016·石峰模拟) 如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.24. (6分)(2016·江都模拟) 已知:如图①,在矩形ABCD中,AB=5,AD= ,AE⊥BD,垂足是E.点F 是点E关于AB的对称点,连接AF,BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P.与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ 为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.25. (15分) (2020八上·沈阳月考) 如图,在平面直角坐标系中,点A在X轴负半轴上,点B在y轴的正半轴上,点C在第二象限,OA=1,AB=BC= ,AB⊥BC.(1) A点坐标为________,B点坐标为________,C点坐标为________.(2)过点C作直线MN平行于x轴,点P是直线MN上一点,点P在第二象限,且△ABP的面积是△ABC面积的2倍,则点P的坐标为________.(3)在x轴上有一点D,使∠BDA= ∠BAD,则点D的坐标为________.26. (10分) (2016九上·宜昌期中) 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?27. (15分) (2019八下·洛阳期中) 已知:△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D 是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合).(1)如图1,当点D在线段BC上时,线段CE、BD之间的位置关系是________,数量关系是________;(2)如图2,当点D在线段BC的延长线上时,探索AD、BD、CD三条线段之间的数量关系,写出结论并证明;(3)若BD= CD,直接写出∠BAD的度数。

28. (10分)如图,反比例函数的图象经过点A(﹣2,5)和点B(﹣5,p),▱ABCD 的顶点C、D分别在y轴的负半轴、x轴的正半轴上,二次函数的图象经过点A、C、D.(1)点D的坐标为________;(2)若点E在对称轴右侧的二次函数图象上,且∠D CE>∠BDA,则点E的横坐标m的取值范围为________.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共10题;共82分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、。

相关文档
最新文档