解析数学中考史上十大难题

合集下载

中考数学压轴常考难点模型“最大张角模型——米勒问题”

中考数学压轴常考难点模型“最大张角模型——米勒问题”

1471年,德国数学家米勒向诺德尔教授提出了如下十分有趣的问题:在地球表面的什么部位,一根垂直的悬杆呈现最长?即在什么部位,视角最大?最大视角问题是数学史上100个著名的极值问题中第一个极值问题而引人注目,因为德国数学家米勒曾提出这类问题,因此最大视角问题又称之为“米勒问题”,一般的米勒问题如下:
米勒问题:已知点A、B是∠MON的边ON上的两个定点,点P是边OM上的动点,则当P 在何处时,∠APB最大?
对米勒问题有如下重要结论我们不妨称之为米勒定理。

米勒定理:已知点A、B是∠MON的边ON上的两个定点,点P是边OM上的一个动点,则当且仅当三角形ABP的外接圆与边OM相切于点P时,∠APB最大。

证明:如图,设P′是边OM上不同于点P的任意一点,连结P′A,P′B,P′A与圆交于点C,连接CB,根据三角形外角的性质,可知∠ACB>∠AP′B,根据圆周角定理可知,∠APB=∠ACB,因此∠APB>∠AP′B,也就是当且仅当三角形ABP的外接圆与边OM相切于点P时,∠APB最大。

最大张角问题在数学竞赛、历届中考和模拟考试中频频亮相,常常以平面几何和实际应用为背景进行考查。

若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。

否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。

下面举例说明米勒定理在解决最大角问题中的应用。

2023年北京中考数学重难题型专题

2023年北京中考数学重难题型专题

2023年北京中考数学重难题型专题1. 介绍2023年北京中考数学试题将继续注重考查学生的基础知识和思维能力。

本文将围绕2023年北京中考数学试题中的重难题型进行专题解析,帮助考生们更好地应对考试。

2. 题型分析2.1. 组合与排列题型组合与排列是中考数学中的难点之一,考生往往在这类题目上容易失分。

在解决组合与排列题型时,考生需熟练掌握基本的排列与组合知识,灵活运用公式与方法,同时要对排列组合的实际问题有一定的抽象思维能力。

2.2. 几何题型几何题型在中考数学中占据比重较大,几何知识的掌握程度直接关系到考生的数学成绩。

在解决几何题型时,考生需要深刻理解几何原理,善于利用图形的性质,勤加练习,灵活运用几何知识解决各种类型的几何问题。

2.3. 代数题型代数题型主要包括方程与不等式、函数及图像等内容。

考生在解决代数题型时,需熟练掌握各种代数运算和变形技巧,理解函数的性质并能准确绘制函数图像。

3. 解题技巧3.1. 理清思路在解决数学难题时,理清思路是至关重要的。

考生在做题时应该逐步分析题目,梳理解题思路,明确每一步的解题思路和方法。

3.2. 多用图形辅助在解决几何题型时,考生可以通过绘制图形来帮助理解和解决问题。

图形能够直观地表现问题,有助于找出问题的关键点,因此在解决几何难题时,考生可以多用图形辅助。

3.3. 灵活运用方法在解决排列组合、代数等数学题型时,考生需要灵活运用各种方法和技巧。

例如在排列组合题型中,可以用组合数的性质来简化问题;在代数题型中,可以用方程的变形和不等式性质来快速解题。

4. 经典例题分析以下是2023年北京中考数学试题中的一些经典难题,通过这些例题的分析,帮助考生更好地理解解题技巧。

4.1. 组合与排列题型例题:某班有5名男生和6名女生,从中选出3名同学组成一个三人组,求其中至少有一名男生的方案数。

解析:在这个问题中,考生需要运用组合数的性质求解。

首先计算出全体学生组成三人组的方案数,然后计算出全女生组成三人组的方案数,最后用总数减去全女生组成三人组的方案数即可得到答案。

中考数学压轴题十大类型经典题目

中考数学压轴题十大类型经典题目

中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.2011吉林如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm,BC =4cm,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,这里规定:线段是面积为0的三角形解答下列问题:1 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. 2当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.3当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. 4直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.D C BA 2.2007河北如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC3设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;,写出t 的取值范围;若不能,请说明理由. 备用图3.2008河北如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒0t >.1D F ,两点间的距离是 ;2射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;3当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; 4连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.2011山西太原如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为8,0,点B 的坐标为11,4,动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t秒0t>,△MPQ的面积为S.1点C的坐标为________,直线l的解析式为__________.2试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.3试求题2中当t为何值时,S的值最大,并求出S的最大值.4随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.5.2011四川重庆如图,矩形ABCD中,AB=6,BC=2错误!,点O是AB的中点,点P在AB的延长线上,且BP=3个单位长度的速度沿OA匀速运动,到达A点后,F从P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以和矩形ABCD在射线PA的同侧,设运动的时间为t秒1当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;3设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.2011山东烟台如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为-4,0,0,4.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t秒时,△OPQ的面积为S不能构成△OPQ的动点除外.1求出点B、C的坐标;2求S随t变化的函数关系式;3当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题12011浙江温州如图,在平面直角坐标系中,O是坐标原点,点A的坐标为-4,0,点B的坐标为0,bb>0.P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P 关于y轴的对称点为P′ 点P′不在y轴上,连结P P′,P′A,P′C,设点P的横坐标为a.(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是-1,m ,求m 的值;2若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; 3是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. 2010武汉如图,抛物线212y ax ax b=-+经过A -1,0,C 2,32两点,与x 轴交于另一点B . 1求此抛物线的解析式; 2若抛物线的顶点为M ,点P 为线段OB 上一动点 不与点B 重合,点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; 3在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与2中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. 2011江苏镇江在平面直角坐标系xOy 中,直线1l 过点A 1,0且与y 轴平行,直线2l 过点B 0,2且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=k >0的图象过点E 且与直线1l 相交于点F . 1若点E 与点P 重合,求k 的值; 2连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; 3是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. 2010浙江舟山△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O 如图,△ABC 可以绕点O 作任意角度的旋转.1当点B 在第一象限,,求点B 的横坐标; x y P'DO C B A P2如果抛物线2y ax bx c =++a ≠0的对称轴经过点C ,请你探究:①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m 的值;若不存在,请说明理由.5.12若点N 为线段BMQ .当点N 在线段BM 上运动时点N 不与点B ,点M 面积为S ,求S 与t 之间的函数关系式及自变量3,求出所有符合条件的点P 4将△OAC 补成矩形,使得△,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标不需要计算过程. 三、测试提高1. 2011山东东营如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为30-,,0,1,点D是线段BC 上的动点与端点B 、C 不重合,过点D 作直线12y x b =+交折线OAB 于点E . 1记△ODE 的面积为S .求S 与b 的函数关系式;2当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题1. 2011辽宁大连如图,抛物线y =ax 2+bx +c 经过A -1,0、B 3,0、C 0,3三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .1求该抛物线的解析式;2抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;3在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. 2011湖北十堰如图,和点 B ,与y 轴交于点C 0,-3.1求抛物线的解析式;2如图1,己知点H 0,-1.问在抛物线上是否存在点G 点G 在y 轴的左侧,使得S △GHC =S △GHA 若存在,求出点G 的坐标,若不存在,请说明理由:3如图2,抛物线上点D 在x 轴上的正投影为点E ﹣2,0,F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.3. 2010天津在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B 点A 在点B 的左侧,与y 轴的正半轴交于点C ,顶点为E . Ⅰ若2b =,3c =,求此时抛物线顶点E 的坐标;Ⅱ将Ⅰ中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;Ⅲ将Ⅰ中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. 2011山东聊城如图,在矩形ABCD 中,AB =12cm,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s,点F 的速度为4cm/s,当点F 追上点G 即点F 与点G 重合时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.1当t =1s 时,S 的值是多少2写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;3若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. 2011江苏淮安如图,在Rt△ABC中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒t >0,正方形EFGH 与△ABC 重叠部分面积为S .1当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . 2当0<t ≤2时,求S 与t 的函数关系式;3直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少A EB FC GDA 备用图三、测试提高1. 2010山东东营如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点D 不与A ,B 重合,且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .1当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;2设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. 2011江苏盐城如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.备用图2. 2009湖北黄冈如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t 单位:秒B AD E F G C B 备用图1 A C B 备用图2 A C1求A ,B ,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;3当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;4当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. 2009四川眉山如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 1,0. 1求该抛物线的解析式;2动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. 2010广东中山如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动点M 可运动到DA 的延长线上,当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:1说明△FMN ∽△QWP ;2设04x ≤≤即M 从D 到A 运动的时间段.试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形3问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. 2011湖北天门在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为-3,0、B 1,0,过顶点C 作CH ⊥x 轴于点. 1直接填写:a = ,b = ,顶点C 的坐标为 ;2在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由; 3若点P 为x 轴上方的抛物线上一动点点P 与顶点C 不重合,PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. W QPNM F D CB A备用图三、测试提高1. 2009广西钦州如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.1填空:点C 的坐标是_____,b =_____,c =_____;2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. 2009黑龙江齐齐哈尔直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A 、B 两点的坐标;2设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;3当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. 2010河南在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.1求抛物线的解析式;2若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.3若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. 2011黑龙江鸡西已知直线y =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .1试确定直线BC 的解析式;2若动点P 从A 点出发沿AC 向点C 运动不与A 、C 重合,同时动点Q 从C 点出发沿CBA 向点A 运动不与C 、A 重合,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;3在2的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. 2007河南如图,对称轴为直线x =27的抛物线经过点A 6,0和B0,4.1求抛物线解析式及顶点坐标;2设点Ex ,y 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;3①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. 2010黑龙江大兴安岭如图,在平面直角坐标系中,函数2y x =+12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M,且点M 为线段OB 的中点. 1求直线AM 的解析式;2试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;3若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. 2009辽宁抚顺已知:如图所示2=++y ax x c a ≠0与x C .1求出此抛物线的解析式,2在抛物线上有一点D ,D 的坐标,并求出直线AD 的解析式;3在2中的直线AD P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. 2010天津在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.Ⅰ若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;Ⅱ若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. 2011四川广安四边形ABCD 是直角梯形,BC ∥AD ,∠=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 1 0-,,B 1 2-,,D 3,0.连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .1求抛物线的解析式;2抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;3设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.3. 2011四川眉山如图,在直角坐标系中,已知点A 0,1,B 4-,4,将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . 1 求抛物线的解析式和点C 的坐标;2 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;3 在2的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. 2011福建福州已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x轴交于A 、B 两点B 在A 点右侧,点H 、B 关于直线3:33l y x =+ 1求A 、B 两点坐标,并证明点A 在直线l 上; 2求二次函数解析式;3过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. 2009湖南郴州 如图1,已知正比例函数和反比例函数的图象都经过点M -2,-1,且y B O D C A xEyB O DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xP -1,-2为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .1写出正比例函数和反比例函数的关系式;2当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;3如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. 2010江苏苏州如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为3,0、0,4. 1求抛物线的解析式;2设()M m n ,M B O A 、、、,求点M 的坐标; 3在2的条件下,试问:22228PA PB PM ++>是否总成立请说明理由.三、测试提高1. 2009浙江舟山如图,已知点A -4,8和点B 2,n 在抛物线2=y ax 上.1求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;2平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C -2,0和点D -4,0是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. 2011天津已知抛物线1C :21112y x x =-+,点F 1,1. Ⅰ求抛物线1C 的顶点坐标;Ⅱ①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P P P x y ,01P x <<,连接PF ,并延长交抛物线1C 于点Q Q Q x y ,,试判断112PF QF+=是否成立请说明理由; Ⅲ将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. 2009湖南株洲如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D .1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. 2008山东济南已知:抛物线2y ax bx c =++a ≠0,顶点C1,3-,与x 轴交于A 、B 两点,(10)A -,. 1求这条抛物线的解析式; 2如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点P 与A 、B 两点不重合,过点P 作断PM PNBE AD+是否为PM ⊥AE 于M ,PN ⊥DB 于N ,请判定值 若是,请求出此定值;若不是,请说明理由;3在2的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE相交于点F 、GF 与A 、E 不重合,G 与E 、B 不重合,请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. 2011湖南株洲孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: 1若测得OA OB ==如图1,求a 的值;2对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; 3对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 2009湖北武汉如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .1求抛物线的解析式;2已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 3在2的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. 2009湖南湘西在直角坐标系xOy与x 轴交于两点A 、B ,与y 的坐标是3,0.将直线y kx =沿y 轴向上平移3(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. 2009山西太原问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一方法指导:图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011点E 不与点C ,D 重合,压平后得到折痕MN .当12CE CD =时,求AMBN 的值. 类比归纳:在图1中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=n 为整数,则AMBN 的值等于 .用含n 的式子表示 联系拓广: 如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 不与点C D ,重合,压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .用含m n ,的式子表示 2. 2011陕西如图①,在矩形ABCD 中,将矩形折叠,使B落在边AD 含端点上,落点记为E ,这时折痕与边BC 或边CD 含端点交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.1由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;2如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;3如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么图① 图② 图③3. 2010江西南昌课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=αα<∠A 1A 0A 2,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. 1用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想图2NA B CD E F M图1A BCDE FM N设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合其中,A 1与B 1重合,现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转αn1800<<α. 3设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;4试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来不要求证明;若不存在,请说明理由.4. 2009山东德州已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC于F ,连接DF ,G 为DF 中点,连接EG ,CG . 1求证:EG =CG ;2将图①中△BEF 绕B 点逆时针旋转45o,如图②所示,取DF 中点G ,连接EG ,CG .问1中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. 3将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问1中的结论是否仍然成立通过观察你还能得出什么结论均不要求证明5. 2010江苏苏州刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D =°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上移动开始时点与点重合. 1在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.填“不变”、“变大”或“变小” 2刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行 问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.三、测试提高1. 2009湖南常德如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:F BA D E G图①F A D G图② F A E 图③ ①图②F ED AB图③D。

2022届中考数学压轴难题含答案解析

2022届中考数学压轴难题含答案解析

一、解答题1.如图,在ABCD中,90ABD∠=︒,45cmAD=,8cmBD=.点P从点A出发,沿折线AB BC-向终点C运动,点P在AB边、BC边上的运动速度分别为1cm/s、5cm/s.在点P的运动过程中,过点P作AB所在直线的垂线,交边AD或边CD于点Q,以PQ为一边作矩形PQMN,且2QM PQ=,MN与BD在PQ的同侧.设点P的运动时间为t(秒),矩形PQMN与ABCD重叠部分的面积为()2cmS.(1)求边AB的长.(2)当04t<<时,PQ=,当48t<<时,PQ=.(用含t的代数式表示)(3)当点M落在BD上时,求t的值.(4)当矩形PQMN与ABCD重叠部分图形为四边形时,求S与t的函数关系式.2.已知,ABC内接于⊙O,AD BC⊥于点G(1)如图1,求证:BAO CAD∠=∠;(2)如图2,过点O作ON BC⊥于N,过点作BH AC⊥于H,交⊙O于点F,求证:2AE ON=;(3)如图3,在(2)的条件下,直线OE交AB于点P,若:3:2HC EF=,7OE=,2CQ=,求线段AD的长.3.直线113y x=-+分别交x轴、y轴于A、B两点.(1)求出点A、B的坐标;(2)已知点G的坐标为(2,7),过点G和B作直线BG,连接AG,求∠AGB的正切值;(3)在(2)的条件下,在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△AOB 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,OA =1,OB =OC =3.(1)求抛物线的表达式;(2)如图1,点D 为第一象限抛物线上一动点,连接DC ,DB ,BC ,设点D 的横坐标为m ,△BCD 的面积为S ,求S 的最大值;(3)如图2,点P (0,n )是线段OC 上一点(不与点O 、C 重合),连接PB ,将线段PB 以点P 为中心,旋转90°得到线段PQ ,是否存在n 的值,使点Q 落在抛物线上?若存在,请求出满足条件的n 的值,若不存在,请说明理由.5.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围6.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式;(2)Q 是抛物线上除点P 外一点,BCQ △与BCP 的面积相等,求点Q 的坐标: (3)M 是线段BC 上方抛物线上一个动点,过点M 作x 轴的垂线,交线段BC 于点D ,再过点M 做MN //x 轴交抛物线于点N ,连结DN ,请问是否存在点M 使MDN △为等腰直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.7.如图1所示,在等边三角形ABC 中,线段AD 为其内角平分线,过点D 的直线B 1C 1⊥AC 于点C 1,交AB 的延长线于点B 1.(1)请你探究:1111,AC DC AC CD AB BD AB DB ==是否都成立?请说明理由. (2)请你继续探究:若ABC 为任意三角形,线段AD 为其内角平分线,AC CDAB DB=一定成立吗?并证明你的判断.(3)如图2所示,在Rt ABC 中,∠ACB =90°,AC =8,AB =403,E 为AB 上一点且AE =5,CE 交内角平分线AD 于点F ,试求DFFA的值.8.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,45=;∠=︒,且DE BFEAF=,求证:EG AG(2)如图2,正方形ABCD中,45∠=︒,延长EF交AB的延长线于点G,(1)中的EAF结论还成立吗?请说明理由;⊥,垂足为点Q,交AF于点N,连结DN,求(3)如图3在(2)的条件下,作GQ AE证:45∠=︒.NDC9.如图,在Rt△AOD中,∠AOD=90°,以点O为圆心、OA为半径作⊙O.延长AD、OD,分别交⊙O于点C、E,点B是OD延长线上一点,且有BC=BD.(1)求证:BC是⊙O的切线;(2)若∠OAD=30°,CD=3,求弧CE长.(3)若OD=3,DE=1,求BE.10.已知在菱形ABCD中,8∠=︒,点P是直线AB上任意一点,联结BADAB=,120PC.在PCD∠内部作射线CQ与对角线BD交于点Q(与B、D不重合),且30PCQ∠=︒,联结PQ.(1)如图1,当点P在边AB上时,如果6BP=,求线段PC的长;(2)求证:△PCQ是等腰三角形(3)直线PQ与直线BC交于点E,如果QCE∆与BCP∆相似,求线段BP的长.11.如图,已知正方形ABCD,直线BC上任意一点E,连接AE,将△ABE绕点A逆时针旋转α(0°<α<360°)得到△AFG,直线BF、EG交于点M.(1)如图1,当点E在线段BC上,α=90°时,求证:M为GE的中点;(2)如图2,当点E在射线BC上,(1)中的结论是否发生变化,说明理由.(3)当AB=4,BE=5,BM=41时,求DM的长(直接写出结果).12.如图1,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0)、B(3,0),与y轴交于点C,连接AC和BC,∠OAC=60°.(1)求二次函数的表达式.(2)如图2,线段BC上有M、N两动点(N在M上方),且MN 3P是直线BC下方抛物线上一动点,连接PC、PB,当△PBC面积最大时,连接PM、AN,当MN运动到某一位置时,PM+MN+NA的值最小,求出该最小值.(3)如图3,在(2)的条件下,连接AP,将AP绕着点A逆时针旋转60°至AQ.点E为二次函数对称轴上一动点,点F为平面内任意一点,是否存在这样的点E、F,使得四边形AEFQ 为菱形,若存在,请直接写出点E 的坐标,若不存在,请说明理由.13.将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,其中点E 与点B ,点G 与点D 分别是对应点,连接BG .(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 14.预备知识:(1)在一节数学课上,老师提出了这样一个问题:随着变量t 的变化,动点在平面直角坐标系中的运动轨迹是什么?一番深思熟虑后,聪明的小明说:“是一条直线”,老师问:“你能求出这条直线的函数表达式吗?”小明的思路如下:设这条直线的函数表达式为()0y kx b k =+≠,将点代入得:,整理得∵t 为任意实数,等式恒成立, ∴,∴,2b =∴这条直线的函数表达式为请仿照小明的做法,完成问题:随着变量t 的变化,动点在平面直角坐标系中的运动轨迹是直线l ,求直线l 的函数表达式.问题探究:(2)如图1,在平面直角坐标系中,已知,,且,AB AC =,则点C 的坐标为_________.结论应用:(3)如图2,在平面直角坐标系中,已知点()1,0P ,Q 是直线122y x =-+上的一个动点,连接PQ ,过点P 作,且,连接,求线段的最小值.15.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 16.如图,抛物线2=y ax bx +的对称轴为y a 19),P 为抛物线上一点,A (0,32).(1)求抛物线解析式;(2)Q 为直线AP 上一点,且满足AQ =2AP .当P 运动时,Q 在某个函数图象上运动,试写出Q 点所在函数的解析式;(3)如图2,以PA 为半径作⊙P 与x 轴分别交于M (x 1,0),N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求点P 的横坐标.17.如图1,在直角坐标系中,O 是坐标原点,点A 在y 轴正半轴上,二次函数y =ax 2+16x +c 的图象F 交x 轴于B 、C 两点,交y 轴于M 点,其中B (﹣3,0),M (0,﹣1).已知AM =BC .(1)求二次函数的解析式;(2)证明:在抛物线F 上存在点D ,使A 、B 、C 、D 四点连接而成的四边形恰好是平行四边形,并请求出直线BD 的解析式;(3)在(2)的条件下,设直线l 过D 且l ⊥BD ,分别交直线BA 、BC 于不同的P 、Q 两点,AC 、BD 相交于N ,求11BP BQ+的值; 18.如图,抛物线26y ax bx =++经过点()2,0A -、()4,0B 两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为()14m m <<.连接AC 、BC 、DB 、D C .(1)求抛物线的函数表达式;(2)BCD△的面积等于AOC△的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系中,直线343y x=+与x轴、y轴分别交于A、B两点,点C在x轴上,且60ABC∠=︒.(1)点C的坐标为;(2)若动点P从点A出发,沿AC向点C运动,同时动点Q从点C出发,沿C B A→→方向向点A运动,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度,设APQ∆的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,当APQ∆的面积最大时,y轴上有一点M,则平面内是否存在一点N使得以A,Q,M,N为顶点的四边形构成以AQ为边的菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.20.如图1,抛物线y12=-x2+bx+c与x轴交于A(﹣1,0)和B点,与y轴交于点C(0,2).(1)求这个抛物线的解析式;(2)若点P在抛物线上,且满足∠PAB=∠ACO,求点P的坐标;(3)如图2,若点D是在直线BC上方的抛物线的一点,作DE⊥BC于点E,求线段DE的最大值.【参考答案】参考答案**科目模拟测试一、解答题1.(1)4;(2)2,162t t -;(3)0.8或7.2;(4)()()()222800.8814,4781285127.28t t S t t t t t t t ⎧<≤⎪=-+≤<<≤⎨⎪-+≤<⎩【解析】【分析】(1)利用勾股定理直接计算即可;(2)先求解25tan 2,sin 45BD BD A A AB AD =====再用含t 的代数式表示,,,AP PB PC 再利用三角函数建立方程求解两种情况下的PQ 即可;(3)分两种情况讨论:如图,当P 在AB 上,M 落在BD 上,如图,当P 在BC 上,M 落在BD 上,则,M D 重合,再利用矩形的性质结合三角函数可得结论;(4)如图,当M 第一次落在BD 上,即00.8t时,此时重叠部分的面积为四边形, 当14t ≤<时,重叠部分为四边形,如图, 当47t <≤时,此时重叠部分的面积为四边形,如图,当M 第2次落在BD 上时,7.2,t当7.28t 时,此时重叠部分的面积为四边形,再利用图形的性质列面积函数关系式即可.【详解】解:(1) 90ABD ∠=︒,5cm AD =,8cm BD =, ()2222458 4.AB AD BD ∴=-=-=(2)当04t <<时,P 在AB 上,,AP t =90,4,8,45,ABD AB BD AD ∠=︒===825tan 2,sin ,545BD BD A A AB AD ∴===== 而四边形PQMN 为矩形, 90,,,QPN QPA PQ MN PN MQ ∴∠=︒=∠==2,PQ AP∴= 2,PQ t ∴=当48t <<时,P 在BC 上,如图,此时()54,PB t =-,ABCD ,,,A C AD BC ∴∠=∠= 45545855,PC BC PB t t =-=-+=-25sin 5855PQ PQ C PC t∴∠===-, 162.PQ t ∴=-故答案为:2,162t t -(3)如图,当P 在AB 上,M 落在BD 上,此时4,,AP PN AP PB QM PB +=+==2,QM PQ24,PB PQ t54,t 解得:0.8,t如图,当P 在BC 上,M 落在BD 上,则,M D 重合,4,CQ DQ CQ MQ162,PQ t 同理可得:18,2CQ PQ t 2324,MQ PQ t32484,t t解得:7.2.t(4)当M 第一次落在BD 上,即00.8t时,此时重叠部分的面积为四边形,如图,此时,2,24,AP t PQ t QM PQ t2248,S t t t当M 落在BC 上时,如图,同理可得:1,2,,4,24,2AP t PQ t MN BN MN t PB t QM PN PQ t AB ======-====44,t 解得:1,t =当14t ≤<时,重叠部分为四边形,如图,同理可得:,2,4,4,AP t PQ t PB t HQ ===-= ()2144?28,2S t t t t =-+=-+ 如图,当N 落在AD 上时,同理可得:162,8,2324,PQ t CQ t MQ PN PQ t 而4,PN CD3244,t 解得:7,t =当47t <≤时,此时重叠部分的面积为四边形,如图,此时44,DQ CQ t()()2144?1628,2S t t t t =-+-=-+ 当M 第2次落在BD 上时,7.2,t当7.28t 时,此时重叠部分的面积为四边形,如图,同理可得:162,22162,PQ t MQ PQ t2221628128512.S t t t综上:()()()222800.8814,4781285127.28t t S t t t t t t t ⎧<≤⎪=-+≤<<≤⎨⎪-+≤<⎩【点睛】本题考查的是平行四边形的性质,矩形的判定与性质,列面积函数关系式,锐角三角函数的应用,清晰的分类讨论是解题的关键.2.(1)见解析;(2)见解析;(37137【解析】【分析】(1)连接,BO BD ,根据圆周角定理以及三角形的内角和,以及AD BD ⊥,即可证明BAO CAD ∠=∠;(2)延长CO 交O 于点M ,连接BM 、AM ,依垂径构造中位线,得2BM ON =,证明四边形AEBM 是平行四边形,得AE BM =结论可证;(3)连接OE 并延长交AC 于点Q ,连接,,AF OB OC ,CD ,,AD BC AH BF ⊥⊥,证EH HF =结合边比得60HFC ∠=︒,证AOP ≌AEQ △,得APQ 是等边等边三角形,PBO ≌QOC ,得等边边长13,得半径3BO =AEH △,求得1cos 7AEH ∠=继续解形计算,可得7137AD =【详解】(1)如图,连接,BO BD ,AD BC ⊥90DAC C ∴∠+∠=︒AO BO =AOB ABO ∠=∠2180AOB BAO ∴∠+∠=︒即2AOB BAO ∠+∠()2DAC C =∠+∠=AB AB2AOB C ∴∠=∠BAO DAC ∴∠=∠(2)如图,延长CO 交O 于点M ,连接BM 、AMON BC ⊥NB NC ∴=OM OC =2ON BM ∴= MC 为O 的直径,90MBC ∴∠=︒,90MAC ∠=︒MB BC ∴⊥,MA AC ⊥AD BC ⊥,BH AC ⊥∴//MB AE ,//MA BH∴四边形AMBE 是平行四边形AE MB ∴=∴2AE ON =(3)如图,连接OE 并延长交AC 于点Q ,连接,,AF OB OC ,CD ,,AD BC AH BF ⊥⊥,90,90GBH BEG HAE AEH ∴∠+∠=︒∠+=︒,BEG AEH ∠=∠,GBH HAE ∴∠=∠,即CAD CBF ∠=∠CF CF =CAF CBF ∴∠=CAD CAF ∴∠=∠AH BF ⊥AHE AHF ∴∠=∠又AH AH =AHE AHF ∴△≌△HE HF ∴=:32HC EF =3HC HF ∴=tan 3HC HFC HF∠==60HFC ∴∠=︒设ON k =,由(2)可得2AE ON =2k =,60,HFC CB CB ∠=︒=120BOC ∴∠=︒,60BAC BFC ∠=∠=︒ON BC ⊥1602BON BOC ∴∠=∠=︒ 22cos ON OB ON k BON∴===∠ 2OA OB OC k ∴===AO AE ∴=AOE AEO ∴∠=∠AOP AEQ ∴∠=∠由(1)可得BAO CAD ∠=∠,在AOP 和AEQ △中,BAO CAD AO AEAOP AEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOP ≌AEQ △∴=AP AQ ,OP EQ =60BAC ∠=︒APQ ∴△是等边三角形,60APQ AQP ∴∠=∠=︒120BPO OQC ∴∠=∠=︒120BOC ∠=︒18060BOP COQ BOC ∴∠+∠=︒-∠=︒180********BOP PBO OPB ∠+∠=︒-∠=︒-︒=︒COQ PBO ∴∠=∠在PBO 与QOC 中COQ OBP OQC BPO BO OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴PBO ≌QOCOQ BP ∴=,OP QC =OP EQ =2EQ QC ∴==7OE =27211PQ AP AQ PO OE EQ ∴===++=++=在Rt EHQ 中,60AQP ∠=︒,2EQ =sin 2EH EQ EQH ∴=⨯∠==1cos 12HQ EQ EQA EQ =⋅∠==EF EH ∴=在Rt HCF △中,cos 2HF CF HFC===∠在Rt AEH 中,12AH AQ HQ =-=AE ∴=AO AE ∴==在Rt AEH △中,1cos 7EH AEH AE ∠=== ,AH BF AD BC ⊥⊥∴AEH GAC GAC GCA ∠+∠=∠+∠AEH ACG ∴∠=∠在Rt AGC 中,13215AC AQ QC =+=+=115cos cos 77CG AC ACG AC AEH AC ∴=⋅∠=⋅∠==AG ∴=DAC CAF ∠=∠DC CF ∴=GD ∴=AD AG GD ∴=+=+∴AD = 【点睛】本题考查了圆与三角形的综合,三角形全等的性质与证明,中位线定理,平行四边形的性质与判定,勾股定理,解直角三角形,圆周角定理,添加辅助线是解题的关键.3.(1)()3,0A ,()0,1B ;(2)1tan 2AGB ∠=;(3)存在,11,23Q ⎛⎫ ⎪⎝⎭,21,03Q ⎛⎫- ⎪⎝⎭,()33,10Q ,()43,8Q -- 【解析】【分析】(1)对于113y x =-+,令x =0,则y =1,令y =0,即113x -+=0,解得x =3,即可求解;(2)证明AG 2=AB 2+BG 2,则△ABG 为直角三角形,即可求解;(3)分△ABQ ∽△AOB 、△ABQ ∽△BOA 两种情况,利用三角形相似边的比例关系,即可求解.【详解】解:(1)对于113y x =-+,令x =0,则y =1,令y =0,即113x -+=0,解得x =3, 故点A 、B 的坐标分别(3,0)、(0,1);(2)由A 、B 、G 的坐标知,BG 2=22+(7−1)2=40, 同理AB 2=10,AG 2=50,故AG 2=AB 2+BG 2,故△ABG 为直角三角形,则tan ∠AGB =101240ABBG ==;(3)设直线BG 的表达式为y =kx +b ,则721k bb =+⎧⎨=⎩,解得31k b =⎧⎨=⎩故直线BG 的表达式为y =3x +1,设点Q (m ,3m +1),①当△ABQ ∽△AOB 时,则AB BQ AO OB =,即()223111031m m ++-=,解得m =±13,∴11,23Q ⎛⎫ ⎪⎝⎭,21,03Q ⎛⎫- ⎪⎝⎭②当△ABQ ∽△BOA 时,ABBQ OB AO =,即()223111013m m ++-=解得:m =±3,∴()33,10Q ,()43,8Q --故点P 的坐标为(13,2)或(−13,0)或(3,10)或(−3,−8).【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、解直角三角形、三角形相似等,其中(3),要注意分类求解,避免遗漏.4.(1)2y x 2x 3=-++;(2)278;(3)存在,n =1或n =3+332- 【解析】【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF ⊥x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A (-1,0),B (3,0),C (0,3)∴(1)(3)y a x x =+-把C (0,3)代入得,1a =-∴2y x 2x 3=-++(2)作DF ⊥x 轴于点F ,交BC 于点E设直线BC 关系式为y =kx +b ,代入(3,0),(0,3)得k =-1,b =3,∴y =-x +3∵点D 的横坐标为m ,则DF =223m m -++,EF =-m +3∴DE =23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+∵302-<,∴S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N∴1290Q MP Q NP BOP ∠=∠=∠=︒∵1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,∴1PQ M BPO ∠=∠又∵1BP PQ =,∴1Q PM PBO △≌△∴1MQ OP n ==,3MP OB ==,∴1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,∴2Q (-n ,n -3)代入抛物线,得2323n n n =-+--解得13+33n -=2333n --=舍去) 综上,存在n 的值,n =1或n 3+33-【点睛】 此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.5.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k ≠0或56<k <43【解析】【分析】(1)把A(−3,0),B(1,0),52,2C⎛⎫⎪⎝⎭代入y=ax2+bx+c,解方程组即可;(2)把C点坐标代入直线CD,得2k+b=52,分两种情况:①若AB为平行四边形的边时,②若AB为平行四边形的对角线时,得关于k、b的方程组,解方程组即可求解;(3)分两种情况:①当E点在x轴上方时,②E点在x轴下方时,根据当α=β时,列方程,可求出k的值,进而求出k的取值范围.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(−3,0),B(1,0),C(2,52)三点,∴9305 422a b ca b ca b c⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132abc⎧⎪⎪⎨⎪⎪-⎩===,∴抛物线的解析式为y=12x2+x−32;(2)如图1所示,将C点坐标代入直线CD,得2k+b=52,当x=−1时,y=−k+b,即E(−1,−k+b).①若AB为平行四边形的边时,则F(-1+4,−k+b)或F(-1-4,−k+b),即:F(3,−k+b)或F(-5,−k+b),把F(3,−k+b)代入y=12x2+x−32,得−k+b=6,把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296 ∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称,∴F (−1,k -b ),∴k -b =-2,又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2);(3)如图2所示,①当E 点在x 轴上方时,如图2所示,当α=β时,∵∠EHA =90°,∴∠AEC =90°,∴∠AEH =∠EGH ,∵∠AHF =∠FHG =90°,∴AHF FHG ∽,∴AEAHEG EH =,∵A (−3,0),E (−1,−k +b ),G (bk -,0),()()2222221k b k b b k b k +-+=-+⎛⎫-++-+ ⎪⎝⎭,∴k 2−bk −2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k<56且k≠0时,α>β;②E点在x轴下方时,如图4所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,根据①可得此时k=43(k=−12舍去),随着E点向下移动,∠CEH的度数越来越小,∠EAH的度数越来越大,因此当56<k<43时,α>β.综上所述可得,当α>β时,k取值范围为−12<k<56且k≠0或56<k<43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.6.(1)2y x 2x 3=-++;(2)1(2,3)Q ,2317117(,)22Q +--,3317117(,)22Q --+;(3)存在,(2,3)M 或5175317(,)22--+ 【解析】【分析】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入求出a ,即可得出答案;(2)①过P 作PQ //BC ,交抛物线于点Q ,如图1所示;②求出点G 坐标,可得2PG GH ==,过H 作直线23Q Q //BC ,交x 轴于点H ,分别求出Q 的坐标即可; (3)MDN △为等腰直角三角形,则MN MD =,求出MN 、MD 的长度即可列出等量关系式,从而得出答案.【详解】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入抛物线解析式得:43a +=,即1a =-,则抛物线解析式为22(1)423 y x x x =--+=-++;(2)由(3,0)B ,C(0,3),得到直线BC 解析式为3y x =-+,①过P 作1PQ //BC ,交抛物线于点1Q ,如图1所示,(1,4)P ,∴直线PQ 解析式为5y x =-+,联立得:2235y x x y x ⎧=-++⎨=-+⎩, 解得:14x y =⎧⎨=⎩或23x y =⎧⎨=⎩, 即1(2,3)Q ;②过P 作PH x ⊥轴,交BC 于点G ,交x 轴于点H ,令1x =,代入3y x =-+,得2y =,(1,2)G ∴,2PG GH ∴==,过H 作直线23Q Q //BC ,则直线23Q Q 解析式为1y x =-+,联立得:2231y x x y x ⎧=-++⎨=-+⎩,解得:x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧⎪⎪⎨⎪=⎪⎩2Q ∴,3Q , 综上所述:点Q 的坐标为1(2,3)Q,2Q,3Q ; (3)MDN △为等腰直角三角形,则MN MD =,点()2,23M m m m -++,令x m =,代入3y x =-+得:3y m =-+,(,3)D m m ∴-+,函数的对称轴为:1x =,则点N 的横坐标为:2m -,则|22|MN m =-,2223(3)3MD m m m m m =-++--+=-+,2223m m m ∴-=-+,2223m m m -=-+或2223m m m -+=-+,解得:12m =或21m =-(舍)或3m =4m = 当2m =时,2233m m -++=,当m =223m m -++= 故点M 的坐标为:(2,3)或. 【点睛】 本题考查了二次函数综合题,设计知识有:用待定系数法求函数解析式、同底等高的面积计算、等腰直角三角形的性质,一次函数与二次函数交点问题,熟练掌握相关知识点是解决本题的关键.7.(1)都成立,理由见解析;(2)结论依然成立,理由见解析;(3)58【解析】【分析】(1)利用等边三角形的性质和含30直角三角形的性质,求得对应边的比值,即可求解;(2)过点B 作BE AC ∥交AD 延长线于点E ,利用等腰三角形的性质可得AB BE =,再利用相似三角形的性质即可求解;(3)连接DE ,由(2)可得,35CD AC DB AB ==,58EF AE FC AC ==,利用相似三角形的性质求解即可.【详解】 (1)两个等式都成立,理由如下:∵ABC 为等边三角形,AD 为角平分线∴AD 垂直平分BC ,30CAD BAD ∠=∠=︒,AB AC = ∴CD BD =∴AC CD AB DB= ∵60CAB ∠=︒,11B C AC ⊥∴130B ∠=︒∴112AB AC =,即1112AC AB = 又∵130DAB B ∠=︒=∠∴1AD DB =在1Rt ADC 中,130C AD ∠=︒,∴112DA DB DC ==,1112C D DB = ∴1111AC C D AB DB = (2)结论依然成立,理由如下:如下图:过点B 作BE AC ∥交AD 延长线于点E∴E CAD BAD ∠=∠=∠∴AB BE =∵BE AC ∥∴ACD EBD △△∽∴AC CD EB DB= 又∵AB BE =∴AC CD AB DB=(3)如图,连接DE∵AD平分CAB∠∴AD为ABC和ACE的内角角平分线由(2)的性质可得,834053CD ACDB AB===,58EF AEFC AC==又∵5340553AEEB==-∴CD AE DB EB=∴BD BE BC AB=又∵B B∠=∠∴BDE BCA∽∴BED BAC ∠=∠∴DE AC∥∴DEF ACF∽∴58 DF EFAF FC==【点睛】此题考查了相似三角形的判定与性质,涉及了等边三角形的性质,等腰三角形的性质以及含30直角三角形的性质,解题的关键是灵活利用相关性质,构造出相似三角形,再利用相似三角形的性质求解即可.8.(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【解析】【分析】(1)根据半角旋转模型,把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,即可证明AME AFE≅,得到AEM AEF∠=∠,再结合AEM EAG∠=∠,可得AEM AEF∠=∠,可得EG AG=;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ垂直平分EA,可得△ANE是等腰直角三角形,可得A、D、E、N四点共圆,根据圆周角45NDC EAN∠=∠=︒【详解】(1)把△ABF 逆时针旋转90°,则AB 与AD 重合,设F 对应的点为M ,∴AMD AFB ≅∴90,,MDA FBA AM AF MAD FAB ∠=∠=︒=∠=∠ ∴M 、D 、C 三点共线∵45EAF ∠=︒∴45EAD FAB EAD MAD MAE ∠+∠=∠+∠=∠=︒ ∴()AME AFE SAS ≅∴AEM AEG ∠=∠∵AB ∥CD∴AEM EAG ∠=∠∴AEG EAG ∠=∠∴EG AG =(2)结论依然成立,EG AG =把△ABF 逆时针旋转90°,则AB 与AD 重合,设F 对应的点为M , ∴AMD AFB ≅∴90,,MDA FBA AM AF MAD FAB ∠=∠=︒=∠=∠ ∴M 、D 、C 三点共线∵45EAF ∠=︒∴45EAD FAB EAD MAD MAE ∠+∠=∠+∠=∠=︒ ∴()AME AFE SAS ≅∴AEM AEG ∠=∠∵AB∥CD∴AEM EAG∠=∠∴AEG EAG∠=∠∴EG AG=(3)连接EN由(2)得EG AG=∵GQ AE⊥∴GQ垂直平分AE∴EN=AN∵45EAF∠=︒∴90ANE ADE∠=︒=∠∴A、D、E、N四点在以AE为直径的同一个圆上,∴45NDC EAN∠=∠=︒.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.9.(1)见详解;(2)12π;(3)16【解析】【分析】(1)连接CO,先证∠BCD=∠ADO,由∠A+∠ADO=90°,可得∠OCA+∠BCD=90°,进而即可得到结论;(2)先证BCD△是等边三角形,∠BOC=30°,求出OC=3,利用弧长公式即可求解;(3)过点O作ON⊥AD,过点B作BM⊥CD,利用勾股定理和面积法求出ON=125,AN=165,结合垂径定理和等腰三角形的性质得DM=710,最后利用锐角三家函数即可求解.【详解】解:(1)连接CO,∵BC=BD,∴∠BDC=∠BCD,∵∠BDC=∠ADO,∴∠BCD=∠ADO,∵OA=OC,∴∠A=∠OCA,∵∠AOD=90°,∴∠A+∠ADO=90°,∴∠OCA+∠BCD=90°,即OC⊥BC,∴BC是⊙O的切线;(2)∵∠OAD=30°,∴∠OCA=∠OAD=30°,∠AOC=180°-30°-30°=120°,∠ADO=∠BDC=90°-30°=60°,∴∠BOC=120°-90°=30°,又∵BC=BD,∴BCD△是等边三角形,∴CB=CD=3,∵OC⊥BC,∴OC=3×3=3,∴30311802CEππ⨯==;(3)过点O作ON⊥AD,过点B作BM⊥CD,∵OD=3,DE=1,∴AO=EO=3+1=4,∴AD5=,∴ON=125 OD OAAD⨯=,∴AN165 =,∴AC=2AN=325,∴CD=325-5=75,∵BD=BC,∴DM=75÷2=710,∵∠BDM=∠ADO,∴cos∠BDM=cos∠ADO,即:35 DM ODBD AB==,∴BD=53DM=710×53=76,∴BE=76-1=16.【点睛】本题主要考查圆和三角形的综合,掌握勾股定理,切线的判定定理,垂径定理,锐角三角函数的定义是解题的关键.10.(1)PC=2)见解析;(3)满足条件的PB的值为4+4.【解析】【分析】(1)如图1中,作PH⊥BC于H,.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题;(2)根据菱形性质以及∠BAD=120°得∠PBQ=30°,再由∠PCQ=30°证明△POB∽△QOC 以及△POQ∽△BOC,即可得到∠PCQ=∠CPQ;(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E,②如图3中,若直线QP交直线BC于C点右侧于E,分别求解即可.【详解】解:(1)如图1中,作PH BC⊥于H.四边形ABCD 是菱形,8AB BC ∴==,//AD BC ,180A ABC ∴∠+∠=︒,120A ∠=︒,60PBH ∴∠=︒,6PB =,90PHB ∠=︒,cos603BH PB ∴=︒=,sin 6033PH PB =︒=,835CH BC BH ∴=-=-=,2222(33)5213PC PH CH ∴=+=+=.(2)设PC 交BD 于O .四边形ABCD 是菱形,30ABD CBD ∴∠=∠=︒,30PCQ ∠=︒,PBO QCO ∴∠=∠,POB QOC ∠=∠,POB QOC ∴∆∆∽,∴PO BO QO CD =, ∴OP QO BO CD=, POQ BOC ∠=∠,POQ BOC ∴∆∆∽,30OPQ OBC PCQ ∴∠=∠=︒=∠,∴△PCQ 是等腰三角形;(3)①如图2中,若直线QP 交直线BC 于B 点左侧于E .此时120CQE ∠=︒,60PBC ∠=︒,PBC ∴∆中,不存在角与CQE ∠相等,此时QCE ∆与BCP ∆不可能相似.②如图3中,若直线QP 交直线BC 于C 点右侧于E .则60CQE B QBC QCP CBP ∠=∠=+∠=︒=∠,PCB E ∠>∠,∴只可能75BCP QCE ∠=∠=︒,作CF AB ⊥于F ,则4BF =,43CF =,45PCF ∠=︒,43PF CF ∴==,此时443PB =+,③如图4中,当点P 在AB 的延长线上时,QCE ∆与BCP ∆相似,120CQE CBP ∴∠=∠=︒,15QCE PCB ∴∠=∠=︒,作CF AB ⊥于F .30FCB ∠=︒,45FCP ∴∠=︒,142BF BC ∴==,43CF PF ==, 434PB ∴=-.综上所述,满足条件的PB 的值为443+或434-.【点睛】本题考查了菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.11.(1)见解析;(2)不发生变化,理由见解析;(3)1【解析】【分析】(1)将△ABE 绕点A 逆时针旋转α 得到△AFG , 当点E 在线段BC 上,α=90°时,过E 作EH BC ⊥,证明四边形HEDG 是平行四边形,即可得M 是GE 的中点;(2)过点E 作//EN GF ,交BM 的延长线于点N ,连接GN ,EF ,方法同(1)证明四边形FEGN 是平行四边形即可;(3)根据勾股定理求得AE ,①当E 在射线BC 上时,根据(2)的结论,取AE 的中点P ,连接,BP MP ,根据直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,可得AE BM =,进而证明ABEM 是矩形,进而求得DM ,②当E 在射线CB 上时,可得此情况不符合题意,综合①②可得结果.【详解】(1)过E 作EH BC ⊥,如图,四边形ABCD 是正方形,45DBC ∴∠=︒//AB CDHE BC ⊥45BHE ∴∠=︒将△ABE绕点A逆时针旋转α得到△AFG,,∴=BE GD∴=HE GD⊥⊥,GF AD AD DC∴三点共线,,G D C∴⊥GC BC∴GD HE//∴四边形HEDG是平行四边形∴为GE的中点;M(2)(1)中的结论,M是GE的中点,仍然成立,理由如下:如图,过点E作//EN GF,交BM的延长线于点N,连接GN,EF将△ABE绕点A逆时针旋转α得到△AFG,,=∴=,BE FGAB AF∠=设ABFβ∴∠=∠=ABF AFBβ四边形ABCD是正方形,90∴∠=∠=︒ABC AFG∴∠=︒-,18090∠=︒-∠-∠=︒-GFN AFB AFGβEBNβ90EN GF//BNE GFNβ∴∠=∠=︒-90∴∠=∠EBN ENB∴=EB EN=BE FG∴四边形FEGN 是平行四边形∴M 是GE 的中点(3)AB =4,BE =5,BM =41 四边形ABCD 是正方形,90ABC AFG ∴∠=∠=︒,4AD AB BC ===Rt ABE △中,22224541AE AB BE =+=+=AE BM ∴=将△ABE 绕点A 逆时针旋转α得到△AFG ,AB AF ∴=,BE FG =,AE AG =①当E 在射线BC 上时,如图,取AE 的中点P ,连接,BP MP则PA PE =∴114122BP AE ==由(2)可知M 为GE 的中点, ∴114122PM AG == BP PM ∴=PA PE =∴四边形ABEM 是平行四边形41BP PM AE BM ∴+===即AE BM =∴四边形ABEM 是矩形即,,B P M 三点共线,如图,541DM AM AD BE BC ∴=-=-=-=②当E 在射线CB 上时,,由已知,AE 41BM 41由题意,AE ≠BM 故此情况不存在综上所述,1DM =【点睛】本题考查了正方形的性质,平行四边形的性质与判定,矩形的性质与判定,勾股定理,等腰三角形的性质,等边对等角,三线合一,旋转的性质,综合运用以上知识,并能正确的添加辅助线是解题的关键.12.(1)23233y =221733)存在,111⎛ ⎝⎭或1111,⎛ ⎝⎭ 【解析】【分析】(1)由已知可设抛物线的解析式为(1)(3)y a x x =+-,由已知条件可求得点C 的坐标,把点C 的坐标代入解析式中即可求得a 的值,从而可得二次函数的表达式;(2)过点P 作PD ⊥x 轴于点D ,连接PO ,设点P 的坐标为23233m ⎛ ⎝,则由题意可得OD 、PD 的长度,由PBC POC POB BOC S S S S =+-可得关于m 的二次函数,即可求得此时函数的最大值,从而可得点P 的坐标;过点A 作BC 的平行线,且在位于x 轴下方的直线上取AG =NM ,过G 作GH 垂直x 轴于点H ,连接GP ,则可求得点G 的坐标,当点M 在线段GP 上时,PM +NA 最小,从而PM +MN +NA 最小,可求得其最小值.(3)当四边形AEFQ 是菱形时,△AEQ 是等腰三角形,由点E 在抛物线的对称轴上,故设点E (1,n ),由旋转的性质则可得AE =AQ =AP ,可得关于n 的方程,解方程即可求得n ,从而求得点E 的坐标.【详解】(1)∵抛物线交x 轴于A (﹣1,0)、B (3,0)两点∴设抛物线的表达式为(1)(3)y a x x =+-,且OA =1∵∠OAC =60゜,OA ⊥OC∴∠OCA =30゜∴AC =2OA =2∴OC∴(0,C把点C 的坐标代入(1)(3)y a x x =+-中,得3a -=∴a =∴1)(3)y x x =+-展开得:2y =-即二次函数的表达式为2y x x =-(2)过点P 作PD ⊥x 轴于点D ,连接PO ,如图2—1设点P 的坐标为2m ⎛ ⎝ ∵点P 位于第四象限内∴OD =m ,22PD =-=+⎝∵B (3,0)∴OB =3∵PBC POC POB BOC S S S S =+-111222OC OD PD OB OC OB =⨯+⨯-⨯232⎛=++ ⎝2= 232m ⎫=-⎪⎝⎭ ∴当32m =时,△PBC 的面积有最大值当当32m =2=此时点P 的坐标为3,2⎛ ⎝⎭∵MN =为定值 ∴PM +MN +NA 的最小值就是求PM +NA 的最小值过点A 作BC 的平行线,且在位于x 轴下方的直线上取AG =NM ,过G 作GH 垂直x 轴于点H ,连接GP ,如图2-2 ∵AG ∥NM ,AG =NM ∴四边形AGMN 是平行四边形 ∴GM =AN∴PM +NA =PM +GM ≥GP∴当点M 在线段GP 上时,PM +NA 最小,且最小值为线段GP 的长,从而PM +MN +NA 最小在Rt △COB 中,由勾股定理得BC ∴BC =2OC ∴∠CBO =30゜ ∵AG ∥BC∴∠HAG =∠CBO =30゜ ∵GH ⊥x 轴∴12HG AG ==由勾股定理得34AH == ∴37144OH OA AH =+=+=∴G 点坐标为7,4⎛- ⎝⎭由勾股定理得GP =即PM +NA 的最小值为2174∴PM +MN +NA 的最小值为217342+(3)存在;理由如下:由于四边形AEFQ 是菱形,则△AEQ 是等腰三角形,且AE =AQ ∵抛物线的对称轴为直线x =1,点E 在抛物线的对称轴上 ∴设点E (1,n )则2222(11)4AE n n =++=+ ∵AP 绕点A 旋转后得到AQ ∴AP =AQ ∴AE =AQ =AP∵2223531751216AP ⎛⎫=++= ⎪⎝⎭⎝⎭∴由AE =AP 得:2175416n += 解得:111n =∴点E 的坐标为111⎛ ⎝⎭或1111,⎛ ⎝⎭【点睛】本题是二次函数的综合题,考查了用待定系数法求二次函数的解析式及二次函数的性质,图形的面积,菱形的性质,直角三角形的性质等,综合性强,考查的知识点多,运算量大,是中考常考的压轴题.就数学思想方法而言有:割补思想,转化思想(三线段和的最小值转化为两线段和的最小值),方程思想,数形结合等.13.(1)757221【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;。

中考数学抛物线难题解析(含答案)

中考数学抛物线难题解析(含答案)

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.(4)补充:在(3)的条件下,点P、Q、B、O为顶点的四边形能否成为梯形,若能,求出相应Q的坐标。

41直角坐标系XOY中,将直线y=kx沿y轴下移3个单位长度后恰好经点B(-3,0)及y 轴上的C点。

若抛物y=-x2+bx+c与x轴交于A点B点,(点A在点B的右侧),且过点C 。

(1)求直线BC及抛物线解析式(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求p点坐标如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC交抛物线对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P,Q两点,且点P在第三象限.①当线段PQ=3AB/4时,求tan∠CED的值;②当以点C,D,E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.第25题图第25题备用图直角坐标系XOY中,半径2√5的⊙C与x轴交于A(-1,0),B(3,0)且点C在X轴上方。

中考数学难题归纳

中考数学难题归纳

一.选择题(共3小题)1.(1998•南京)若双曲线的两个分支在第二、四象限内,则抛物线y=kx2﹣2x+k2的图象大致是图中的( )大致是图中的(A.B.C.D.2.如图,∠AOD=90°,OA=OB=BC=CD,那么下列结论成立的是(,那么下列结论成立的是( )OCA B B.△OAB∽△ODA A.△OAB∽△OCA C.△BAC∽△BDA D.以上结论都不成立.以上结论都不成立3.(2012•绵阳)已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B. C.D.二.填空题(共11小题)4.(2012•黄石)“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050 请类比以上做法,回答下列问题:请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=_________.5.如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直的坐标为 _________.径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为6.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30°,则AB=_________cm.7.(2000•甘肃)如图,AB 是半圆的直径,直线MN 切半圆于C ,CM ⊥MN ,BN ⊥MN ,如果AM=a ,BN=b ,那么半圆的半径是那么半圆的半径是 _________ .8.已知双曲线y=与直线y=相交于A ,B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线y=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,﹣n )作NC ∥x 轴交双曲线y=于点E ,交BD于点C .若B 是CD 的中点,四边形OBCE 的面积为4,则直线CM 的解析式为的解析式为 _________ .9.如图,M 为双曲线y=上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y=﹣x+m 于D 、C 两点,若直线y=﹣x+m 与y 轴、x 轴分别交于点A 、B ,则AD •BC 的值为的值为 _________ .10.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是BC 的中点,DE 交AC 于F ,若DE=6,则EF 等于等于 _________ .11.(2012•金山区二模)金山区二模)如图,如图,如图,已知已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果,那么=_________ .12.如图,在△ABC中,D、E是BC的三等分点,M是AC的中点,BM交AD、AE于G、H,则BG:GH:HM=_________.13.(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为的长为 _________.14.(2013•芦淞区模拟)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD= _________.三.解答题(共9小题)15.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.16.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2﹣3x+5,求b,c的值.的值.17.(2003•海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,﹣3)两点.)两点.,求此抛物线的解析式;(1)若抛物线的对称轴为直线x=﹣1,求此抛物线的解析式;的取值范围;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;的值.(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.18.(2000•杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值. 19.(原创题)如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.点所运动的路径长;(1)求O点所运动的路径长;围成的面积.(2)O点走过路径与直线L围成的面积.20.(2013•重庆)重庆) 已知:如图,抛物线y=x 2+2x ﹣3与x 轴的交点为A 、B 两点,与y 轴交于点C ,直线AC 与抛物线交于A 、C 两点.两点.如图,的y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(﹣3,0).(1)求点B 的坐标.的坐标.(2)在抛物线的对称轴x=﹣1上是否存在一点P ,使得△BCP 为等腰三角形,若存在,直接写出点P 的坐标;若不存在,说明理由.标;若不存在,说明理由.(3)若点Q 在直线AC 下方的抛物线上,且S △QOC =2S △BOC ,求点Q 的坐标.的坐标.21.(2014•徐州模拟)如图,已知抛物线y=﹣x 2+2x+1﹣m 与x 轴相交于A 、B 两点,与y 轴相交于点C ,其中点C 的坐标是(0,3),顶点为点D ,连接CD ,抛物线的对称轴与x 轴相交于点E .(1)求m 的值;的值;(2)求∠CDE 的度数;的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P ,使得△PDC 是等腰三角形?如果存在,求出符合条件的点P 的坐标;如果不存在,请说明理由.的坐标;如果不存在,请说明理由.22.(2006•锦州)如图,在平面直角坐标系中,在平面直角坐标系中,四边形四边形OABC 为菱形,为菱形,点点C 的坐标为(4,0),∠AOC=60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;两点的坐标;(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤6),试求S 与t 的函数表达式;的函数表达式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少?的面积最大?最大面积是多少?23.(2007•济宁)如图,先把一矩形ABCD 纸片对折,设折痕为MN ,再把B 点叠在折痕线上,得到△ABE ,过B 点折纸片使D 点叠在直线AD 上,得折痕PQ .(1)求证:△PBE ∽△QAB ;(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;相似吗?如果相似给出证明,如不相似请说明理由;上?为什么?(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?2南京)若双曲线的两个分支在第二、四象限内,则抛物线A.B.C.D.考点:二次函数的图象;反比例函数的性质.分析:的符号判断抛物线的开口方向及对称轴. 根据双曲线的图象位置可知k<0;再根据k的符号判断抛物线的开口方向及对称轴.解答:解:∵双曲线的两个分支在第二、四象限内,即k<0,抛物线开口向下,∴抛物线开口向下,对称轴x=﹣=<0,对称轴在y轴的左边.故选A.本题考查了反比例函数图象的性质和二次函数系数与抛物线形状的关系.点评:本题考查了反比例函数图象的性质和二次函数系数与抛物线形状的关系.A.△OAB∽△OCA B.△OAB∽△ODA C.△BAC∽△BDA D.以上结论都不成立上结论都不成立考点:相似三角形的判定.专题:常规题型.常规题型.根据已知及相似三角形的判定进行分析,从而得到答案.分析:根据已知及相似三角形的判定进行分析,从而得到答案.解答:解:∵∠AOD=90°,设OA=OB=BC=CD=x ∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x ∴,,∴∴△BAC∽△BDA 故选C.点评:此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似.③如果两个三角形的两个对应角相等,那么这两个三角形相似.3.(2012•绵阳)已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B.C.D.考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义.压轴题.专题:压轴题.分析:作DE⊥AB于点E,根据相等的角的三角函数值相等即可得到===,设CD=1,则可以求得AD的长,然后利用勾股定理即可求得DE、AE的长,则BE可以求得,根据同角三角函数之间的关系即可求解.解答:解:作DE⊥AB于点E.∵∠CBD=∠A,∴tanA=tan∠CBD====,设CD=1,则BC=2,AC=4,∴AD=AC﹣CD=3,在直角△ABC中,AB===2,在直角△ADE中,设DE=x,则AE=2x,∵AE2+DE2=AD2,∴x2+(2x)2=9,解得:x=,则DE=,AE=.∴BE=AB﹣AE=2﹣=,∴tan∠DBA==,∴sin∠DBA=.故选:A.本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键.点评:本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键.n=12.考点:有理数的混合运算.压轴题;规律型.专题:压轴题;规律型.根据题目提供的信息,列出方程,然后求解即可.分析:根据题目提供的信息,列出方程,然后求解即可.解答:解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n﹣168=0,即(n﹣12)(n+14)=0,解得n1=12,n2=﹣14(舍去).故答案为:12.点评:本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.的坐标为 (1,3).的坐标为考点:垂径定理;勾股定理;平行四边形的性质.计算题.专题:计算题.分析:过点M作MF⊥CD于点F,则CF=CD=4,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而的坐标.得出OE的长,然后写出点C的坐标.解答:解:∵四边形OCDB是平行四边形,B(8,0),∴CD∥OA,CD=OB=8 过点M作MF⊥CD于点F,则CF=CD=4 过点C作CE⊥OA于点E,∵A(10,0),∴OE=OM﹣ME=OM﹣CF=5﹣4=1.连接MC,则MC=OA=5 ∴在Rt△CMF中,由勾股定理得∴点C的坐标为(1,3)本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.点评:本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.6.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30°,则AB=6cm.考点:垂径定理;含30度角的直角三角形;勾股定理.的长,再解直角三角形并根据垂径定理即可求出.分析:首先作出辅助线,求出OD的长,再解直角三角形并根据垂径定理即可求出.解答:解:如图:作OD⊥AB于D,连接OB,因为∠P=30°所以OD=PO=×8=4cm 在直角三角形ODB中,BD===3cm 根据垂径定理,BD=AD,则AB=2BD=2×3=6cm.,根据垂径定理解答.点评:解答此题的关键是作出辅助线OD,根据垂径定理解答.7.(2000•甘肃)如图,AB是半圆的直径,直线MN切半圆于C,CM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圆的半径是 .半圆的半径是考点:梯形中位线定理;切线的性质.分析:根据切线的性质,只需连接OC.根据切线的性质定理以及平行线等分线段定理得到梯形的中位线,再根据梯形的中位线定理进行计算即可.梯形的中位线定理进行计算即可.解答:解:连接OC,则OC⊥MN.∴OC∥AM∥BN,又OA=OB,则MC=NC.根据梯形的中位线定理,得该半圆的半径是.点评:此题主要是根据切线的性质定理和平行线等分线段定理,发现梯形的中位线,进而熟练运用梯形的中位线定理求解.定理求解.8.已知双曲线y=与直线y=相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x轴交双曲线y=于点E,交BD于点C.若B是CD的中点,四边形OBCE的面积为4,则直线CM的解析式为的解析式为 y=.考点:反比例函数与一次函数的交点问题.动点型.专题:动点型.根据一次函数和反比例函数的性质及点的坐标和解析式的关系解答.分析:根据一次函数和反比例函数的性质及点的坐标和解析式的关系解答.解答:解:设B点坐标为(x1,﹣),代入y=x得,﹣=x1,x1=﹣2n;∴B点坐标为(﹣2n,﹣).因为BD∥y轴,所以C点坐标为(﹣2n,﹣n).因为四边形ODCN的面积为2n•n=2n2,三角形ODB,三角形OEN的面积均为,四边形OBCE的面积为4.则有2n2﹣k=4﹣﹣﹣①;又因为2n•=k,即n2=k﹣﹣﹣②②代入①得,4=2k﹣k,解得k=4;则解析式为y=;又因为n2=4,故n=2或n=﹣2.M在第一象限,n>0;将M(m,2)代入解析式y=,得m=2.故M点坐标为(2,2);C(﹣4,﹣2);设直线CM解析式为y=kx+b,则,解得∴一次函数解析式为:y=x+.点评:解答本题要明确两个关系:(1)双曲线中,xy=k;(2)S△DBO=|k|.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于D、C两点,若直线y=﹣x+m与y轴、x轴分别交于点A、B,则AD•BC的值为的值为 2.考点:反比例函数综合题.综合题.专题:综合题.分析:作CE⊥x轴于E,DF⊥y轴于F,如图所示,根据直线y=﹣x+m,表示出A与B坐标,可得出三角形OAB 为等腰直角三角形,进而确定出三角形ADF与三角形CEB都为等腰直角三角形,设M(a,b),代入反比的值.例解析式得到ab=,CE=b,DF=a,表示出AD与BC,即可求出AD•BC的值.解答:解:作CE⊥x轴于E,DF⊥y轴于F,如图,,如图,对于y=﹣x+m,令x=0,得到y=m;令y=0,得到x=m,∴A(0,m),B(m,0),为等腰直角三角形,∴△OAB为等腰直角三角形,都是等腰直角三角形,∴△ADF与△CEB都是等腰直角三角形,设M(a,b),则ab=,CE=b,DF=a,∴AD=DF=a,BC=CE=b,∴AD•BC=a•b=2ab=2.故答案为:2.点评:此题属于反比例函数综合题,涉及的知识有:等腰直角三角形的性质,坐标与图形性质,反比例函数的性质,以及矩形的性质,熟练掌握等腰直角三角形的性质是解本题的关键.质,以及矩形的性质,熟练掌握等腰直角三角形的性质是解本题的关键.10.如图,正方形ABCD的对角线AC、BD相交于点O,E是BC的中点,DE交AC于F,若DE=6,则EF等于等于 2.考点:相似三角形的判定与性质;正方形的性质.分析:因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出.再根据相似三角形的对应边成比例可得出.中点,解答:解:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴=,∴,即,解得EF=2,故答案为2.点评:本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.形的对应边成比例进行解答是解答此题的关键.11.(2012•金山区二模)如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果,那么=.考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:的值. 根据角平分线的定义,平行线的性质易证EA=ED,△CED∽△CAB,从而求得的值.的角平分线,解答:解:∵AD为△ABC的角平分线,∴∠BAD=∠EAD,∵DE∥AB,∴△CED∽△CAB,∠BAD=∠EDA.∴∠EDA=∠EAD,∴EA=ED,∵=,∴ED:EC=2:3,∴=ED:EC=2:3.故答案为:.点评:本题主要考查了相似三角形的判定与性质,相似三角形的对应边对应成比例,同时考查了角平分线的定义.12.如图,在△ABC中,D、E是BC的三等分点,M是AC的中点,BM交AD、AE于G、H,则BG:GH:HM= 5:3:2.考点:平行线分线段成比例;三角形中位线定理.分析:首先过点M作MK∥BC,交AD,AE分别于K,N,由M是AC的中点与D、E是BC的三等分点,根据平行线分线段成比例定理,即可求得MN=NK=BD=DE=EC,然后根据比例的性质,即可求得BG:GH:HM的值.的值.解答:解:法一:过点M作MK∥BC,交AD,AE分别于K,N,∵M是AC的中点,的中点,∴=,的三等分点,∵D、E是BC的三等分点,∴BD=DE=EC,∴MN=NK,∵=,=1,∴MH=BH,MG=BG,设MH=a,BH=4a,BG=GM=,∴GH=GM﹣MH=,∴BG:GH:HM=::a=5:3:2.故答案为:5:3:2.点评:此题考查了平行线分线段成比例定理与比例的性质.此题难度适中,解题的关键是注意辅助线的作法,注意数形结合思想的应用.意数形结合思想的应用.13.(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的长为 .的中点处,直线l与边BC交于点D,那么BD的长为考点:翻折变换(折叠问题).压轴题.专题:压轴题.即可.分析:首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.解答:解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,的中点处,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.点评:此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.AC=,ACD=.考点:解直角三角形.分析:在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sinB.解答:解:在直角△ABC中,根据勾股定理可得:AB===3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B==.本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.考点:圆周角定理.证明题.专题:证明题.分析:首先连接AH,由AD⊥BC,BH⊥AC与∠AFE=∠BFD,即可得∠EAF=∠FBD,又由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠HAC=∠HBC,即可得∠HAE=∠F AE,则可用ASA证得△AEF≌△AEH,继而证得FE=EH.解答:证明:连接AH,∵AD⊥BC,BH⊥AC,∴∠FDB=∠AEF=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠HAC=∠HBC,∴∠HAE=∠EAF,∵BH⊥AC,∴∠AEF=∠AEH=90°,中,在△AEF和△AEH中,∴△AEF≌△AEH(ASA),∴FE=EH.点评:此题考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.16.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2﹣3x+5,求b,c的值.值.考点:二次函数图象与几何变换.分析:先求出y=x2﹣3x+5的顶点坐标,再根据“左加右减”求出平移前的抛物线的顶点坐标,然后利用顶点式解析式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.解答:解:∵y=x2﹣3x+5=(x﹣)2+,∴y=x2﹣3x+5的顶点坐标为(,),个单位,∵向右平移3个单位,向下平移2个单位,∴平移前的抛物线的顶点的横坐标为﹣3=﹣,纵坐标为+2=,∴平移前的抛物线的顶点坐标为(﹣,),∴平移前的抛物线为y=(x+)2+=x2+3x+7,∴b=3,c=7.点评:本题考查了二次函数的图象与几何变换,根据两个函数图象的顶点坐标确定平移方法更简便,要注意知道平移后的顶点坐标求平移前的顶点坐标的方法.平移后的顶点坐标求平移前的顶点坐标的方法.17.(2003•海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,﹣3)两点.)两点.,求此抛物线的解析式;(1)若抛物线的对称轴为直线x=﹣1,求此抛物线的解析式;的取值范围;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;的值.(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.考点:二次函数综合题.压轴题.专题:压轴题.分析:(1)可将A、M的坐标代入抛物线的解析式中,用a替换掉b、c的值,再根据抛物线的对称轴为﹣1,即可求出a的值,也就确定了抛物线的解析式.的值,也就确定了抛物线的解析式.的取值范围. (2)抛物线的对称轴在y轴左侧,即抛物线对称轴方程小于0,由此可得出a的取值范围.(3)可设出B、C的坐标,如果∠BAC=90°,在直角三角形BAC中,可根据射影定理得出OA2=OC•OB,的值.据此可得出a的值.解答:解:将A、M的坐标代入抛物线的解析式中有:的坐标代入抛物线的解析式中有:,解得:∴抛物线的解析式为y=ax2﹣(2+2a)x+1.(1)∵x=﹣=﹣1,∴=﹣1,解得a=﹣.∴抛物线的解析式为y=﹣x2﹣x+1.(2)由题意知:x=﹣<0,即﹣<0;抛物线开口向下,∵抛物线开口向下,∴a<0 ∴1+a>0,且a<0 ∴﹣1<a<0.(3)设B(x1,0),C(x2,0),x1<x2;∵x1x2=,且a<0.轴正半轴;∴x1x2<0,即B在x轴负半轴,C在x轴正半轴;∴OB=﹣x1,OC=x2.∵∠BAC=90°,,根据射影定理可得:在直角三角形BAC中,AO⊥BC,根据射影定理可得:OA2=OB•OC=﹣x1•x2=1,即﹣=1,a=﹣1.本题主要考查了抛物线对称轴解析式、二次函数与一元二次方程的关系、韦达定理等知识.点评:本题主要考查了抛物线对称轴解析式、二次函数与一元二次方程的关系、韦达定理等知识.18.(2000•杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.考点:正多边形和圆.分析:根据正多边形的面积等于周长与边心距的乘积的一半,所以只需根据它们的周长计算其边心距;在由正多边形的半径、边心距和边长组成的直角三角形中,根据锐角三角函数的概念可以分别求得它们的边心距,再进一步计算其面积,从而得到其比值.再进一步计算其面积,从而得到其比值..根据题意,得解答:解:设它们的周长是1.根据题意,得正三角形的边长是,正六边形的边长是.则正三角形的边心距是,正六边形的边心距是.则正三角形的面积是,正六边形的面积是.则它们的面积比是2:3.点评:熟悉正多边形的面积公式:正多边形的面积等于周长与边心距的乘积的一半.能够根据由半径、边心距和半边组成的直角三角形,运用锐角三角函数进行计算.半边组成的直角三角形,运用锐角三角函数进行计算.19.(原创题)如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.点所运动的路径长;(1)求O点所运动的路径长;围成的面积.(2)O点走过路径与直线L围成的面积.考点:扇形面积的计算;弧长的计算.本题一共转动了三次,关键是分析每一次转动的圆心角和半径,然后利用弧长公式求.分析:本题一共转动了三次,关键是分析每一次转动的圆心角和半径,然后利用弧长公式求.解答:解:(1)运动路径第一段弧长=,第二段路径为线段长为,第三段路径为,即O在L上运动路径为.)围成面积,(2)围成面积,S1=.本题的难点是第二次,实际上就是扇形的弧长,其它二次则简单.点评:本题的难点是第二次,实际上就是扇形的弧长,其它二次则简单.20.(2013•重庆)重庆) 已知:如图,抛物线y=x2+2x﹣3与x轴的交点为A、B两点,与y轴交于点C,直线AC与抛两点.物线交于A、C两点.如图,的y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).的坐标.(1)求点B的坐标.(2)在抛物线的对称轴x=﹣1上是否存在一点P,使得△BCP为等腰三角形,若存在,直接写出点P的坐标;若不存在,说明理由.存在,说明理由.的坐标.(3)若点Q在直线AC下方的抛物线上,且S△QOC=2S△BOC,求点Q的坐标.考点:二次函数综合题.压轴题.专题:压轴题.分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),点的坐标;根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x ﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程的坐标;求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.长度的最大值.解答:解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,两点,对称,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);)代入,②设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.题难度适中,解题的关键是运用方程思想与数形结合思想.21.(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.(1)求m的值;的值;的度数;(2)求∠CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.坐标;如果不存在,请说明理由.考点:二次函数综合题.综合题.专题:综合题.的值. 分析:(1)由于抛物线的解析式中只有一个未知数m,因此只需将C点的坐标代入抛物线中即可求出m的值.(2)此题可首先表示出抛物线的顶点式,就可以求出D点的坐标,然后过C点作DE的垂线CF,在△DCF的度数;中根据C、D、F三点的坐标求出DF和CF长度相等,得出∠CDE的度数;的坐标. (3)利用二次函数的对称性可求出,以及利用线段垂直平分线的性质求出P的坐标.解答:(1)∵抛物线过点C(0,3)∴1﹣m=3 ∴m=﹣2 (2)由(1)可知该抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4 ∴此抛物线的对称轴x=1 抛物线的顶点D(1,4)过点C作CF⊥DE,则CF∥OE ∴F(1,3)所以CF=1,DF=4﹣3=1 ∴CF=DF 又∵CF⊥DE ∴∠DFC=90°∴∠CDE=45°)存在.(3)存在.的对称点时,①延长CF交抛物线于点P1,则CP1∥X轴,所以P1正好是C点关于DE的对称点时,有DC=DP1,得出P1点坐标(2,3);由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1.②若以CD为底边,则PD=PC,,根据两点间距离公式,设P点坐标为(x,y),根据两点间距离公式,得x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.)在抛物线上,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,,应舍去;解得:x=,<1,应舍去;∴x=,∴y=4﹣x=则P2点坐标(,).∴符合条件的点P坐标为(,)和(2,3).点评:此题主要考查了二次函数的对称性,以及等腰三角形的判定方法和垂直平分线的性质等知识,题目综合性较强,是中考中热点题型.较强,是中考中热点题型.22.(2006•锦州)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).两点的坐标;(1)求A、B两点的坐标;的函数表达式;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?的面积最大?最大面积是多少?。

中考数学中的常见难题解析

中考数学中的常见难题解析

中考数学中的常见难题解析在中考数学中,有一些常见的难题经常困扰着学生。

本文将对其中的一些难题进行解析,帮助同学们更好地应对这些问题。

一、分数问题分数问题是中考数学中常见的难题之一。

很多同学对分数的四则运算不够熟练,容易出错。

要解决这个问题,首先需要掌握分数的基本运算规则。

例如,两个分数相加时,需要找到它们的公共分母,然后将分子相加,并保持分母不变。

另外,同学们还需要掌握将分数转化为小数或百分数的方法,以及将小数或百分数转化为分数的方法。

二、图形问题图形问题也是中考数学中常见的难题之一。

同学们对于图形的性质和相关知识了解不深,容易在解题过程中迷失方向。

要解决这个问题,同学们需要掌握常见图形的特征和性质,例如矩形的对角线相等、平行四边形的对角线互相平分等。

此外,同学们还需要学会根据已知图形的特征画出几何图形,帮助他们更好地理解和解决问题。

三、方程问题方程问题也是中考数学中常见的难题之一。

同学们在解方程的过程中经常出现代数计算错误和方程变形错误的情况。

要解决这个问题,同学们需要加强对代数计算规则和方程变形法则的掌握,例如加减消元法、倍增法、变形法等。

同时,同学们还需要多做一些方程问题的练习,提高解题能力。

四、几何证明问题几何证明问题是中考数学中常见的难题之一。

同学们对于几何证明的思路和方法不够清晰,容易在证明过程中出现错误。

要解决这个问题,同学们需要掌握几何证明的基本思路,例如利用已知条件引出待证结论、利用图形的对称性等。

此外,同学们还需要多做一些几何证明的练习,提高证明的能力。

总之,中考数学中的常见难题需要同学们掌握一定的解题技巧和方法。

对于分数问题,需要熟练掌握分数的四则运算规则;对于图形问题,需要掌握图形的特征和性质;对于方程问题,需要掌握代数计算和方程变形的方法;对于几何证明问题,需要掌握证明的基本思路。

只有通过大量的练习和巩固,才能在中考数学中取得好成绩。

希望同学们能够认真学习,并且勇于挑战这些难题,取得优异的成绩!。

初三数学难题压轴题

初三数学难题压轴题

初三数学难题压轴题通常包括代数和几何两个方面的内容。

以下是一些常见的初三数学难题压轴题:
代数问题:例如,找出一个数列的通项公式,或者通过给定的数列前n项和求出某一项的值。

有时候也会涉及到函数的最值问题或者函数的零点问题。

几何问题:通常会涉及三角形、四边形或者圆等形状,求解这些形状的面积、周长等。

有时候也会涉及到图形的旋转、平移、对称等几何变换问题。

以下是一道初三数学难题压轴题的示例:
已知AB是圆O的直径,直线CD与圆O相交于点E,F,且点E是CD的中点,连接AC,AD,BF和CB。

求证:CD平分∠BAC 和∠CBF。

这道题目涉及到圆、三角形和四边形的性质和判定,需要运用多种数学知识点,难度较大。

以上信息仅供参考,如果您还有疑问,建议咨询初三数学老师或查阅相关资料。

历年中考数学难题及答案

历年中考数学难题及答案

应用题20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分)某项工程,甲工程队单独完成任务需要40天.若 乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务. 请问: (1)(5分)乙队单独做需要多少天才能完成任务?(2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售y 2价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

九年级上册数学难题及其解答

九年级上册数学难题及其解答

九年级上册数学难题及其解答一、一元二次方程相关(5题)1. 已知关于x的一元二次方程x^2-(2k + 1)x + k^2+k = 0。

- 求证:方程有两个不相等的实数根。

- 若ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5。

当ABC是等腰三角形时,求k的值。

- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

在方程x^2-(2k + 1)x + k^2+k = 0中,a = 1,b=-(2k + 1),c=k^2+k。

- Δ=(2k + 1)^2-4(k^2+k)- =4k^2+4k + 1-4k^2-4k- =1>0,所以方程有两个不相等的实数根。

- 由一元二次方程x^2-(2k + 1)x + k^2+k = 0,根据韦达定理x_1+x_2=-(b)/(a),x_1x_2=(c)/(a),可得x_1+x_2=2k + 1,x_1x_2=k^2+k。

- 因为ABC是等腰三角形,BC = 5,设AB=x_1,AC = x_2。

- 当AB=BC = 5或AC = BC = 5时,把x = 5代入方程x^2-(2k + 1)x +k^2+k = 0得:- 25-5(2k + 1)+k^2+k = 0- 25-10k - 5+k^2+k = 0- k^2-9k + 20 = 0- (k - 4)(k - 5)=0- 解得k = 4或k = 5。

- 当k = 4时,原方程为x^2-9x+20 = 0,解得x_1=5,x_2=4,三角形三边为5,5,4,满足三角形三边关系。

- 当k = 5时,原方程为x^2-11x + 30 = 0,解得x_1=5,x_2=6,三角形三边为5,5,6,满足三角形三边关系。

2. 若关于x的一元二次方程mx^2-(3m - 1)x+2m - 1 = 0,其根的判别式的值为1,求m的值及该方程的根。

- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

中考数学圆的重心和垂心难题讲解

中考数学圆的重心和垂心难题讲解

在中考数学中,圆的重心和垂心是比较常见但难度较大的题目。

通过深入的讲解和解析,我们可以更好地理解这一主题的内涵和求解方法。

一、圆的重心1. 圆的重心概念圆的重心指的是圆内任意一点到圆上任意一点的距离的平方的和达到最小值时,这个点的位置。

通俗地讲,重心是圆内到圆上各点距离平方的和的最小值点。

2. 圆的重心求解当圆心坐标为(a, b),半径为r时,圆的重心坐标可表示为(Gx, Gy)=(a, b)。

也就是说,圆的重心坐标与圆心重合。

3. 圆的重心难题示例例题:已知圆心为O(-3, 4),半径为5,求圆的重心坐标。

解析:根据圆的特性可得,圆心坐标即为重心坐标,所以重心坐标为(-3, 4)。

这里是一个简单的例题,仅用于帮助理解圆的重心的概念。

二、圆的垂心1. 圆的垂心概念圆的垂心是指在直角三角形中,垂直于各边的三条高线的交点。

在圆内部,垂心是指三条垂直于圆上某点切线的交点。

2. 圆的垂心求解对于一个直角三角形,垂心是三条高的交点;对于一个圆,垂心是三条切线的交点。

垂心的求解需要根据具体的题目和情况来进行分析和计算。

3. 圆的垂心难题示例例题:已知圆心为A(2, 3),半径为4,点P在圆上,求AP的垂直平分线方程。

解析:首先求出AP的中点坐标M,然后根据斜率的性质求出垂直平分线的方程。

这是一个典型的圆的垂心难题,需要利用多种数学知识和方法来求解。

总结回顾:通过以上的深入讲解和示例分析,我们对圆的重心和垂心有了更清晰的理解。

重心是圆内到圆上各点距离平方的和的最小值点,而垂心是直角三角形或圆内三条切线的交点。

在实际求解中,需要运用到圆的性质、坐标系和几何知识等多方面的内容。

对于学生来说,需要通过大量的练习和实际应用来加深理解和掌握这一主题。

个人观点和理解:在学习和教学圆的重心和垂心时,应该注重学生对基本原理和概念的理解,同时也要引导他们探索解题的方法和思路。

通过合理的示例讲解和练习,可以帮助学生更好地掌握这一知识点,并在解题中灵活运用。

初三上册数学必考难题

初三上册数学必考难题

初三上册数学必考难题有很多,其中包括:
1. 相似三角形的应用:相似三角形是初三数学的重点之一,也是中考的必考内容。

学生需要掌握相似三角形的性质、判定方法和应用,能够解决一些综合性问题。

2. 锐角三角函数:锐角三角函数是初三数学的重要知识点,也是中考的必考内容。

学生需要掌握正弦、余弦、正切
等三角函数的定义、性质和计算方法,能够解决一些与三角
形相关的问题。

3. 二次函数:二次函数是初三数学的重要知识点,也是
中考的必考内容。

学生需要掌握二次函数的性质、开口方向、顶点和对称轴等,能够解决一些与二次函数相关的问题。

4. 圆的有关性质:圆的有关性质是初三数学的重要知识点,也是中考的必考内容。

学生需要掌握圆的半径、直径、
周长、面积等计算方法,以及与圆相关的定理和性质。

5. 直线与圆的位置关系:直线与圆的位置关系是初三数
学的重要知识点,也是中考的必考内容。

学生需要掌握直线
与圆的位置关系的判定方法和应用,能够解决一些综合性问题。

以上是初三上册数学的一些必考难题,学生需要认真学习
和掌握这些知识点,以便在考试中取得好成绩。

同时,学生
还需要多做一些练习题,加深对知识点的理解和掌握,提高
解题能力和思维水平。

中考数学经典难题集锦

中考数学经典难题集锦

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:1≤L <中考数学经典难题集锦2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC=∠ACB =800,D 、E 分别是AB 、AC 上的点,∠EBA =200,求∠BED 的度数.。

九年级数学难题

九年级数学难题

九年级数学难题九年级数学难题总结是对九年级学生在数学学习过程中遇到的具有一定挑战性和难度的题目的梳理和归纳。

这些题目往往需要学生运用所学的知识、方法和技巧进行综合分析和解决问题。

以下是九年级数学难题的总结。

一、代数部分1. 一元二次方程的求解:包括公式法、配方法、因式分解法等。

2. 分式方程的求解:去分母、分子有理化等。

3. 二元一次方程组的求解:代入法、消元法、图解法等。

4. 不等式的求解:包括一元一次不等式、一元二次不等式等。

5. 函数的性质:包括单调性、奇偶性、周期性等。

二、几何部分1. 三角形的性质:包括内角和、外角和、角平分线、中线、高、重心等。

2. 四边形的性质:包括平行四边形、矩形、菱形、正方形、梯形等。

3. 相似三角形的判定与性质:包括AA相似、SAS相似、SSS相似等。

4. 解直角三角形:包括锐角三角函数、钝角三角函数等。

5. 圆的性质:包括圆的切线、圆的割线、圆的相交弦、圆的相交弦定理等。

三、概率与统计部分1. 概率的计算:包括事件的概率、频率与概率、概率的乘法等。

2. 统计量的计算:包括平均数、中位数、众数、方差等。

3. 概率分布:包括二项分布、正态分布等。

4. 统计图表:包括条形图、折线图、饼图等。

四、综合应用部分1. 几何图形的面积和体积:包括三角形、四边形、圆形、立体图形等。

2. 实际问题的建立和解决:包括行程问题、工程问题、利润问题等。

3. 数学建模:包括函数模型、线性模型、非线性模型等。

4. 数学探究:包括数学归纳法、数学猜想等。

通过以上对九年级数学难题的总结,可以帮助学生更好地理解和掌握数学知识,提高他们的解题能力和数学素养。

在解决这些难题的过程中,学生不仅需要熟练掌握基本的数学知识和技能,还需要培养良好的逻辑思维、分析问题和解决问题的能力。

同时,教师还要关注学生的个体差异,给予不同层次的学生个性化的指导,让他们在数学学习中收获成长。

中考数学最难压轴题

中考数学最难压轴题

中考数学最难压轴题中考数学最难压轴题:一、联立方程1、将给定方程联立,求解x和y的值:(1)2x + 3y = 10(2)4x - y = 9解:(1)把2x + 3y = 10两边同乘2,得到:4x + 6y = 20;(2)把4x - y = 9两边同加y,得到:4x = 9 + y;结合(1),(2)式子,把“y”用(2)式替换,得到:4x + 6(9+y)= 20;把y提到一边,得到:4x+ 54 = 20;减去54两边,得到:4x = -34;除以4两边,得到:x = -8.5;再把x= -8.5带入(2)式,得到:-8.5 - y = 9;加上y两边,得到:y = -8.5 + 9;因此,x=-8.5,y=0.5是此方程的解。

二、多项式1、求x3-2x2-5x+6的因式分解。

解:令x3-2x2-5x+6 = (x - a)(x2 + bx + c),联立x3-2x2-5x+6=0,a=2,两边同加2,x3=2x2+5x+6.再令二次项系数=b,得到:2x2+5x+bx+6=2x2+6x+6;减去2x2两边,得到:bx+5x+6=6x;减去5x两边,得到:bx+6=6x;减去6x两边,得到:b=-6;再令常数项系数=c,两边同加6,得到:2x2+5x-6x+12=2x2+6x+6;减去2x2两边,得到:5x-6x+12=6x;减去5x两边,得到:-6x+12=6x;减去6x两边,得到:c=12。

综上,x3-2x2-5x+6=(x - 2)(x2 - 6x + 12)=x2(x - 2)-6(x - 2)=(x - 2)(x2 - 6x + 12),即x3-2x2-5x+6的因式分解式子为:(x - 2)(x2 - 6x + 12)。

三、等比数列1、已知等比数列{an}的前7项为24,8,4,2,1,0.5,0.25,求a8的值。

解:由等比数列的性质知,{an}由公比q构成,即a7/a6=q,a6/a5=q,…,a2/a1=q。

初三数学题目大全难题

初三数学题目大全难题

初三数学题目大全难题初三的小伙伴们呀,今天咱就来唠唠那些让人又爱又恨的数学难题。

一、函数相关难题函数在初三数学里那可是个大头啊。

比如说二次函数的综合题,它就像一个多变的小怪兽。

有时候呢,它会让你求二次函数的解析式,这可不是简单的把数字往公式里一套就行哦。

它可能会给你几个点的坐标,但是这些点的坐标就像是藏在迷宫里一样,你得先在脑海里把二次函数的图像想出来,然后再去分析这些点和函数的关系。

像那种已知顶点坐标和另外一个点坐标求解析式的题,你要是没搞清楚顶点式是怎么回事,那可就真的要被它绕晕啦。

还有二次函数和几何图形结合的题,这就更复杂啦。

二次函数的抛物线可能会和三角形、四边形纠缠在一起。

它会问你什么时候三角形的面积最大呀,或者四边形是特殊四边形时函数的参数是多少。

这时候你就得把几何图形的性质和函数的知识都拿出来,在脑袋里不停地捣鼓,就像厨师在做一道超级复杂的菜肴,各种调料(知识)都要恰到好处才行。

二、几何难题几何难题也是初三数学的大麻烦。

圆的题目就特别让人头疼。

圆里的切线问题,就像两个调皮的小朋友在玩捉迷藏。

你得先找到圆心到切线的距离等于半径这个关键线索。

然后还有圆中的角度问题,圆周角、圆心角那些关系,就像是一张密密麻麻的蜘蛛网,一不小心就会被困在里面。

比如说一个圆里有好多条弦,然后让你求某个圆周角的度数,你得先找出和这个圆周角相关的圆心角或者其他圆周角,这中间要经过好多弯弯绕绕。

三角形的相似问题在初三几何里也不简单。

要判断两个三角形相似,那条件可多了。

有时候是两角对应相等,有时候是三边对应成比例。

可这些条件不会明明白白地摆在你面前呀,你得自己去挖掘。

就像寻宝一样,你得在图形里找那些隐藏的线索,可能是一条小小的平行线,也可能是一个看起来不起眼的角。

三、方程与不等式难题方程和不等式的难题也不少呢。

一元二次方程的根的判别式相关的题目,就像一个神秘的魔法盒。

它会告诉你方程有两个相等的根或者没有实数根,然后让你求方程里的参数。

世界上最难十大数学题

世界上最难十大数学题

世界上最难十大数学题数学一直以来都是一门有趣且具有挑战性的学科。

而在数学领域中,也存在着一些被认为是最难的题目。

下面将为大家介绍世界上最难的十大数学题。

1. 菲尔斯奖难题菲尔斯奖难题是世界上最著名的数学难题之一,旨在解决质朴的整数解题问题。

该难题诞生于1966年,迄今为止尚未得到解答。

题目要求找到一个整数n,使得n³+2的立方根也是整数。

2. 数学三体难题数学三体难题是中国科幻作家刘慈欣的作品《三体》中提到的一个数学难题。

该题目涉及到三个恒星系统之间的引力作用,并且要求计算这种引力作用可能的数值。

虽然该题目并非真正的数学题,但由于其复杂性和抽象性,被广大读者视为数学难题。

3. 黑线问题黑线问题是欧拉在1738年提出的数学难题之一。

该难题要求在一个平面图上,不带重复的画出连续的路径线,使得每一个顶点都是奇数次相连。

目前该问题的解决仍然存在困难。

4. 费马大定理费马大定理是数学史上最为著名的问题之一,由法国数学家费马于1637年提出。

该问题的内容是:当n大于2时,a^n+b^n=c^n在整数域上是否有解。

而一直到1995年,数学家安德鲁·怀尔斯才给出了一种完整证明,解决了费马大定理。

5. 双子素数问题双子素数问题是指相差为2的两个素数,并且能无限枚举。

目前对于双子素数数量无穷性的证明仍然未能得到解决。

6. 普罗诺斯数问题普罗诺斯数问题是指如何用只含有四个数字的数及有关运算(加、减、乘、除、平方、立方、开方、阶乘)和括号,得出给定的数字(1到100)。

该问题被人们认为是逻辑思维的极限。

7. 黎曼猜想黎曼猜想是19世纪德国数学家黎曼提出的著名问题。

该问题涉及到复变函数中的黎曼ζ函数的零点位置。

尽管该猜想具有很高的数值验证,但至今尚未得到证明。

8. 弹性问题弹性问题是一类困扰数学家多年的问题,旨在解决弹性体的力学特性。

该问题的复杂性和抽象性使得其难以解决。

9. 卡尔斯塔卜问题卡尔斯塔卜问题是瑞典数学家康希尔·卡尔斯塔卜于1912年提出的图论问题,旨在解决某些特殊线性系统的问题。

最难数学题解析与解题思路

最难数学题解析与解题思路

最难数学题解析与解题思路数学作为一门科学,一直以来都是学生们最头疼的科目之一。

而在数学中,有一些难题更是让人望而却步。

这些题目不仅需要深厚的数学知识,还需要灵活的思维和解题技巧。

本文将对一些被认为是最难的数学题进行解析,并探讨解题思路。

一、费马大定理费马大定理是数学史上最著名的难题之一。

它是由法国数学家费马在17世纪提出的,经过多年的努力,直到1994年才被英国数学家安德鲁·怀尔斯证明。

费马大定理的表述是:当n大于2时,方程x^n + y^n = z^n没有正整数解。

费马大定理的证明过程相当复杂,需要运用到多个数学领域的知识,如代数、数论等。

怀尔斯证明这一定理的方法是通过构造椭圆曲线来证明费马大定理的特殊情况,然后再通过一系列推理来证明一般情况。

二、黎曼猜想黎曼猜想是数论中的一个重要难题,它由德国数学家黎曼在1859年提出。

黎曼猜想的表述是:所有非平凡的黎曼Zeta函数的非平凡零点的实部都是1/2。

黎曼猜想的证明至今未能成功,但它对数论的发展起到了重要的推动作用。

许多数学家为了证明黎曼猜想,做出了大量的尝试和研究。

目前,已经证明了黎曼猜想在某些特殊情况下成立,但对于一般情况,仍然没有确凿的证据。

三、康威生命游戏康威生命游戏是一个以细胞自动机为基础的模型,由英国数学家康威在1970年提出。

生命游戏的规则非常简单:每个细胞有两种状态,生和死。

根据一定的规则,每个细胞在下一代中的状态由其周围的细胞决定。

尽管生命游戏的规则非常简单,但其行为却十分复杂。

康威生命游戏中存在着一些难题,如“飞船”、“滑翔机”等。

这些难题需要通过观察和推理来找到解答。

虽然生命游戏的规则简单,但其中隐藏的数学原理却非常深奥,需要运用到图论、概率等多个数学领域的知识。

四、四色定理四色定理是图论中的一个经典难题,它由英国数学家弗朗西斯·格斯特在1852年提出。

四色定理的表述是:任何一个平面图都可以用四种颜色进行着色,使得任意相邻的区域颜色不同。

解析数学中考史上十大难题

解析数学中考史上十大难题

解析数学中考史上十大难题原题:25.已知△ABC,分别以AB、BC、CA为边向外作等边△ABD、等边△BCE、等边△ACF。

(1)如图1,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;(2)如图2,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和。

题目简要分析:这道题目之所以才位例第10为完全是因为第一问太简单了。

对于第二问在我们平时教学过程中很少遇见面积等的问题,尤其是面对这种面积和等的问题,不仅缺少一些直接的定理去支持这些结论,且缺少一些必要的手段和方法去证明,平时练习也相对少一些,故本题第二问得分率很低。

关于第二问本文提供3种解法,仅供参考。

解法一:解题思路:观察AF∥BC,在△ABC中利用平行四边形构造一个三角形面积等于S△ACF,证明余下部分面积等于S△BCE即可(很容易能观察出△DAM≌△BAC≌△EMC,剩余部分DBEM是平行四边形,对角线平分面积)解:(1)AB=CE,AC=BE,AF=BE,S△ABC=S△ABD等等(2)过A作AM∥FC交BC于M,连结DM、EM。

∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF∴AF∥MC∴四边形AMCF是平行四边形.又∵FA=FC,∴四边形AMCF是菱形.∴AC=CM=AM,且∠MAC=60°,且S△MAC= S△ACF在△BAC与△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△BAC≌△EMC.∴AB=ME又∵AB=DB∴DB=ME又∵∠DAM=∠DAB+∠BAM,∠BAC=∠CAM+∠BAM且∠DAB=∠CAM=60°∴∠DAM=∠BAC,在△DAM与△BAC中,AD=AB, ∠DAM=∠BAC,AM=AC∴△DAM≌△BAC∴DM=BC又∵BC=BE∴DM=BE∴四边形DBEM是平行四边形∴S△BDM= S△BEM由上所述∴△DAM≌△EMC∴S△DAM= S△EMC∴S△BDM+ S△DAM+ S△MAC= S△BEM+ S△EMC+ S△ACF即S△ABC+S△ABD=S△BCE+S△ACF所用知识点:图形的分割能力,平行四边形面积,旋转,全等本题需要有类比的思想,面积和等于面积和,证明方法可类似于线段和等于线段和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析数学中考史上十大难题原题:25.已知△ABC,分别以AB、BC、CA为边向外作等边△ABD、等边△BCE、等边△ACF。

(1)如图1,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;(2)如图2,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和。

题目简要分析:这道题目之所以才位例第10为完全是因为第一问太简单了。

对于第二问在我们平时教学过程中很少遇见面积等的问题,尤其是面对这种面积和等的问题,不仅缺少一些直接的定理去支持这些结论,且缺少一些必要的手段和方法去证明,平时练习也相对少一些,故本题第二问得分率很低。

关于第二问本文提供3种解法,仅供参考。

解法一:解题思路:观察AF∥BC,在△ABC中利用平行四边形构造一个三角形面积等于S△ACF,证明余下部分面积等于S△BCE即可(很容易能观察出△DAM≌△BAC≌△EMC,剩余部分DBEM是平行四边形,对角线平分面积)解:(1)AB=CE,AC=BE,AF=BE,S△ABC=S△ABD等等(2)过A作AM∥FC交BC于M,连结DM、EM。

∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF∴AF∥MC∴四边形AMCF是平行四边形.又∵FA=FC,∴四边形AMCF是菱形.∴AC=CM=AM,且∠MAC=60°,且S△MAC= S△ACF在△BAC与△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△BAC≌△EMC.∴AB=ME又∵AB=DB∴DB=ME又∵∠DAM=∠DAB+∠BAM,∠BAC=∠CAM+∠BAM且∠DAB=∠CAM=60°∴∠DAM=∠BAC,在△DAM与△BAC中,AD=AB, ∠DAM=∠BAC,AM=AC∴△DAM≌△BAC∴DM=BC又∵BC=BE∴DM=BE∴四边形DBEM是平行四边形∴S△BDM= S△BEM由上所述∴△DAM≌△EMC∴S△DAM= S△EMC∴S△BDM+ S△DAM+ S△MAC= S△BEM+ S△EMC+ S△ACF即S△ABC+S△ABD=S△BCE+S△ACF所用知识点:图形的分割能力,平行四边形面积,旋转,全等本题需要有类比的思想,面积和等于面积和,证明方法可类似于线段和等于线段和。

可先证明部分相等,再证明剩余部分相等。

解法二:解题思路:观察AF∥BC,AC∥BE利用平行线间等积去转换S△ACF.和S△BCE 转换后能够发现较明显的图形旋转。

连结BF,DC,AE∵∠DAC=∠DAB+∠BAC,∠BAF=∠CAF+∠BAC,且∠DAB=∠CAF=60°∴∠DAC=∠BAF在△DAC与△BAF中AD=AB, ∠DAC=∠BAF,AC=AF∴△DAC≌△BAF∴S△DAC= S△BAF又∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF∴AF∥BC∴S△BAF= S△ACF∴S△DAC= S△ACF同理可证:S△DBC= S△CBE∵∠DBC=∠DBA+∠ABC,∠EBA=∠CBE+∠ABC,且∠DBA=∠CBE=60°∴∠DBC =∠EBA在△DBC与△ABE中BD=AB, ∠DBC =∠EBA,BC=BE∴△DBC≌△ABE∴S△DBC= S△ABE又∵∠ACB=60°,∠CBE=60°,∴∠ACB=∠CBE∴AC∥BE∴S△ABE= S△CBE∴S△DBC = S△CBE∴S△DAC+ S△DBC= S△ACF+S△CBE即S△ABC+S△ABD=S△BCE+S△ACF所用知识点:图形的分割能力,旋转,全等,平行线间三角形等积转换请注意:平行线间三角形等积转换是分割图形很重要的思想解法三:解题思路:由结论可知分别是4个三角形面积和,设两边AC、BC长度,利用夹角是特殊角可算出第三边AB长度,利用都是等边三角形,用边长强行表示出各三角形面积,余下就是代数整理过程。

解:过点A作AG⊥BC交BC于点G,过点C作CH⊥AF交于点H,设在△ABC中,BC=a,AC=b,所用知识点:三角函数计算,三角形面积计算(尤其是对等边三角形面积结论要很熟悉哦),建议各位同学能记忆等边三角形面积计算公式S= a2(a为边长,在选择和填空题方面可直接应用,比较方面)由本题我们可以联想到:2005年本题出现后,旋转一个古老的专题又再一次在以后的考试中活跃起来,关于面积转换和分割在近几年考试和练习中也越来越多。

现针对于旋转和面积转换分割问题列举出一些常规试题。

(一)旋转1.2009年石景山区数学二模第25题如图①,四边形ABCD中,AB=CB,∠ABC=60°,∠ADC=120°,请你猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;(2)如图②,四边形ABCD中,AB=BC,∠ABC=60°,若点P为四边形ABCD内一点,且∠APD=120°,请你猜想线段PA、PD、PC之和与线段BD的数量关系,并证明你的结论。

解题思路:第一问是一个典型的截长补短或者旋转的题目。

连接AC就能构造等边三角形,就能旋转。

第二问,多条线段关系,一定先利用各种条件尽量转化为三条线段,再求解。

发现第二问条件类似于第一问,关键条件120°位置转变,可以利用第一问结论去构造图形,转换PA+PD为一条线段。

解:(1)如图①,延长CD至E,使DE=DA.连结AC,∵∠ADC=120°∴∠ADE=60°∴△EAD是等边三角形.∵∠BAD=∠BAC+∠CAD∠CAE=∠DAE+∠CAD∠BAC=∠DAE=60°∴∠BAD=∠CAE∴在△BAD和△CAE中BA=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE.∴BD=CE= DE+CD=AD+CD(2)如图②,在四边形ABCD外侧作正三角形AB' D,连结B'C,AC∵四边形AB' DP符合(1)中条件,∴B' P=AP+PD∵∠BAD=∠BAC+∠CAD∠CA B'=∠DAB' +∠CAD∠BAC=∠DAB' =60°∴∠BAD=∠CA B'在△ADB和△A B'C中AB=AC, ∠BAD=∠CAB' ,AD= A B'△ADB≌△A B'CB'C=DB(i)若满足题中条件的点P在B'C上,则B'C=PB'+PC.∴ B'C=AP+PD+PC∴BD=PA+PD+PC(ii)若满足题中条件的点P不在B'C上,∵ B'C<PB+PC∴ B'C<AP+PD+PC∴BD<PA+PD+PC综上,BD≤PA+PD+PC。

所用知识点:旋转,截长补短,构造前一问图形,三角形三边关系,全等。

请注意:在几何问题中第二问常常用到第一问的结论。

要善于去构造第一问的图形或结论去帮助解决较难的第二问。

2. 如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。

(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由。

解题思路:本题是典型的旋转题目,条件中有较多等边三角形,伴随等边三角形的旋转,图中各点连线构成的三角形也在旋转,通过全等后,注意利用全等结论“边等”和“角等”的转换,本题应该可以轻松破解。

所用知识点:旋转,勾股定理,相似比与面积比关系请注意:全等后的结论一定要多利用,多与之前已有的条件相结合,尤其是角,这样方面我们去导角,从而进行下一次的转换3.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.解题思路:(1)典型SAS全等(2)利用第一问结论,转化条件后,再用一次全等(3) 利用(1)(2)中结论,构造图1,利用线段长度放在RT△中计算所用知识点:旋转,勾股定理本题相对前两题较简单,但是前两题中所用到的,“多利用前面问题的结论,多构造前面问题图形”“全等后的结论的利用,与已知条件相结合”在这道题目中都有所展现。

(二)平行线间等积转化如图ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米,求△CDF的面积。

解题思路:明显△ADE与△CDF不全等,故不考虑全等证明。

图中有多组平行线,可以构造平行线间三角形等积转化提示:S△ADE=S△AEC=S△AFC=S△DFC=4平方厘米(解法二:分别以AE,DC为底强行构造出S△ADE和S△DFC的表达式,利用相似去计算表达式相等,同学们可自行完成)(三) 操作能力平分面积(1)(08年西城一模)如图:梯形纸片ABCD,AD∥BC,,设AD=a,BC=b请你设计两种方法,只需用剪刀剪一次就将梯形纸片ABCD分割成面积相等的两部分,画出设计的图形并简要说明理由。

解题思路:①直接构造梯形面积一半S=1/4(a+b)h,利用高h不变,构造底=1/2(a+b)的三角形;②将梯形转化为面积相等的平行四边形,利用过平行四边形对称中心的直线平分平行四边形面积,从而平分梯形面积。

解:方法一:如图①,取BM=(a+b)/2,连接AM.AM把梯形纸片ABCD分成面积相等的两部分.方法二(如图②):1.取DC的中点G,过G作EF∥AB,交BC于点F,交AD的延长线于点E.2.连接AF,BE,相交于点O.3.过O任作直线MN,分别与AD,BC相交于点N、M,沿MN剪一刀即把梯形纸片ABCD分成面积相等的两部分.(2).已知四边形ABCD,在AD上求一点P,使BP平分四边形ABCD的面积(四边形ABCD 是任意的)解题思路:因为在AD上找一点,可以将四边形ABCD转化为面积以AD所在直线为底的面积相等的三角形,通过中线平分三角形面积,从而平分四边形面积。

解:如图1).连结BD ,过C作CE∥BD交AD的延长线于E2).连结BE ,则四边形ABCD的面积等于三角形ABE的面积3).取AE的中点P ,连结BP 即可。

相关文档
最新文档