最全的转动惯量的计算
转动惯量计算公式-转动惯量公式
![转动惯量计算公式-转动惯量公式](https://img.taocdn.com/s3/m/4c5dbf14aef8941ea66e054d.png)
1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)之巴公井开创作82MD J =对于钢材:341032-⨯⨯=gLrD J π)(1078.0264s cm kgf L D ⋅⋅⨯-M-圆柱体质量(kg);D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-资料比重(gf /cm 3)。
2.丝杠折算到马达轴上的转动惯量:2iJsJ =(kgf·cm·s 2)J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,12z z i =3. 工作台折算到丝杠上的转动惯量g w22⎪⎭⎫ ⎝⎛⋅=n v J π g w2s 2⎪⎭⎫ ⎝⎛=π(kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g=980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:())s cm (kgf 2g w 122221⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++=πs J J iJ J S tJ 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2gw R J =(kgf·cm·s 2)R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量⎪⎪⎭⎫ ⎝⎛++=2221g w 1R J i J J tJ 1,J 2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2);R-齿轮z 分度圆半径(cm);w-工件及工作台重量(kgf)。
最全的转动惯量的计算ppt课件
![最全的转动惯量的计算ppt课件](https://img.taocdn.com/s3/m/68aa49753b3567ec112d8a0f.png)
有
l
J0
r 2dm l 2 x2dx l3
l 2
12
将 l m 代入上式,得:
J0
1 12
ml 2
2
(2)当转轴通过棒的一端A并与棒垂直时
A
xO
dx l
J0
r2dm l x2dx 1 ml 2
ቤተ መጻሕፍቲ ባይዱ
0
3
3
例题2)半径为R的质量均匀分布的细圆环,质 量均为m,试分别求出对通过质心并与环面垂 直的转轴的转动惯量。
x
9
常见刚体的转动惯量
J mr 2 J mr2 / 2 J mr2 / 2 J m(r12 r22) / 2
J ml 2 /12
J mr2 / 2
J 2mr 2 / 5 J 2mr 2 / 3
10
例题1 一长为l,质量为m的匀质细杆竖直放置, 其下端与一固定铰链o相连,并可绕其转动.当其 受到微小扰动时,细杆将在重力的作用下由静止
开始绕铰链o转动.试计算细杆转到与铅直线呈
角时的角加速度和角速度.
解:受力分析
取任一状态,由转动定律
M外
1 2
mgl sin
J
P o
J 1 ml2 3
3g sin
2l
11
d d d 3g sin d t d d t 2l
d 3g sind
16
例一静止刚体受到一等于M0(N.m)的不变力矩的 作用,同时又引起一阻力矩M1, M1与刚体转动的 角速度成正比,即| M1 |= a(Nm),(a为常数)。又
已知刚体对转轴的转动惯量为J,试求刚体角速度
转动惯量计算公式是什么
![转动惯量计算公式是什么](https://img.taocdn.com/s3/m/507a7917a66e58fafab069dc5022aaea998f41dd.png)
转动惯量计算公式是什么 转动惯量是⼤学物理中⼀个⼗分重要的知识点。
下⾯是由店铺编辑为⼤家整理的“转动惯量的定义以及计算公式”,仅供参考,欢迎⼤家阅读本⽂。
转动惯量 转动惯量(Moment of Inertia),⼜称质量惯性矩,简称惯距,是经典⼒学中物体绕轴转动时惯性的量度,常⽤⽤字⺟I或J表⽰。
转动惯量的SI单位为kg·m²。
对于⼀个质点,I=mr²,其中,m是其质量,r是质点和转轴的垂直距离。
和线性动⼒学中的质量相类似,在旋转动⼒学中,转动惯量的⾓⾊相当于物体旋转运动的惯性,可⽤于建⽴⾓动量、⾓速度、⼒矩和⾓加速度等数个量之间的关系。
对于规则物体,其转动惯量可以按照相应公式直接计算;对于外形复杂和质量分布不均的物体,转动惯量可通过实验⽅法来测定。
实验室中最常⻅的转动惯量测试⽅法为三线摆法。
转动惯量计算公式 1、对于细杆: 当回转轴过杆的中点(质⼼)并垂直于杆时I=mL²/I²;其中m是杆的质量,L是杆的⻓度。
当回转轴过杆的端点并垂直于杆时I=mL²/3;其中m是杆的质量,L是杆的⻓度。
2、对于圆柱体: 当回转轴是圆柱体轴线时I=mr²/2;其中m是圆柱体的质量,r是圆柱体的半径。
3、对于细圆环: 当回转轴通过环⼼且与环⾯垂直时,I=mR²;当回转轴通过环边缘且与环⾯垂直时,I=2mR²;I=mR²/2沿环的某⼀直径;R为其半径。
4、对于⽴⽅体: 当回转轴为其中⼼轴时,I=mL²/6;当回转轴为其棱边时I=2mL²/3;当回转轴为其体对⾓线时,I=3mL²/16;L为⽴⽅体边⻓。
5、对于实⼼球体: 当回转轴为球体的中⼼轴时,I=2mR²/5;当回转轴为球体的切线时,I=7mR²/5;R为球体半径。
转动惯量公式
![转动惯量公式](https://img.taocdn.com/s3/m/f3ff0a94c0c708a1284ac850ad02de80d4d8068d.png)
转动惯量公式转动惯量是物体对于绕指定轴旋转的惯性特性的度量。
它与物体的质量、形状以及旋转轴的位置有关。
在这篇文章中,我们将介绍转动惯量的概念以及相关的公式。
1. 转动惯量的定义转动惯量是描述物体绕某个轴旋转时对其惯性的度量。
物体的质量分布越集中,转动惯量越小,物体的形状越分散,转动惯量越大。
对于一个质量分布均匀的物体来说,转动惯量可以通过以下公式计算:转动惯量公式转动惯量公式其中,I 是转动惯量,r 是与旋转轴的距离,dm 是物体的微小质量元素。
转动惯量的单位是千克·米²。
2. 转动惯量的计算方法对于一些常见的几何形状,我们可以通过特定的公式计算它们的转动惯量。
下面是一些常见形状的转动惯量计算公式:•线状物体(绕与物体平行的轴旋转):线状物体转动惯量公式线状物体转动惯量公式其中,m 是线状物体的质量,l 是线状物体长度。
•圆盘状物体(绕与盘面平行的轴旋转):圆盘状物体转动惯量公式圆盘状物体转动惯量公式其中,m 是圆盘状物体的质量,r 是圆盘状物体半径。
•球体(绕球的直径轴旋转):球体转动惯量公式球体转动惯量公式其中,m 是球体的质量,r 是球体的半径。
这些公式可以帮助我们计算常见几何形状物体的转动惯量。
对于复杂的物体形状,可以使用积分计算转动惯量。
3. 转动惯量的应用转动惯量在物理学中有广泛的应用。
它是理解刚体转动运动的重要参数,可以帮助我们研究物体在旋转过程中的角动量、角加速度等性质。
转动惯量的大小决定了物体在给定轴上旋转的难易程度。
当转动惯量较大时,物体旋转需要更大的力矩才能实现,导致旋转速度较慢。
相反,转动惯量较小的物体则更容易加速旋转。
此外,转动惯量还与物体的稳定性有关。
当物体的质量分布越接近旋转轴时,转动惯量越小,物体越稳定。
4. 结论转动惯量是描述物体绕某个轴旋转时对其惯性的度量。
它与物体的质量、形状以及旋转轴的位置有关。
我们可以根据物体的几何形状和分布情况,使用特定的公式来计算转动惯量。
10种常见刚体转动惯量公式
![10种常见刚体转动惯量公式](https://img.taocdn.com/s3/m/9bfe8c81f424ccbff121dd36a32d7375a517c65f.png)
10种常见刚体转动惯量公式
刚体转动惯量是指刚体在转动运动时所需要的转动势能。
它可以衡量刚体转动时所需要的力的大小。
常见的刚体转动惯量公式有以下10种:
1.圆柱体转动惯量公式:I=1/2mr^2
2.圆锥体转动惯量公式:I=1/3mr^2
3.球体转动惯量公式:I=2/5mr^2
4.圆筒体转动惯量公式:I=1/2mr^2
5.正方体转动惯量公式:I
6.三棱锥体转动惯量公式:I=1/3mr^2
7.六棱锥体转动惯量公式:I=1/4mr^2
8.五棱锥体转动惯量公式:I=1/5mr^2
9.四棱锥体转动惯量公式:I=1/6mr^2
10.八棱锥体转动惯量公式:I=1/8mr^2
在上述公式中,m表示刚体的质量,r表示刚体的转动半径。
转动惯量计算公式-转动惯量公式
![转动惯量计算公式-转动惯量公式](https://img.taocdn.com/s3/m/1a8ae329bb4cf7ec4bfed0a2.png)
1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)之樊仲川亿创作82MD J =对于钢材:341032-⨯⨯=gLrD J π)(1078.0264s cm kgf L D ⋅⋅⨯-M-圆柱体质量(kg);D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-资料比重(gf /cm 3)。
2.丝杠折算到马达轴上的转动惯量:2iJsJ =(kgf·cm·s 2)J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,12z z i =3. 工作台折算到丝杠上的转动惯量g w22⎪⎭⎫ ⎝⎛⋅=n v J π g w2s 2⎪⎭⎫ ⎝⎛=π(kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g=980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:())s cm (kgf 2g w 122221⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++=πs J J iJ J S tJ 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2gw R J =(kgf·cm·s 2)R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量⎪⎪⎭⎫⎝⎛++=2221g w 1R J i J J tJ 1,J 2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2);R-齿轮z 分度圆半径(cm);w-工件及工作台重量(kgf)。
最全的转动惯量的计算
![最全的转动惯量的计算](https://img.taocdn.com/s3/m/699051e7aeaad1f346933f49.png)
v R
4m gh 2m M R
例题3 一质量为m、半径为R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。 解:设静摩擦力f的方向如 图所示,则由质心运动方程
l ac
F
圆柱对质心的转动定律:
F f maC
f
F l f R JC
纯滚动条件为: aC R
1 2 圆柱对质心的转动惯量为: J C mR 2
联立以上四式,解得:
2F (R l ) aC 3mR
由此可见
R 2l f F 3R
当 l < R 2时, > 0,静摩擦力向后; f
当 l > R 2时, < 0,静摩擦力向前。 f
例一静止刚体受到一等于M0(N.m)的不变力矩的 作用,同时又引起一阻力矩M1, M1与刚体转动的 角速度成正比,即| M1 |= a(Nm),(a为常数)。又 已知刚体对转轴的转动惯量为J,试求刚体角速度 变化的规律。 已知:M0 J M1= –a |t=0= 0 求:(t)=? 解: 1)以刚体为研究对象; M+ 2)分析受力矩 M0 J M 1 3)建立轴的正方向; 4)列方程:
2)=?
Y Z
2)=?
N YZ
0
XO
r
mg
3g d cosd 0 2L 1 2 3g / 2 3g sin 0 2 2L 2L
/2
3g L
3)求N=? 轴对杆的力,不影响到杆的转动,但影响质 心的运动,故考虑用质心运动定理来解。
转动惯量计算公式-转动惯量公式
![转动惯量计算公式-转动惯量公式](https://img.taocdn.com/s3/m/633a292bd15abe23492f4dab.png)
1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)之蔡仲巾千创作对钢材:M-圆柱体质量(kg);D-圆柱体直径(cm);L-圆柱体长度或厚度(cm);r-资料比重(gf /cm3).2.丝杠折算到马达轴上的转动惯量:(kgf·cm·s2)Js–丝杠转动惯量(kgf·cm·s2);i-降速比,3.工作台折算到丝杠上的转动惯量(kgf·cm·s2)v-工作台移动速度(cm/min);n-丝杠转速(r/min);w-工作台重量(kgf);g-重力加速度,g=980cm/s2;s-丝杠螺距(cm)2.丝杠传动时传动系统折算到驱轴上的总转动惯量:J1-齿轮z1及其轴的转动惯量;J2-齿轮z2的转动惯量(kgf·cm·s2);Js-丝杠转动惯量(kgf·cm·s2);s-丝杠螺距,(cm);w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量(kgf·cm·s2)R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量J1,J2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf·cm·s2);R-齿轮z分度圆半径(cm);w-工件及工作台重量(kgf).马达力矩计算(1) 快速空载时所需力矩:(2) 最年夜切削负载时所需力矩:(3) 快速进给时所需力矩:式中Mamax—空载启动时折算到马达轴上的加速力矩(kgf·m);Mf—折算到马达轴上的摩擦力矩(kgf·m);M0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m);Mat—切削时折算到马达轴上的加速力矩(kgf·m);Mt—折算到马达轴上的切削负载力矩(kgf·m).在采纳滚动丝杠螺母传动时,Ma、Mf、M0、Mt的计算公式如下:(4) 加速力矩:(kgf·m)Jr—折算到马达轴上的总惯量;T—系统时间常数(s);n—马达转速(r/min);当n=nmax时,计算Mamaxn=nt时,计算Matnt—切削时的转速(r/min)(5) 摩擦力矩:(kgf·m)F0—导轨摩擦力(kgf);s—丝杠螺距(cm);i—齿轮降速比;η—传动链总效率;一般η=0.7~0.85.(6) 附加摩擦力矩:(kgf·m)P0—滚珠丝杠预加载荷(kg·f);s—丝杠螺距(cm);η—传动链总效率;i —齿轮降速比;η0—滚珠丝杠未预紧式的效率,计算公式见本手册第2测第425页,一般η0≥0.9.(7)切削力矩:(kgf·m)Pt—进给方向的最年夜切削力(kg·f);s—丝杠螺距(cm);η—传动链总效率;i—齿轮降速比.。
转动惯量与功率计算公式
![转动惯量与功率计算公式](https://img.taocdn.com/s3/m/63ff79a1112de2bd960590c69ec3d5bbfc0ada46.png)
转动惯量与功率计算公式
转动惯量的计算公式:
1.对于质点转动:转动惯量(J)与质点的质量(m)和质点离旋转轴的距
离(r)的平方成正比,即J=m*r^2
2.对于集中质量的刚体转动:假设刚体由N个质点组成,每个质点的
质量分别为m1,m2,...,mN,它们离旋转轴的距离分别为r1,r2,...,rN,则刚体的转动惯量等于所有质点的转动惯量之和,即
J=m1*r1^2+m2*r2^2+...+mN*rN^2
3. 对于连续分布质量的刚体转动:刚体可以看做由无数个质点组成,质点的质量微元为dm,质点离旋转轴的距离为r,则刚体的转动惯量可以
用积分的形式表示,即J = ∫ r^2 dm,其中积分区间为整个刚体。
计算功率的公式:
功率(P)表示单位时间内所做的功,可以用两种公式计算:
1. 对于匀速直线运动:假设物体做功的力为F,物体的速度为v,角
度为θ,则功率可以用力F和速度v的点积来计算,即P = F * v *
cosθ,其中θ为力和速度之间的夹角。
2.对于旋转运动:假设物体转动的角速度为ω,转动的力矩为τ,
则功率可以用力矩τ和角速度ω的乘积来计算,即P=τ*ω。
对于匀速直线运动和旋转运动,如果力和速度或力矩和角速度的方向
相同,则功率为正值,表示物体在做正功;如果方向相反,则功率为负值,表示物体在受到外力反作用做负功。
以上是转动惯量和功率的计算公式。
在实际应用中,这些公式可以帮助我们计算物体的转动惯量和功率,从而理解并分析物体的运动特性。
最全的转动惯量的计算(经典实用)
![最全的转动惯量的计算(经典实用)](https://img.taocdn.com/s3/m/633f498868dc5022aaea998fcc22bcd126ff42ac.png)
最全的转动惯量的计算(经典实用)
转动惯量是描述物体旋转惯性大小的物理量,通常用I表示。
下面是最全的转动惯量计算方法:
1. 刚体转动惯量的定义公式为:I = ∫r²dm,其中r是质点到转
轴的距离,m是质点的质量。
将质点相加得到刚体的质量分布,因此整个刚体的转动惯量可以表示为:I = ∫r²dm,其中积分是
对整个刚体的所有小质点进行的。
2. 对于均匀密度的均匀球体,转动惯量可以用公式I =
(2/5)MR²来计算,其中M是球体的质量,R是球体的半径。
3. 对于均匀密度的长直圆柱体,转动惯量可以用公式I =
(1/2)MR²来计算,其中M是圆柱体的质量,R是圆柱体的半径,同时也是圆柱体绕着垂直于轴线的质量分布半径。
4. 对于均匀密度的长直棒,转动惯量可以用公式I = (1/12)ML²来计算,其中M是棒的质量,L是棒的长度。
5. 对于精细计算,可以将物体分解为若干个小物体进行计算,然后将它们的转动惯量相加。
这种方法适用于任何形状的物体,但需要计算的小物体数量较大,具有较高的复杂度。
6. 对于不规则物体,可以使用轴绕定理求解物体绕轴转动的转动惯量。
轴绕定理指出,如果一个物体绕一个与其重心相切的轴旋转,那么它的转动惯量等于绕过绕该轴垂直于该轴的一个轴旋转时的转动惯量加上一个关于该轴的平行轴定理项。
转动惯量计算公式
![转动惯量计算公式](https://img.taocdn.com/s3/m/d99fd9a2690203d8ce2f0066f5335a8102d266f2.png)
转动惯量计算公式
转动惯量是物理学中重要的概念,它描述了物体在围绕其转动轴的转动运动时所具有的性质。
由此可见,计算转动惯量是研究物理学中深入的内容。
本文将对转动惯量的计算公式进行详细阐述,帮助读者更好地理解转动惯量的概念。
首先要澄清的是,转动惯量是一个测量物体运动能力的量,它表示物体在沿直线以及绕自身轴旋转时所需要的力量。
因此,计算转动惯量的公式非常有用,让我们可以准确地计算物体在沿直线运动以及绕轴旋转时所需要的动能。
转动惯量的计算公式一般表示为:
I=m*r2
其中,I代表转动惯量,m表示物体的质量,r表示物体离旋转轴的距离。
这个公式表明,当物体的质量和转动轴离物体的距离均不变时,物体的转动惯量也不变。
另外,转动惯量的计算公式还可以进一步改进,用以更加精确地描述物体在沿直线运动和绕轴旋转时所需要的动能。
改进后的公式如下:
I=Σm*r2
这个公式表明,可以通过计算出每个部件所需要的质量和距离,以及这些部件之间的距离来计算出总的转动惯量。
总之,转动惯量是一个重要的概念,计算它的公式可以帮助我们更准确地描述物体运动所需要的动能。
有了这些计算公式,我们就可
以更好地研究物体的转动运动,从而更好地理解它所具有的物理学性质。
此外,转动惯量计算公式还有其他改进和发展,例如,可以考虑到物体外形和空间形状等。
以上都是转动惯量的重要概念,有助于更好地描述物体在沿直线运动和绕轴旋转时所需要的动能,从而帮助我们更深入地理解转动惯量的概念和应用。
机械设计转动惯量计算公式
![机械设计转动惯量计算公式](https://img.taocdn.com/s3/m/63ee25a5e87101f69f31954b.png)
1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)82MD J =对于钢材:341032-⨯⨯=gLrD J π)(1078.0264s cm kgf L D ⋅⋅⨯- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。
2. 丝杠折算到马达轴上的转动惯量:2i Js J =(kgf·c m·s 2) J s –丝杠转动惯量(kgf·c m·s 2); i-降速比,12z z i =3. 工作台折算到丝杠上的转动惯量gw22⎪⎭⎫ ⎝⎛⋅=n v J π g w2s 2⎪⎭⎫ ⎝⎛=π (kgf·c m·s 2)v -工作台移动速度(cm/min);n-丝杠转速(r/min); w-工作台重量(kgf);g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:())s cm (kgf 2g w 122221⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++=πs J J iJ J S tJ 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf ·cm ·s 2); J s -丝杠转动惯量(kgf ·cm ·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2gw R J(kgf ·c m·s 2)R-齿轮分度圆半径(cm);w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量⎪⎪⎭⎫⎝⎛++=2221g w 1R J i J J tJ 1,J 2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf ·c m·s 2);R-齿轮z 分度圆半径(cm);w-工件及工作台重量(kgf)。
最全的转动惯量的计算
![最全的转动惯量的计算](https://img.taocdn.com/s3/m/f5c67848fad6195f312ba681.png)
R
例题3 求质量为m、半径为R、厚为h的均质圆盘 对通过盘心并与盘面垂直的轴的转动惯量。
解:如图所示,将圆盘看成许多薄圆环组成。取 任一半径为 r,宽度为dr的薄圆环,此薄圆环的转 动惯量为
dJ ? r 2dm
dm为薄圆环的质量。以 ? 表示圆盘的质量体密度
dm ? ?dV ? ? ?2?rhdr
M+
2)分析受力矩
M0 J M1
3)建立轴的正方向; 4)列方程:
M 0 ? M1 ? J?
解:4)列方程:
M 0 ? M1 ? J?
? ? M 0 ? M1? M 0 ? a?
M+ M0
M1=–a?
d? ? M 0 ?J a?
dt
J
J
? 1 (ln M0 ? a? ) ? t
分离变量:
a
M0
Jd? dt?源自M0 ? a? J? ? ? d?
t dt ?
0 M 0 ? a?
解:对定滑轮 M ,由转动定律, 对于轴 O,有
RT ? J? ? 1 MR 2 ?
2
对物体 m ,由牛顿第二定律,
mg ? T ? ma
?
RO ?
M
T1
T2 a
mg h
滑轮和物体的运动学关系为 a ? R?
以上三式联立,可得物体下落的加速度为 a? m g m? M 2
物体下落高度 h时的速度
v ? 2ah ? 这时滑轮转动的角速度
? ?v?
R
4mgh 2m ? M
4m gh 2m ? M
R
例题3 一质量为 m、半径为 R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为 l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。
最全的转动惯量的计算
![最全的转动惯量的计算](https://img.taocdn.com/s3/m/fc047b559b6648d7c0c74600.png)
解:对定滑轮M,由转动定律, 对于轴O,有
RTJ1MR2
2
RO
M
T1
T2
对物体m,由牛顿第二定律,
mgTma
a mg
h
滑轮和物体的运动学关系为 a R
A
Ox
dx
有
l
J0
r2dml2x2dxl3
l 2
12
将 l m代入上式,得:
J0
1 ml2 12
(2)当转轴通过棒的一端A并与棒垂直时
A
xO
dx l
J0
r2dmlx2dx1ml2
0
3
例题2)半径为R的质量均匀分布的细圆环,质 量均为m,试分别求出对通过质心并与环面垂 直的转轴的转动惯量。
M外12mgslinJ
P o
J 1 ml2 3
3g sin
2l
ddt dd ddt32glsin d3gsind
2l
初始条件为:=0,=0
0d32gl 0sind
3g(1cos )
2l
例题2 一个质量为M,半径为R的定滑轮(当作均
d Z 心Z高处切一厚为dz的薄圆 盘。其半径为
O X
R
Y r R2Z2
其体积:
dV r2d Z(R 2Z2)dZ
其质量: dm dV (R 2Z2)dZ
其转动惯量:d J1r2d m 1(R2Z2)2d Z
22
dJ 1 r2dm 2
1(R2Z2)2dZ
转动惯量的计算
![转动惯量的计算](https://img.taocdn.com/s3/m/e4e4427f27284b73f24250ca.png)
说明:本文《转动惯量的计算》特地收集贡献出来供各位工程技术人员在参阅本人劣作《风机动平衡调试方法》时参考。
深圳华晶玻璃瓶有限公司工程部(动力车间)李宜斌编辑2010-10-21转动惯量的计算转动惯量应用于刚体各种运动的动力学计算中。
单个质点的转动惯量:I = m× r2.质点系的转动惯量:I = Σ m i×r i2.质量连续分布的刚体的转动惯量:I = ∫m r2dm。
以上各式中的r理解为质点到转轴的距离。
刚体绕轴转动惯性的度量。
其数值为J=∑ mi*ri^2,式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。
求和号(或积分号)遍及整个刚体。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。
规则形状的均质刚体,其转动惯量可直接计得。
不规则刚体或非均质刚体的转动惯量,一般用实验法测定。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。
由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
垂直轴定理:一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
表达式:Iz=Ix+Iy刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。
由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。
惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。
补充对转动惯量的详细解释及其物理意义:先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
10种常见刚体转动惯量公式
![10种常见刚体转动惯量公式](https://img.taocdn.com/s3/m/12937e62dc36a32d7375a417866fb84ae45cc321.png)
10种常见刚体转动惯量公式研究刚体的运动状态,刚体的转动惯量是非常重要的物理量之一、它描述了刚体绕其中一轴线旋转时所具有的惯性特性。
转动惯量的大小和刚体质量的分布以及轴线的位置有关。
下面将介绍十种常见的刚体转动惯量公式,并对每一种情况进行详细的说明。
1.关于轴线的质量均匀分布若沿轴线方向均匀分布有质量m的刚体,则其转动惯量公式为:I=m*r^2其中I表示转动惯量,m表示刚体的质量,r表示刚体质量均匀分布点到轴线的距离。
2.点状物体绕轴线转动对于一个点状物体质量为m,绕与通过该点的轴线转动,则其转动惯量公式为:I=m*r^2其中r表示点状物体到轴线的距离。
3.均匀细杆绕一端轴线转动若沿杆的一端作为轴线,质量为m,长度为L的均匀细杆绕该轴线转动,则其转动惯量公式为:I=(1/3)*m*L^24.空心球绕直径轴线转动对于一个质量为m,外半径为R,内半径为r的空心球绕直径轴线转动,则其转动惯量公式为:I=(2/3)*m*R^25.均质球体绕直径轴线转动对于一个均匀密度的球体,质量为m,直径为d,绕直径轴线转动,则其转动惯量公式为:I=(2/5)*m*(d/2)^26.长方体绕通过质心的轴线转动对于一个质量为m,长为L,宽为W,高为H的长方体绕通过质心的轴线转动,则其转动惯量公式为:I=(1/12)*m*(L^2+W^2)7.绕一个边的正方体绕通过质心的轴线转动对于一个边长为a,质量为m的正方体绕通过质心和垂直于一条边的轴线转动,则其转动惯量公式为:I=(1/6)*m*a^28.绕对角线的长方体转动对于一个质量为m,长为L,宽为W,高为H的长方体绕对角线转动,则其转动惯量公式为:I=(1/12)*m*(L^2+W^2+H^2)9.圆环绕垂直于轴线的直径转动对于半径为R,质量为m的环绕垂直于轴线的直径旋转,则其转动惯量公式为:I=m*R^210.圆盘绕轴线转动对于半径为R,质量为m的圆盘绕瞬心轴线转动,则其转动惯量公式为:I=(1/2)*m*R^2以上是十种常见的刚体转动惯量公式。
最全的转动惯量的计算-实心圆柱体转动惯量
![最全的转动惯量的计算-实心圆柱体转动惯量](https://img.taocdn.com/s3/m/760344e40875f46527d3240c844769eae009a3ce.png)
最全的转动惯量的计算实心圆柱体转动惯量
例题1 求质量为m,长为l的均匀细棒对下面转轴 的转动惯量:(1)转轴通过棒的中心并和棒垂直; (2) 转轴通过棒的一端并和棒垂直。
dJ r2dm
dm为薄圆环的质量。以 表示圆盘的质量体密度
d m d V2 rd h r
dJ2r3hdr
JdJ0 R2r3hdr1 2R 4h
m
R 2 h
代入得
J 1 mR2
2
J与h无关
一个质量为m、半径为R的实心圆柱体对其中心 轴的转动惯量也与上述结果相同。
例4)求一质量为m的均匀实心球对其一条直径
解:对定滑轮M,由转动定律, 对于轴O,有
RTJ1MR2
RO
M
T1
2
T2
对物体m,由牛顿第二定律,
mgTma
a mg
h
滑轮和物体的运动学关系为 a R
以上三式联立,可得物体下落的加速度为
a m g mM 2
物体下落高度h时的速度
v 2ah 4mgh 2mM
这时滑轮转动的角速度
v
R
4mgh 2m M
3
N
YZ
XO
r
mg
2)=? 3g sin
2L
ddtdd ddt d 3gsin( )
d 2L 2
d3gcosd
2L
两边积分:
/2
d
3gcosd
0
0 2L
2)=?
N XO
Y
Z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dl
R
例题3 求质量为m、半径为R、厚为h的均质圆盘 对通过盘心并与盘面垂直的轴的转动惯量。
解:如图所示,将圆盘看成许多薄圆环组成。取 任一半径为r,宽度为dr的薄圆环,此薄圆环的转 动惯量为
dJ r dm
2
dm为薄圆环的质量。以 表示圆盘的质量体密度
dm dV 2rhdr
例一静止刚体受到一等于M0(N.m)的不变力矩的 作用,同时又引起一阻力矩M1, M1与刚体转动的 角速度成正比,即| M1 |= a(Nm),(a为常数)。又 已知刚体对转轴的转动惯量为J,试求刚体角速度 变化的规律。 已知:M0 J M1= –a |t=0= 0 求:(t)=? 解: 1)以刚体为研究对象; M+ 2)分析受力矩 M 0 J M1 3)建立轴的正方向; 4)列方程:
M 0 M1 J
4)列方程: 解:
M 0 M1 J
M+ M0
分离变量:
M1=–a M 0 M 1 M 0 a J J d M 0 a M 0 a 1 t dt J (ln )
a
d dt M dJ
1 2 2 2 ( R Z ) dZ 2 R
R
4 8 2 3 5 2 m R R mR 3 15 5
(1)平行轴定理
JC JD
J D J C md2
d
C
(2)薄板的正交轴定理
z o x
Jz Jx J y
y
常见刚体的转动惯量
1 RT J MR 2 2
M
T1 T2 a mg h
对物体m,由牛顿第二定律,
mg T ma
滑轮和物体的运动学关系为 a R
以上三式联立,可得物体下落的加速度为
m a g mM 2
物体下落高度h时的速度
4m gh v 2ah 2m M
这时滑轮转动的角速度
dx
有
J 0 r 2dm x 2dx
l 2
l 2
l 3
12
将 l m 代入上式,得:
1 J 0 ml 2 12
(2)当转轴通过棒的一端A并与棒垂直时
A
x
O
l
dx
1 2 J 0 r dm x dx ml 0 3
2 l 2
例题2)半径为R的质量均匀分布的细圆环,质 量均为m,试分别求出对通过质心并与环面垂 直的转轴的转动惯量。
M0
J
M 0 a e M0
at J
例)设一细杆的质量为m,长为L,一端支以 枢轴而能自由旋转,设此杆自水平静止释放。 求: 1 )当杆与铅直方向成角时的角加速度: 2 )当杆过铅直位置时的角速度: 3 ) 当杆过铅直位置时,轴作用于杆上的力。 N Y 已知:m,L Z L 求:,,N XO 解:1) 以杆为研究对 象 受力: mg,N(不产生 mg 对轴的力矩)
dJ 2r hdr
3
代入得
1 4 J dJ 2r hdr R h 0 2 m 2 R h
R 3
1 2 J mR 2
J与h无关 一个质量为m、半径为R的实心圆柱体对其中心 轴的转动惯量也与上述结果相同。
例4)求一质量为m的均匀实心球对其一条直径 为轴的转动惯量。 解:一球绕Z轴旋转,离球 Z r d Z 心Z高处切一厚为dz的薄圆 Z 盘。其半径为 O R Y
F f maC
f
F l f R JC
纯滚动条件为: aC R
1 2 圆柱对质心的转动惯量为: J C mR 2
联立以上四式,解得:
2F (R l ) aC 3mR
由此可见
R 2l f F 3R
当 l < R 2时, f > 0,静摩擦力向后;
当 l > R 2时, f < 0,静摩擦力向前。
例题1 求质量为m,长为l的均匀细棒对下面转轴 的转动惯量:(1)转轴通过棒的中心并和棒垂直; (2) 转轴通过棒的一端并和棒垂直。
解:(1) 在棒上离轴x处,取一长度元dx(如图所 示),如果棒的质量线密度为,则长度元的质 量为dm=dx,根据转动惯量计算公式:
J r dm
2
A
O l
x
v R
4m gh 2m M R
例题3 一质量为m、半径为R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。 解:设静摩擦力 f 的方向如 图所示,则由质心运动方程
l ac
F
圆柱对质心的转动定律:
r R Z
2
2
X
其体积:
2 2 2
dV r dZ ( R Z )dZ 2 2 其质量: dm dV ( R Z )dZ
1 1 2 2 2 2 其转动惯量: dJ r dm ( R Z ) dZ 2 2
1 2 dJ r dm 2 1 2 2 2 ( R Z ) dZ 2
J m r2
J mr2 / 2
J mr2 / 2 J m(r12 r22 ) / 2
J m l2 / 12
J mr2 / 2
J 2m r2 / 5
J 2 m r2 / 3
例题1 一长为l,质量为m的匀质细杆竖直放置, 其下端与一固定铰链o相连,并可绕其转动.当其 受到微小扰动时,细杆将在重力的作用下由静止 开始绕铰链o转动.试计算细杆转到与铅直线呈 角时的角加速度和角速度. 解:受力分析
取任一状态,由转动定律
P o
1 M 外 mgl sin J 2
1 2 J ml 3
3g sin 2l
d d d 3 g sin d t d d t 2l
3g d sin d 2l
初始条件为:=0,=0
0
3g d 2l
0
sin d
3g (1 cos ) 2l
例题2 一个质量为M,半径为R的定滑轮(当作均 匀圆盘)上面绕有细绳。绳的一端固定在滑轮边 上,另一端挂一质量为m的物体而下垂。忽略轴处 摩擦,求物体m由静止下落h高度时的速度和此时 滑轮的角速度。 解:对定滑轮 M ,由转动定律, R O 对于轴O,有