南昌大学物理实验报告 液体表面张力系数的测定

合集下载

液体表面张力系数测定的实验报告

液体表面张力系数测定的实验报告

液体表面张力系数测定的实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用力敏传感器测量微小力的原理和方法。

3、研究液体表面张力系数与液体温度、浓度等因素的关系。

二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面有收缩的趋势。

要使液体表面增大,就需要克服这种内聚力而做功。

单位长度上所受的这种力称为表面张力,其大小与液体的种类、温度和纯度等因素有关。

拉脱法测量液体表面张力系数的基本原理是:将一个金属圆环水平地浸入液体中,然后缓慢地将其拉起,在拉起的过程中,圆环会受到液体表面张力的作用。

当圆环即将脱离液面时,所施加的拉力等于液体表面张力与圆环所受重力之差。

设圆环的内半径为$r_1$,外半径为$r_2$,拉起圆环所需的拉力为$F$,液体的表面张力系数为$\sigma$,则根据力的平衡条件,有:$F =(π(r_2^2 r_1^2))\sigma$从而可得液体表面张力系数:$\sigma =\frac{F}{π(r_2^2 r_1^2)}$在本实验中,拉力$F$通过力敏传感器测量,其输出电压$U$与拉力$F$成正比,即$F = kU$,其中$k$为力敏传感器的灵敏度。

三、实验仪器1、液体表面张力系数测定仪。

2、力敏传感器。

3、数字电压表。

4、游标卡尺。

5、纯净水、洗洁精溶液等。

四、实验步骤1、仪器安装与调试将力敏传感器固定在铁架台上,使其探头向下。

将数字电压表与力敏传感器连接,调整零点。

用游标卡尺测量金属圆环的内半径$r_1$和外半径$r_2$。

2、测量纯净水的表面张力系数将洗净的金属圆环挂在力敏传感器的挂钩上,调整升降台,使圆环浸入纯净水中。

缓慢地向上移动升降台,观察数字电压表的示数变化。

当圆环即将脱离液面时,记录电压表的示数$U_1$。

重复测量多次,取平均值。

3、测量不同温度下纯净水的表面张力系数改变纯净水的温度,例如用热水加热或冷水冷却,分别测量在不同温度下的表面张力系数。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。

液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。

实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。

实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。

本实验采用测量液滴形状法。

实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。

2. 用精密天平称取一定质量的滴定瓶。

3. 在滴定管架上放置一只干净的滴定管。

4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。

5. 记录液滴的质量和滴定管口外溢的时间。

6. 重复以上步骤3-5,每次使用不同的液体进行实验。

实验数据处理:根据实验数据,可以计算液体表面张力系数。

液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。

实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。

结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。

结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。

液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。

实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。

2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。

液体表面张力系数的测定的实验报告

液体表面张力系数的测定的实验报告

液体表面张力系数的测量【实验目的】1、掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感器的灵敏度2、了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使用方法,并用它测量纯水表面张力系数。

3、观察拉脱法测量液体表面张力系数的物理过程和物理现象,并用物理学概念和定律进行分析研究,加深对物理规律的认识4、掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定液体的表面张力系数。

5、利用现有的仪器,综合应用物理知识,自行设计新的实验内容。

【实验原理】一、拉脱法测量液体的表面张力系数把金属片弯成如图 1(a)所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b)所示,然后把它浸到待测液体中。

当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F(当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。

由于液膜有两个表面,若每个表面的力为(为圆形液膜的周长),则有(2)所以(3)圆形液膜的周长L与金属圆环的平均周长相当,若圆环的内、外直径分别为。

则圆形液膜的周长L≈L’=(D1+D2)/2 (4)将(4)式代入(3)式得(5)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。

当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。

即(6)式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为V/N;ΔU 为传感器输出电压的大小。

二、毛细管升高法测液体的表面张力系数1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。

而当接触角大于90°时,液体在管内就会下降。

这种现象被称为毛细现象。

本实验研究玻璃毛细管插入水中的情形。

液体表面张力系数的测定报告

液体表面张力系数的测定报告

南昌大学物理实验报告课程名称:大学物理实验实验名称:液体表面张力系数的测定学院:管理学院专业班级:学生姓名:学号:实验地点:基础实验大楼608 座位号:实验时间:第三周星期天下午四点开始液体表面张力系数的测定实验报告【实验目的】1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。

2.学会使用焦利氏秤测量微小力的原理和方法。

【实验仪器】焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。

【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩.犹如紧张的弹性薄膜。

由于液面收缩而产生的沿着切线方向的力称为表面张力。

设想在液面上作长为L 的线段,线段两侧液面便有张力f 相互作用,其方向与L 垂直,大小与线段长度L 成正比。

即有:L F ⋅=αfα称为液体表面张力系数,单位:N/m 。

将一表面洁净的长为L 、宽为d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有F=mg+f 。

其中,F 为拉出时所用的力,mg 为金属片和带起的水膜的总质量,f 为表面张力。

实验中利用金属圆环,则:f=F-mg【实验步骤】1.安装好仪器,挂好弹簧.调节底板的三个水平调节螺丝,使焦利秤立柱竖直。

在主尺顶部挂入吊钩再安装弹簧和配重圆柱体.使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。

调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉.然后调节微调螺丝使指针与镜子框边的刻线重合.当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值L 0.2.测母弹簧的倔强系数K :依次增加 1.0g 砝码.即将质量为 1.0g ,2.0g .3.0g ,…,9.0g 的砝码加在下盘内。

调整小游标的高度.每次都重新使三线对齐,分别记下游标0线所指示的读数L1.L2,…,L9;再逐次减少1.0g 砝码.调整小游标的高度.每次都重新使三线对齐,分别记下游标。

液体表面张力系数的测定报告

液体表面张力系数的测定报告

液体表面张力系数的测定报告液体表面张力系数的测定实验报告【实验目的】1.介绍水的表面性质,用拉脱法测定室温上岸的表面张力系数。

2.学会采用焦利氏秤测量微小力的原理和方法。

【实验仪器】焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。

【实验原理】液体表面分子受源自液体内部的分子力,与受的源自空气的分子力大小相同,使液体表面自然膨胀,而产生的沿着切线方向的力。

【实验步骤】1.按顺序装设弹簧,机头圆柱与金属纸盒,通过怱差法以此类推砝码测得弹簧弯曲量,通过数据处理得到弹簧弹性系数(倔强系数)2.摘下金属纸盒更改为洁净的金属圆环,将金属圆环尽可能吻合液面并记下此时游标卡尺读数3.调节平台边线在金属圆环下端灌入水中后,向上调节平台,水膜断裂后记下位置重新浸入水中后向下调节平台至水膜刚好不破裂处,读取此时游标卡尺读数,记为水膜破裂时读数4.多次测量5.通过数据处理与排序获得液体(水)表面张力【数据处理】1.用逐差法排序弹簧的高傲系数k(实验温度:18c)砝码数0123456增重读数(mm)减重读数(mm)平均数li(mm)li?5-li(mm)231.58233.44235.78237.80240.10242.14244.82231.68233.76235.88237.68240.00 241.98244.46231.63233.60235.83237.74240.05242.06244.6410.4311.0410.7110.9910.4 90789246.68248.74250.62246.40248.72250.46246.54248.73250.5414?l??(li?5-li)?10.79mm5i?0k?5g=4.54n/m?l??l??a??bl??l?/(5?1)?0.29mm2it0.95??l?0.35mmn?仪=0.02mm1.05??l??2a??2b=0.35mmk-5gl?2??l????2=0.15n/mk=4.54±0.15n/m2.计算液体表面张力f次数12345起始边线s0(mm)水膜断裂时读数si(mm)δs=si-s0(mm)222.36222.46222.72222.48222.402?s(mm)225.78225.72225.94225.96225.703.423 .263.223.283.303.30??s??a??bs??s?/(5?1)?0.08mmit0.95??s?0.10mmn?仪?0.02mm1.05??s??2a??2b=0.10mmδs=3.30±0.10mm3.金属环外、内直径的测量(本实验轻易给学生结果)d1d2平均值(mm)34.9433.04??k?s?70.15×10-3n/m(d1d2)3.计算表面张力系数?及不确定度sk-3(d?d)k???(d?d)?s??3.15×10n/m12121.表面张力系数的理论值:??(75.5?0.15t)?10?3n/m?72.8×10n/m-322【误差分析】1.金属圆环不水平或仪器底座不水平2.游标卡尺读数不精确3.弹簧未全然恒定就读数4.未达到水膜即将破裂的程度就停止下调平台读数5.圆环直径测量不准确【思考题】 1.用焦利表示测量微小力的依据就是什么?答:因为焦利称的精度达0.02mm,数据较为精密能够较为准确的测量微小力乘不好实验装置后,念出此时三线再分一时游标卡尺示数,在砝码纸盒上加之相同数量砝码,弹簧伸长了一段长度,细金属杆向下移动,此时三线不再重合,挪动游标卡尺当三线重新重合时读出读数,第二个读数与第一个读数之差就是弹簧在增加该微小力时所伸长长度2.金属圆环灌入水中,然后轻轻提出诉讼到底面与水面二者平时,先行分析金属圆环在直角方向的受力。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。

它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。

本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。

实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。

b. 清洗测量仪器,确保无杂质干扰。

2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。

b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。

c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。

3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。

b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。

4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。

b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。

实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。

以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。

通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。

2. 乙醇的表面张力系数为Y N/m。

与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。

3. 甲苯的表面张力系数为Z N/m。

与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。

结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。

实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。

(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。

2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。

2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。

在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。

若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。

三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。

调整仪器水平,刻度盘归零。

2调零。

将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。

3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。

以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。

4测量纯净水的表面张力系数调零。

用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。

左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。

两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。

记下刻度盘示数M ’。

为了消除随机误差,共测五次。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。

本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。

二、实验原理。

液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。

液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。

本实验采用悬水滴法测定液体表面张力系数。

三、实验仪器和试剂。

1. 一台天平。

2. 一根细丝。

3. 一根细管。

4. 一根毛细管。

5. 一根水平的细管。

6. 一些水。

四、实验步骤。

1. 将一根细丝固定在天平上,使其水平。

2. 用细管将水滴在细丝上,形成一个悬水滴。

3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。

4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。

五、实验数据处理。

根据实验数据,可以计算出液体表面张力系数$\gamma$的值。

根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。

六、实验结果与分析。

根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。

通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。

这与表面张力的性质相符合。

七、实验结论。

通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。

实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。

八、实验中的注意事项。

1. 实验操作要细致,保证悬水滴的稳定性。

2. 测量数据要准确,避免误差的产生。

3. 实验结束后要及时清理实验仪器和试剂。

九、参考文献。

1. 《物理化学实验》。

2. 《实验化学》。

十、致谢。

感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。

液体表面张力系数测定实验报告

液体表面张力系数测定实验报告

液体表面张力系数测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用焦利秤测量微小力的原理和方法。

3、研究液体表面张力与温度的关系。

二、实验原理液体表面层内分子相互作用的结果使得液体表面层具有一种特殊的性质,即液体表面存在张力。

想象在液体表面上画一条直线,表面张力就表现为直线两侧的液面存在相互作用的拉力,其方向垂直于该直线且与液面相切。

当金属丝框在液面上方时,由于表面张力的作用,框四周会受到一个向上的拉力。

若将框从液面缓慢拉起,在拉起的瞬间,液面会发生破裂,此时所需要克服的力就是液体的表面张力。

若金属丝框的长度为 L,拉起液面时所需要的力为 F,则液体的表面张力系数σ可以表示为:σ = F / L 。

在本实验中,我们使用焦利秤来测量拉力 F 。

焦利秤是一种可以测量微小力的仪器,其原理是通过弹簧的伸长来反映所受力的大小。

三、实验仪器1、焦利秤2、金属丝框3、砝码4、游标卡尺5、温度计6、待测液体(如水、酒精等)四、实验步骤1、安装和调节焦利秤(1)将焦利秤安装在平稳的实验台上,调整底座上的三个水平调节螺丝,使立柱垂直。

(2)通过旋转立柱上的升降旋钮,使小镜筒的下沿与玻璃管上的水平刻线对齐,然后挂上砝码盘。

(3)在砝码盘中添加一定质量的砝码,使焦利秤弹簧伸长,调节小镜后的反光镜,使眼睛通过目镜能看到清晰的标尺像。

(4)移动游标,使游标零线与标尺零线对齐,然后读出此时的读数,作为测量的基准。

2、测量金属丝框的长度使用游标卡尺测量金属丝框的边长 L ,多次测量取平均值以减小误差。

3、测量表面张力(1)将金属丝框洗净并晾干,然后挂在焦利秤的挂钩上。

(2)将金属丝框缓慢浸入待测液体中,使框的下沿刚好与液面接触,注意不要带入气泡。

(3)然后缓慢地向上提起焦利秤的秤杆,使金属丝框逐渐脱离液面。

当液面刚好破裂时,记下此时焦利秤的读数 D1 。

(4)在砝码盘中添加一定质量的砝码(例如 05g ),再次将金属丝框浸入液体并拉起,记下液面破裂时焦利秤的读数 D2 。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用焦利秤测量微小力的原理和方法。

3、加深对液体表面张力现象的理解。

二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。

这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。

设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。

在本实验中,我们采用拉脱法测量液体的表面张力系数。

将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。

当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。

三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。

四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。

2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。

3、挂上砝码盘,调节焦利秤的零点。

4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。

5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。

6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。

7、测量水温,记录温度值。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面上的表现,是液体分子间结合力的一种表现形式。

表面张力的大小与液体的性质、温度、压力等因素有关,因此测定液体表面张力系数对于研究液体性质和应用具有重要意义。

本实验通过测定不同液体的表面张力系数,探究液体性质的差异和影响因素。

实验目的:1. 了解液体表面张力的概念和测定方法。

2. 测定不同液体的表面张力系数,比较液体性质的差异。

3. 探究温度对液体表面张力的影响。

实验原理:实验中采用的测定液体表面张力系数的方法是测量液滴的形状,根据杨氏方程计算表面张力系数。

液滴在平衡状态下,液滴的表面张力与重力平衡,液滴的形状与表面张力系数有关。

实验步骤:1. 准备实验器材:玻璃板、毛细管、滴液瓶、温度计等。

2. 将玻璃板清洗干净,用酒精擦拭表面,以确保无杂质。

3. 用滴液瓶将待测液体滴在玻璃板上,注意滴液的大小和均匀性。

4. 用毛细管将待测液体滴在玻璃板上的液滴吸走,注意保持液滴形状稳定。

5. 用显微镜观察液滴的形状,并测量液滴的直径。

6. 测量环境温度,并记录数据。

7. 重复以上步骤,测量不同液体的表面张力系数。

实验结果与分析:通过实验测量得到不同液体的表面张力系数数据,并进行比较分析。

发现不同液体的表面张力系数存在差异,这与液体的性质有关。

例如,水的表面张力系数较大,而酒精的表面张力系数较小。

这可能是由于水分子之间的氢键作用较强,而酒精分子之间的相互作用力较弱所致。

此外,实验还发现温度对液体表面张力的影响较大。

随着温度的升高,液体分子的热运动增强,分子间相互作用力减弱,导致表面张力系数减小。

这与热力学原理中分子热运动与分子间距离的关系相符。

实验结论:1. 不同液体的表面张力系数存在差异,这与液体的性质有关。

2. 温度升高会导致液体表面张力系数减小。

实验误差与改进:1. 实验中可能存在测量液滴直径的误差,可以使用更精确的测量仪器进行测量。

液体表面张力实验报告

液体表面张力实验报告

液体表面张力系数的测定实验报告[实验目的]1.用拉脱法测量室温下液体的表面张力系数2.学习力敏传感器的定标方法[实验原理]测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即F=α·π(D1十D2 ) (1)式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数.4硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即△U=KF (2)式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小。

[实验装置]FD-NST-B液体表面张力系数测试仪。

其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片。

[实验内容]1、力敏传感器的定标每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器的电源开关,将仪器预热。

(2)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零。

(3)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K.2、环的测量与清洁(1)用游标卡尺测量金属圆环的外径D1和内径D2(2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH 溶液中浸泡20-30秒,然后用净水洗净。

3、液体的表面张力系数(1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行。

《液体表面张力系数》物理实验报告(有数据)

《液体表面张力系数》物理实验报告(有数据)

液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。

二、实验原理液体分子之间存在相互作用力,称为分子力。

液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。

而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。

由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。

这种液体表面的张力作用,被称为表面张力。

表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。

试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。

温度越高,液体中所含杂质越多,则表面张力系数越小。

将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。

当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。

由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。

本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。

若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。

表面张力系数的测定实验报告

表面张力系数的测定实验报告

表面张力系数的测定实验报告一、实验目的本实验旨在通过测量液体表面张力系数,掌握液体表面张力的概念及其测量方法。

二、实验原理1.液体表面张力的概念液体表面张力是指单位长度内液体表面所需的能量,它是由于分子间相互作用力引起的。

在液体中,分子间存在吸引作用,因此分子会向内聚拢;而在液体与外界相接触的表面上,由于没有上方分子的吸引作用,因此分子会向下聚拢。

这种内聚和外聚之间产生了一个平衡状态,即所谓的表面张力。

2.测定表面张力系数的方法(1)自由下落法:利用小球在液体中自由下落时所受到的阻力与重力平衡来测定表面张力系数。

(2)静水压差法:利用两个相距较近且水平放置的玻璃板之间形成水柱时所受到压强差来测定表面张力系数。

(3)环法:将一根环形线圈放入液体中,在环和液体交界处形成一个弧形截面,利用截面积和液体重量之间的关系来测定表面张力系数。

三、实验步骤及记录1.实验器材:环形线圈、容量瓶、电子天平、测微计、滴管等。

2.实验前准备:清洗器材,将环形线圈放入热水中加热至沸腾,使其表面完全湿润后取出晾干。

3.测定液体的密度:用容量瓶称取一定质量的液体,记录质量和容积,计算出液体密度。

4.测定环形线圈的质量:用电子天平称取环形线圈的质量。

5.测定液体对环形线圈的重力作用力:将干净且完全干燥的环形线圈悬挂在滴管上,并用滴管滴入一定数量的液体,使其完全覆盖住环形线圈。

记录此时液体重量和滴管内残留液体重量,并计算出所添加的液体重量。

6.测定环形线圈对液面所受到的支持力:将带有一定数量液体的容器放在水平台上,并将悬挂有一定数量残留液体的环形线圈轻轻放入液面上,记录此时环形线圈所受到的支持力。

7.测定表面张力系数:根据公式γ=2mg/πr,计算出表面张力系数γ。

四、实验结果分析1.实验数据记录:液体密度ρ=1.2g/cm³环形线圈质量m=0.5g添加液体重量m1=0.2g环形线圈所受支持力F=0.05N环形线圈半径r=0.01m2.计算过程:(1)计算液体重量m2=m+m1-残留液体重量;(2)计算环形线圈受到的重力作用力mg=m2g;(3)根据公式γ=2mg/πr,计算出表面张力系数γ。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的测定液体的表面张力系数,了解表面张力的性质和影响因素,掌握用拉脱法测量表面张力系数的原理和方法。

二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面具有收缩的趋势。

这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。

当一金属框(如矩形框)在液面上缓慢拉起时,液膜将在金属框上形成。

若要使液膜破裂,拉力需克服表面张力的作用。

根据胡克定律,在弹性限度内,弹簧的伸长量与所受拉力成正比。

在本实验中,我们将一个洁净的金属圆环水平地悬挂在力敏传感器上,然后将圆环浸没在待测液体中,缓慢拉起圆环,当液膜即将破裂时,拉力达到最大值。

此时,拉力 F 等于表面张力系数σ 与圆环内外周长之和 l 的乘积,即 F =σl 。

通过力敏传感器测量拉力 F ,并测量圆环的内外直径,计算出周长l ,就可以求得液体的表面张力系数σ 。

三、实验仪器力敏传感器、数字电压表、铁架台、升降台、镊子、游标卡尺、纯净水、待测液体(如酒精)、玻璃皿、金属圆环。

四、实验步骤1、仪器调整将力敏传感器固定在铁架台上,调整其高度,使其与升降台的上表面平行。

将数字电压表与力敏传感器连接好,打开电源,预热 15 分钟。

对数字电压表进行调零。

2、测量金属圆环的内外直径用游标卡尺分别测量金属圆环的内外直径,各测量 5 次,取平均值。

3、测量纯净水的表面张力系数将玻璃皿中装入适量的纯净水,放在升降台上。

用镊子将金属圆环挂在力敏传感器的挂钩上,并使其完全浸没在纯净水中。

缓慢升起升降台,使金属圆环逐渐脱离水面,观察数字电压表的示数变化,当液膜即将破裂时,记录下拉力的最大值 F1 。

重复测量 5 次,取平均值。

4、测量待测液体的表面张力系数倒掉玻璃皿中的纯净水,用待测液体(如酒精)清洗玻璃皿和金属圆环。

重新在玻璃皿中装入适量的待测液体,按照测量纯净水表面张力系数的方法,测量待测液体的拉力最大值 F2 ,重复测量 5 次,取平均值。

液体表面张力实验报告

液体表面张力实验报告

液体表面张力系数的测定[实验目的]1、了解液体表面张力性质以及表面张力系数的含义和影响因素。

2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。

3、了解用液体界面张力仪定标测量微小力的思想和方法。

4、了解液体界面张力仪的调节使用方法和校准方法。

5、熟悉实验的具体内容。

6、拟定出合理的实验数据记录表格。

[实验原理]表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。

作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。

表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关。

物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。

因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。

测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。

拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。

实验中采用拉脱法测量水与空气界面的表面张力系数。

通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。

(2)测量方法:用液体界面张力仪定标测量微小力的方法。

(3)数据处理方法:质量标准曲线的绘制方法。

(4)仪器调整使用方法:液体界面张力仪的调整使用方法。

[实验内容]1、整液体界面张力仪水平和零点,达到待测状态。

2、准液体界面张力仪。

(1)金属环上放一块小纸片,仪器调零。

包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。

(2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数。

(3)计算理论值F0=mg/π(d1+d2)。

(4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等。

南昌大学大一物理实验报告(全)

南昌大学大一物理实验报告(全)
0
砝 码 数 0 1 2 3 4 5 6 7 8 9
增重读数(mm) 减重读数(mm) 255.00 257.00 260.00 262.02 263.12 265.04 267.02 269.00 272.04 274.02 256.00 257.00 258.02 262.00 263.10 263.10 264.98 268.02 270.00 272.00
4. 表 面 张 力 系 数 的 理 论 值 : (75.5 0.15t ) 10 3 N / m
2
2
70.597 0.46 )
10 3 N / m
【误差分析】 1. 金属圆环不水平,仪器底座不水平 2. 仪器未调零,表面张力系数测定仪不稳定 3. 拉脱过程不匀速,拉脱速度过快 4. 圆环底部没有浸没到水中,圆环不稳定(晃动) 5. 圆环直径测量不准确
5g =5.67 L

L
L L /(5 1) 0.73
2 i
A
t0.95 L 0.879 n
B

仪 =0.01 1.05
L 2A 2B =0.050

K


- 5g L 2
L

2
=0.01 2.计算液体表面张力 f
平均数 Li (mm) 255.50 257.00 259.01 262.01 263.11 263.07 265.52 268.06 271.02 273.01
Li 5 - Li (mm)
7.57 8.52 9.05 9.01 9.90
L K
1 4 ( Li 5 - Li ) 8.81 5 i 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学物理实验报告
课程名称:大学物理实验
实验名称:亥姆霍兹
学院:资源环境与化工学院
专业班级:过程装备与控制工程152班
报告人:陈素馨
学号:5801415050
指导老师:李鸿
【实验目的】
1 学习和掌握霍尔效应原理测量磁场的方法;
2测量载流圆线圈和亥姆霍兹线圈轴线上的磁场分布。

【实验原理】
1 载流原线圈与亥姆霍兹线圈的磁场
①载流原线圈磁场
根据比奥-萨伐尔定律,载流原线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点磁感应强度B 为
()23222
002x R IR N B +=μ
式中m H /10470-⨯=πμ为真空磁导率,R 为线圈的平均半径,0N 为线圈的匝数,I 为通过线圈的电流,x 为轴线上某一点到圆心O 的距离。

因此它在轴线上磁场分布图应为正态分布。

②亥姆霍兹线圈
所谓亥姆霍兹线圈是两个相同的圆线圈,彼此平行且共
轴,通以同方向电流I ,理论计算证明:当线圈间距a 等于线圈半径R 时,两线圈合磁场在轴线上(两线圈圆心连线)附近较大范围内是均匀的。

2电磁感应法测磁场
①电磁感应法测量原理
设由交流信号驱动的线圈产生的交变磁场,他的磁感应强度B 为t B B m ϖsin =,又设有一个探测线圈放在这个磁场中,通过这个探测线圈的有效磁通量为t NSB m ϖθφsin cos =式中,N 为探
测线圈的匝数,S 为该线圈的截面积,θ为B 与线圈法线夹角。

则线圈产生的感应电动势为
t t NSB dt
d m m ϖεϖθφεcos sin cos -==-= 式中θεcos m m NSB =-是线圈平面法线和磁场成θ角时,感应电动势的幅值。

当0=θ,m m NSB =ε,这时的感应电动势幅值最大。

如果用数字式毫伏表测量此时的电动势,则毫伏表的示值
(有效值)m U 应为2m ε,则ϖϖεNS U NS B m
m
m 2=,由该市可计算出m U 的
值。

②探测线圈的设计
由于公式ϖϖεNS U NS B m
m m 2=是用普通线圈再均匀条件下得出来
的,如果磁场分布不均匀,情况非常复杂,用普通探测线圈只能探测出线圈平面内磁感应强度法向分量的平均值,而不能测出非均匀磁场中各点的真实值,除非将探测线圈做得非
常小,但这又会使NS 减少而降低测量的灵敏度。

为解决这一矛盾,理论证明可以设计出一种特殊尺寸的圆柱形探测线圈(线圈长度L 和外径D 有D L 32=
的关系,线圈的内径d 与D 有3
D d =的关系,并选择线圈的体积适当小)测得的线圈平面内平均磁场与探测线圈几何中心点的磁场相等。

这种探测线圈的等效面积为2108
13D S π= 3霍尔效应法测磁场
①霍尔效应法测量原理
将通有电流I 的导体置于磁场中,则在垂直于电流I 和磁场B 方向上产生一个附加电势差,,该电势差H U 成为霍尔电压。

若导体中电流I 沿x 轴方向流动(有速度为v 运动的电子),此时在z 轴方向上加上强度为B 的磁场后,运动着的电子受洛伦兹力B F 的作用而偏移、聚集在S 平面;同时随着电子向S 平面便宜和聚集,在P 平面出现等量的正电荷,结果在S 、P 平面之间形成一个电场H E (此电场称之为霍尔电场)。

这个电场反过来阻止电子继续向S 面偏移。

此时在S 、P 平面之间形成一个稳定的电压H U (霍尔电压)。

②霍尔系数、霍尔灵敏度、霍尔电压
设材料的长度为l ,宽度为b ,厚度为d ,载流子速度为v ,它们与通过材料的电流I 有如下关系
nevbd I =
霍尔电压 IB K IB R ned IB U B H H ===/
式中霍尔系数ne R H
/1=,单位为C m /3;霍尔灵敏度d R K H H /=,
单位为mA mV /.由此可见,当I 为常量时,有B k IB K U B H 0==,通过测量霍尔电压H U ,就可以计算出未知磁场强度B 。

【实验仪器】
4501A 型亥姆霍兹线圈磁场试验仪、亥姆霍兹线圈架、
【实验内容】
1测量原电流线圈轴线上磁场的分布
①仪器使用前,先开机预热5min 接好电路,调零; ②调节磁场试验仪的输出功率,每个10.0min 测一个m B 值,
测量过程中注意保持励磁电流值不变,记录数据并作出磁场分布曲线图;
2测量亥姆霍兹线圈轴线上磁场的分布
①关掉电源,把磁场试验仪的两组线圈串联起来(注意极性不要接反),街道磁场测试仪的输出端钮,调零;
②调节磁场测试仪的输出功率,使励磁电流有效值仍未mA I 200=,以两个原线圈周线上的中心点为坐标原点,每个10.0min 测一个m B 值,记录数据并作出磁场分布曲线图。

【数据处理】。

相关文档
最新文档