西城区学习探究诊断四边形
西城区学习探究诊断 第十二章 轴对称
第十二章轴对称测试1轴对称学习要求1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.如果一个图形沿着一条直线_____,直线两旁的部分能够_____,那么这个图形叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形关于这条直线(或轴)_____.2.把一个图形沿着某一条直线折叠,如果它能够与_____重合,那么这两图形叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是(1)成轴对称的两个图形是_____;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.(1)角是轴对称图形,它的对称轴是_____;(2)线段是轴对称图形,它的对称轴是_____;(3)圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形的是()图1-17.在图1-2的几何图形中,一定是轴对称图形的有()图1-2A.2个B.3个C.4个D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()图1-3A.30°B.50°C.90°D.100°9.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d 样式,将纸展开铺平,所得到的图形是图1-5中的()图1-4图1-510.如图1-6,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为()图1-6A.60°B.67.5°C.72°D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.(1)正方形(2)正三角形(3)相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BDA'的度数.图1-813.在图1-9中你能否将已知的正方形按如下要求分割成四部分,(1)分割后的图形是轴对称图形;(2)这四个部分图形的形状和大小都相同.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、思考15.已知,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED 的度数.图1-11测试2 线段的垂直平分线学习要求1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____ 叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的判定,由于与一条线段两个端点距离相等的点在_____,并且两点确定_____,所以,如果两点M、N分别与线段AB两个端点的距离相等,那么直线MN是_____.4.完成下列各命题:(1)线段垂直平分线上的点,与这条线段的_____;(2)与一条线段两个端点距离相等的点,在_____;(3)不在线段垂直平分线上的点,与这条线段的_____;(4)与一条线段两个端点距离不相等的点,_____;(5)综上所述,线段的垂直平分线是_____的集合.5.如图2-1,若P是线段AB的垂直平分线上的任意一点,则(1)ΔPAC≌_____;(2)PA=_____;(3)∠APC=_____;(4)∠A=_____.图2-16.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.图2-2综合、运用、诊断一、解答题8.已知:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.已知:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.作法:图2-4拓展、探究、思考10.已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称?若对称,请说明理由.图2-6测试3 轴对称变换学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.如果由一个平面图形得到它关于某一条直线l的对称图形,那么,(1)这个图形与原图形的_____完全一样;(2)新图形上的每一点,都是_____;(3)连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出已知图形关于给定直线l的对称图形.(1)图3-1(2)图3-2(3)图3-35.如图3-4所示,已知平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.(不要求写作法)图3-46.如图3-5所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.(不要求写作法)图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:①分别作两条对角线(图①),②过一条边的四等分点作该边的垂线段(图②),(图②中的两个图形的分割看作同一种方法).请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.(只画图,不写作法)图3-6综合、运用、诊断8.已知:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l 于P点,若A'B=a.(1)求AP+PB;(2)若点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.图3-79.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8(2)如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9(3)如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、思考10.(1)如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图3-11(2)如图3-12,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小.图3-1211.(1)已知:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB 边上求作一点Q,使得ΔPMQ的周长最小;图3-13(2)已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P 到点M的距离与点P到OA边的距离之和最小.图3-14测试4用坐标表示轴对称学习要求1.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y 轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.课堂学习检测一、解答题2.已知:线段AB,并且A、B两点的坐标分别为(-2,1)和(2,3).(1)在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1(2)在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.图4-23.如图4-3,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、思考5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.图4-5实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为_____ (不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.测试5 等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测一、填空题1._____的_____叫做等腰三角形.2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.图5-13.如图5-1,根据已知条件,填写由此得出的结论和理由.(1)∵ΔABC中,AB=AC,∴∠B=______.()(2)∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.()(3)∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.()(4)∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.()4.等腰三角形中,若底角是65°,则顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.6.等腰三角形一个角为70°,则其他两个角分别是_____.7.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的底角等于_____.二、选择题8.等腰直角三角形的底边长为5cm,则它的面积是()A.25cm2B.12.5cm2C.10cm2D.6.25cm29.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cmC.63cm和51cm D.以上都不正确10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于()A.45°B.36°C.90°D.135°综合、运用、诊断一、解答题11.已知:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.图5-212.已知:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.图5-313.已知:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.图5-4拓展、探究、思考14.已知:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)ΔDEF为等腰直角三角形.图5-515.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.(1)作出M点和N点.(2)求出M点和N点的坐标.图5-6测试6 等腰三角形的判定学习要求掌握等腰三角形的判定定理.课堂学习检测一、填空题1.等腰三角形的判定定理是_________________________________________________.2.ΔABC中,∠B=50°,∠A=80°,AB=5cm,则AC=______.3.如图6-1,AE∥BC,∠1=∠2,若AB=4cm,则AC=____________.4.如图6-2,∠A=∠B,∠C+∠CDE=180°,若DE=2cm,则AD=____________.图6-1 图6-2 图6-3 图6-45.如图6-3,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.6.如图6-4,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______.7.ΔABC中,CD平分∠ACB,DE∥BC交AC于E,DE=7cm,AE=5cm,则AC=______.8.ΔABC中,AB=AC,BD是角平分线,若∠A=36°,则图中有______个等腰三角形.9.判断下列命题的真假:(1)有两个内角分别是70°、40°的三角形是等腰三角形.()(2)平行于等腰三角形一边的直线所截得的三角形仍是等腰三角形.()(3)有两个内角不等的三角形不是等腰三角形.()(4)如果一个三角形有不在同一顶点处的两个外角相等,那么这个三角形是等腰三角形.()综合、运用、诊断一、解答题10.已知:如图6-5,ΔABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.图6-511.已知:如图6-6,ΔABC中,AB=AC,E在CA的延长线上,ED⊥BC.求证:AE=AF.图6-612.已知:如图6-7,ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.图6-713.如图6-8,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.图6-8拓展、探究、思考14.如图6-9,若A、B是平面上的定点,在平面上找一点C,使ΔABC构成等腰直角三角形,问这样的C点有几个?并在图6-9中画出C点的位置.图6-915.如图6-10,对于顶角∠A为36°的等腰ΔABC,请设计出三种不同的分法,将ΔABC 分割为三个三角形,并且使每个三角形都是等腰三角形.图6-10测试7 等腰三角形的判定与性质学习要求熟练运用等腰三角形的判定定理与性质定理进行推理和计算.课堂学习检测一、填空题1.如果一个三角形的两条高线相等(如图7-1),那么这个三角形一定是______.图7-12.如图7-2,在ΔABC中,高AD、BE交于H点,若BH=AC,则∠ABC=______.图7-23.如图7-3,ΔABC中,AB=AC,AD=BD,AC=CD,则∠BAC=______.图7-34.如图7-4,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE=ED=DB=BC,则∠A的度数为______°.图7-45.如图7-5,ΔABC是等腰直角三角形,BD平分∠ABC ,DE⊥BC于点E,且BC=10cm,则△DCE的周长为______cm.图7-5二、选择题6.△ABC中三边为a、b、c,满足关系式(a-b)(b-c)(c-a)=______图7-50,则这个三角形一定为()A.等边三角形B.等腰三角形C.等腰钝角三角形D.等腰直角三角形7.若一个三角形是轴对称图形,则这个三角形一定是()A.等边三角形B.不等边三角形C.等腰三角形D.等腰直角三角形8.如图7-6,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( )A .4个B .5个C .6个D .7个图7-6 图7-79.等腰三角形两边a 、b 满足|a -b +2 |+(2a +3b -11)2=0,则此三角形的周长是( )A .7B .5C .8D .7或510.如图7-7,ΔABC 中,AB =AC ,BE =CD ,BD =CF ,则∠EDF = ( )A .2∠AB .90°-2∠AC .90°-∠AD .A o ∠-2190 三、解答题11.已知:如图7-8,AD 是∠BAC 的平分线,∠B =∠EAC ,EF ⊥AD 于F .求证:EF 平分∠AEB .图7-812.已知:如图7-9,在ΔABC 中,CE 是角平分线,EG ∥BC ,交AC 边于F ,交∠ACB的外角 (∠ACD )的平分线于G ,探究线段EF 与FG 的数量关系并证明你的结论.图7-913.如图7-10,过线段AB 的两个端点作射线AM ,BN ,使AM ∥BN ,请按以下步骤画图并回答.(1)画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角?(2)过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现?请证明你的猜想.(3)试猜想AD,BC与AB有什么数量关系?图7-1014.已知:如图7-11,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E.(1)求证:BC=AE+BE;(2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.图7-11测试8 等边三角形学习要求掌握等边三角形的性质和判定.课堂学习检测一、填空题1._____的_____叫做等边三角形.2.等边三角形除一般的等腰三角形的性质外,它的特有性质主要有:(1)边的性质:_____;(2)角的性质:_____;(3)对称性:等边三角形是_____图形,它有_____ 对称轴.3.等边三角形的判定方法:(1)三条边_____的_____是等边三角形;(2)三个角_____的_____是等边三角形;(3)_____的等腰三角形是等边三角形.4.含30°角的直角三角形的一个主要性质是______.5.判断下列命题的真假:①有一个外角是120°的等腰三角形是等边三角形.()②有两个外角相等的等腰三角形是等边三角形.()③有一边上的高也是这边上的中线的等腰三角形是等边三角形.()④三个外角都相等的三角形是等边三角形.()6.已知:如图8-1,ΔABC是等边三角形,AE⊥BC于E,AD⊥CD于D,若AB∥CD,则图中60°的角有_____个.图8-17.如图8-2,B、C、D在一直线上,ΔABC、ΔADE是等边三角形,若CE=15cm,CD =6cm,则AC=_____,∠ECD=_____.图8-28.如图8-3,已知ΔABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=_____cm.图8-3综合、运用、诊断解答题9.已知:如图8-4,ΔABC和ΔBDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.图8-410.如图8-5,已知ΔABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)求证:AF=BD.图8-511.已知:如图8-6,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD的长______.图8-6拓展、探究、思考12.(1)如图8-7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;图8-7(2)如图8-8,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O 旋转(△OAB和△OCD不能重叠),求∠AEB的大小.图8-813.已知:如图8-9,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE.图8-914.已知:如图8-10,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB =4.(1)在AB边上求作点P,使PC+PD最小;图8-10(2)求出(1)中PC+PD的最小值.。
西城学探诊九上数学答案
答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第二十二章 一元二次方程测试11.1,最高,ax 2+bx +c =0 (a ≠0).2.2x 2-6x -1=0,2,-6,-1. 3.k ≠-4.4.x 2-12x =0,1,-12,0.或-x 2+12x =0,-1, 12,0 5.-2. 6..32±=y 7.A . 8.A . 9.C . 10.C .11.y 1=2,y 2=-2. 12..23,2321--=+-=x x 13.x 1=-11,x 2=9. 14.x 1=0,x 2=-2. 15..12,03)12(22+=-++x x 16.(2-n )x 2+nx +1-3n =0,2-n ,n ,1-3n .(或(n -2)x 2-nx +3n -1=0,n -2,-n ,3n -1.) 17.1. 18.A . 19.C . 20.C . 21.D . 22.⋅±=3322.1x 23..14,5421-=-=x x 24.x 1=1,x 2=7. 25..,21m n x m n x +-=+=26.k =-1,x =2. 27.C .28.m =1不合题意,舍去,m =-1.29.∵3<k <7,k 为整数,∴k 可取4,5,6,当k =5时方程成立,∴三角形边长为2cm ,5cm ,5cm ,则周长为12cm .测试2 1.16,4. 2.⋅43,169 3.⋅2,42p p 4.⋅a b a b 2,4225.).04(2422≥--±-=ac b aac b b x 6.2, 10,-3. 7.C . 8.D . 9.B . 10.B . 11..21±=x 12..33±=y13..72,7221--=+-=x x 14..332,321-==x x 15.x 1=-1,x 2=-3. 16.⋅=-=51,121x x 17..33,321,1,033)321(2-+=-+++x x18.2,-4 19. D . 20. C . 21. B . 22.⋅-=+=3102,310221x x 23..,2221n m m x n m m x +--=++-=24.⋅--=+-=231,23121x x 25.⋅==3321x x26.⋅-=+=2222,222221x x 27.mx x -==12,121 28.(x -2)2+1,x =2时,最小值是1.测试31.(1)>(2)=(3)<. 2.-1. 3.≥0. 4.m =0或m =-1. 5.B . 6.C . 7.B . 8.D .9.(1)k <1且k ≠0; (2)k =1; (3)k >1.10.a =2或3. 11.∆=m 2+1>0,所以方程有两个不相等的实数根. 12.C . 13.D . 14.C . 15.B . 16.C . 17.⋅-===21,421x x m 18.提示:∆=-4(k 2+2)2 <0. 19.2. 20.∵m <0,∴∆=m 2+4-8m>0.21.设两个方程的判别式分别为∆1,∆ 2,则∆1=a 2-4c ,∆2=b 2-4d .∴∆1+∆ 2=a 2+b 2-2ab =(a -b )2≥0.从而∆1,∆ 2中至少有一个非负数,即两个方程中至少有一个方程有实数根.测试4 1.x =0,x 2=3. 2..2,2721-==x x 3.⋅==32,021x x4.x 1=x 2=-3. 5..6,021==x x 6..322,021-==x x 7.x =1,x 2=3. 8.x 1=x 2=2. 9. B . 10. D .11.⋅==32,221x x 12.⋅==33,021x x 13.x 1=7,x 2=-4. 14.x 1=2b ,x 2=-b .15.x 1=0,x 2=2. 16..3,2521=-=x x17.x 1=3,x 2=4.18..2,021==x x19.x 1=-1,x 2=-7.20.C . 21.D . 22.C . 23.x 1=0,x 2=-10. 24.⋅-=-=34,821x x25..2,221b a x b a x +=-=26.⋅==b a x a b x 21,27.(1)∆=(m 2-2)2.当m ≠0时,∆≥0;(2)(mx -2)(x -m )=0,m =±1或m =±2.测试5 1.⋅-=+=331,33121x x 2.x 1=1,x 2=-1.3..1,3221==x x4..102,10221-=+=x x5.B . 6.B . 7.B . 8.D .9.⋅-==21,3221x x10..32,3221-==x x 11.x 1=m +n ,x 2=m -n . 12.⋅==ax a x 2,2121 13.51,021==x x (因式分解法). 14.x 1=16,x 2=-14(配方法). 15.6191±=x (分式法). 16.3±=x (直接开平方法). 17.x 1=16,x 2=-1(因式分解法). 18.2121==x x (公式法). 19.2215±=x (公式法). 20.x =8.21.x =-a ±b . 22.B . 23.B . 24.x 1=2,x 2=-2.25..227±=y 26.⋅==22,221x x 27.k =0时,x =1;k ≠0时,.1,121==x k x28.0或⋅3529.∆=4[(a -b )-(b -c )]2=4(a -2b +c )2=0.30.3(x -1)(x +3). 31.⋅+---)21)(21(x x32.,,aca b - (1);25,23-- (2)-8,-6;(3);34,2 (4).2;94;372;916;1⑤④③②①-- 测试61.(1)工用时间工作总量 (2)速度×时间.2.1.1a ,1.21a ,3.31a . 3.a 81100元. 4.D . 5.D . 6.三个数7,9,11或-11,-9,-7. 7.三边长为.2,226,226+- 8.50%. 9.2cm . 10.1米. 11.3000(1+x )2=5000.12.10%. 13.(50+2x )(30+2x )=1800. 14.(1)1800;(2)2592.15.长28cm ,宽14cm . 16.10%. 17.10元或20元. 18.2分钟. 19.(1)水蚀和风蚀造成的水土流失面积分别为165万km 2和191万km 2;(2)平均每年增长的百分数为10%. 第二十三章 旋 转测试11.一点O ,一个角度,旋转中心,旋转角,旋转中心,旋转角. 2.对应点.3.O ,90°,A '点,A 'B ',∠B ',∠AO A '=90°.4.O点,∠DOA或∠FOC或∠EOB,DO,DE,∠DFE.5.120.6.180.7.270.8.距离,旋转角,全等.9.B.10.D.11.D.12.C.13.A.14.答案不唯一,如可看成正△ACE绕其中心旋转60°得到的.15.可看成四边形AFOJ绕O点每次旋转72°,共旋转了四次得到的.16.略.17.略.18.物体A向右平移,移动的距离是20 cm.19.△CBE可看成由△ABF按顺时针旋转90°得到的,所以△CBE≌△ABF,并且CE=AF,AF⊥CE.20.分两类:(1)A与C是对应点.(2)B与C是对应点,对(1)的作法:(1)连结AC,作线段AC的垂直平分线l1;(2)连结BD,作线段BD的垂直平分线l2,与l1交于O点,则O点为所求.同理可作出(2)的O′选点.21.提示:如图1,以C为旋转中心,将△APC绕C点逆时针旋转60°得到△BDC,易证△PCD为等边三角形,△PBD是以BP,AP(=BD),CP(=PD)为三边的三角形.∠PBD =53°,∠BPD=64°,∠PDB=63°.图1测试21.180°,重合,对称中心,对称点.2.(1)线段,对称中心,平分;(2)全等图形.3.180°,重合,对称中心.4.中心对称,它的中点.5.中心对称,它的两条对角线的交点.6.中心对称,它的圆心.7.AB=CD且AB∥CD或AB与CD共线.8.C点,点F,D点,EG,EG,C点,平分,△FGE.9.OF=OE,全等.10.D.11.B.12.C.13.C.14.略.15.作法:分别连结CG、BF,则它们的交点O为两四边形的对称中心.其理由是关于中心对称的两个图形,对称点所连线段都经过对称中心,而CG、BF两线段不共线,所以它们的交点即为对称中心. 16.略. 17.18.(1)A 1(1,-1)、B 1(3,-2)、C 1(4,1).(2)A 2(3,-5)、B 2(5,-6)、C 2(6,-3).19.(1)平移变换、轴对称变换、旋转变换.一个图形经过平移、轴对称、旋转变换,它的形状和大小都不会改变.即所得的图形与原图形全等.(2)a =5,b =2,c =5,(a +b +c )a +b -c =122=144. 20.l 1∶y =2x -3, l 2∶y =-2x -3, l 3∶y =-2x +1. 21.第2张,是中心对称图形.测试3 1.22. 2.⋅333.⋅-)3,1( 4..52 5.1 6.60.7.B . 8.B . 9.A . 10.A .11.提示:如图,以BC 为边向形外作等边△BCE ,连结AC ,AE .可证△BCD ≌△ECA ,AE =BD ,∠ABE =90°,在Rt △ABE 中,有AB 2+BE 2=AE 2,即AB 2+BC 2=BD 2.11题图12.提示:如图,延长EC 到M ,使CM =AF ,连结BM .易证△AFB ≌△CMB ,∠4=∠M .又AD ∥BC ,∴4=∠2+∠5=∠1+∠5=∠3+∠5. ∴∠M =∠EBM .∴BE =EM =AF +CE .12题图13.提示:延长FD 到H ,使DH =BE ,易证△ABE ≌△ADH .再证△AEF ≌△AHF .21=∠=∠∴FAH EAF .21BAD EAH ∠=∠ 14.提示:如图,(1)连结CD ,证△CDE ≌△BDF .CE =BF . ∵CA =CB , ∴ AE =CF .在Rt △CEF 中,CE 2+CF 2=EF 2,∴AE 2+BF 2=EF 2.(2)延长FD 到M ,使DM =DF ,连结AM 、EM ,先证△BFD ≌△AMD .∴AM =BF ,∠DAM =∠B ,再证EM =EF .14题图第二十四章 圆测试11.平面,旋转一周,图形,圆心,半径,⊙O ,圆O . 2.圆,一中同长也.3.(1)半径长,同一个圆上,定点,定长,点. (2)圆心的位置,半径的长短,圆心,半径长. 4.圆上的任意两点,线段,圆心,弦,最长. 5.任意两点间,弧,圆弧AB ,弧AB . 6.任意一条直径,一条弧.7.大于半圆的弧,小于半圆的弧. 8.等圆.9.(1)OA ,OB ,OC ;AB ,AC ,BC ,AC ;;及(2)40°,50°,90°.10.(1)提示:在△OAB 中,∵OA =OB ,∴∠A =∠B .同理可证∠OCD =∠ODC .又 ∵ ∠AOC =∠OCD -∠A ,∠BOD =∠ODC -∠B ,∴ ∠AOC =∠BOD . (2)提示:AC =BD .可作OE ⊥CD 于E ,进行证明. 11.提示:连结OD .不难得出∠C =36°,∠AOC =54°. 12.提示:可分别作线段AB 、BC 的垂直平分线.测试21.轴,经过圆心的任何一条直线,中心,该圆的圆心. 2.垂直于弦的直径平分弦,并且平分弦所对的两条弧. 3.弦,不是直径,垂直于,弦所对的两条弧.4.6. 5.8; 6..120,36o7.a 22,a 218.2. 9..13 10..13 11..24 12.提示:先将二等分(设分点为C ),再分别二等分和.13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.14.75°或15°. 15.22cm 或8cm .16.(1)作法:①作弦B B '⊥CD .②连结B A ',交CD 于P 点,连结PB .则P 点为所求,即使AP +PB 最短.(2)cm.32 17.可以顺利通过.测试31.顶点在圆心,角.2.⋅⨯nm360 3.它们所对应的其余各组量也分别相等 4.相等,这两条弦也相等. 5.提示:先证=.6.EF =GH .提示:分别作PM ⊥EF 于M ,PN ⊥GH 于N . 7.55°. 8.C .9.=3 .提示:设∠COD =α,则∠OPD =2α,∠AOD =3α=3∠BOC . 10.(1)作OH ⊥CD 于H ,利用梯形中位线.(2)四边形CDEF 的面积是定值,96221)(21⨯=⋅⋅⋅=⋅+=CD CH CD DE CF S =54.测试41.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等. 4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°. 6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C . 14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.38 15.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH . 17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC . 19.提示:连结MB ,证∠DMB =∠CMB .测试51.外,上,内. 2.以A 点为圆心,半径为R 的圆A 上.3.连结A ,B 两点的线段垂直平分线上. 4.不在同一直线上的三个点. 5.内接三角形,外接圆,外心,三边的垂直平分线. 6.内,外,它的斜边中点处. 7..4332R 8..3π2a 9.26cm . 10.20πcm . 11.略. 12.C . 13.D . 14.D . 15.B . 16.D . 17.A 点在⊙O 内,B 点在⊙O 外,C 点在⊙O 上. 18.)25,1(--,作图略. 测试61.D . 2.C . 3.C . 4.C . 5.D . 6.C . 7.72°.8.32°. 9.,cm 21045° 10.60°或120°. 11.提示:先证OD =OE . 12.4cm . 13.)0,32(A ,提示:连结AD . 14.略. 15.∠CAD =30°,.πcm 6)(π6122==AO S 提示:连结OC 、CD . 测试71.三,相离、相切、相交.2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点. 3.d >r ;d =r ;d <r .4.圆的切线垂直于过切点的半径.5.经过半径的外端并且垂直于这条半径的直线是圆的切线. 6.过A 点且与直线l 垂直的直线上(A 点除外). 7.(1)当cm 13600<<R 时;(2)cm 1360=R ;(3)当cm 1360>R 时. 8.提示:作PF ⊥OB 于F 点.证明PF =PE .9.直线DE 与⊙O 相切.提示:连结OA ,延长AO 交⊙O 于F ,连结CF .10.提示:连结OE 、OD .设OE 交BC 于F ,则有OE ⊥BC .可利用∠FEM +∠FME =90°.证∠ODA =90°. 11.提示:连结OF ,FC .12.BC 与半圆O 相切.提示:作OH ⊥BC 于H .证明.21EF OH =13.提示:连结OE ,先证OE ∥AC .14.BC =AC .提示:连结OE ,证∠B =∠A .15.直线PB 与⊙O 相切.提示:连结OA ,证ΔP AO ≌ΔPBO . 16.8cm .提示:连结OA .测试81.这点和切点之间的线段的长.2.两,切线长,圆心的连线,两条切线的夹角. 3.这个三角形的三边的距离.4.与三角形各边都相切,三角形三条角平分线的交点,内心. 5.1∶2∶32. 6.116°. 7.提示:连线OC ,OE .8.略. 9.略. 10.(1)70°;(2)20cm . 11.(1)r =3cm ; (2)c b a abr ++=(或2c b a r -+=,因为2c b a c b a ab -+=++). 12.).(21c b a r S ++=13.提示:由BOC A ∠=+∠o9021,可得∠A =30°,从而BC =10cm ,cm 310=AC .测试91.B . 2.B . 3.A . 4.C . 5.D .6.15πcm 2. 7.(1)相切;(2)∠BCD =∠BAC . 8.70°. 9.(1)略; (2)连结OD ,证OD ∥AC ; (3).325=DE 10.(1)△DCE 是等腰三角形; (2)提示:可得3==BC CE .11.(1)略; (2)AO =2.测试101.公共点,外部,内部.2.只有一个公共点,切点,外部,内部. 3.有两个公共点,交点,公共弦.4.d >r 1+r 2; d =r 1+r 2; r 1-r 2<d <r 1+r 2; d =r 1-r 2; 0≤d <r 1-r 2; d =0.5.C . 6.C . 7.2或4 8.4.(d 在2<d <14的范围内均可) 9.提示:分别连结O 1A 、O 1B 、O 2A 、O 2B . 10.cm 62.提示:分别连结O 1B ,O 1O 2,O 2C . 11.提示:连结AB . 12.7cm 或1cm . 13..m )231(+14.提示:作⊙O 1的直径AC 1,连结AB .15.相切.提示:作⊙O 2的直径BF ,分别连结AB ,AF . 16.(1)当0≤t ≤5.5时,d =11-2t ;当t >5.5时,d =2t -11.(2)①第一次外切,t =3;②第一次内切,;311=t ③第二次内切,t =11;④第二次外切,t =13.测试111.相等,角. 2.内接正n 边形.3.外接圆的圆心,外接圆的半径,圆心角,距离.4.⋅︒︒︒⋅-n n nn 360,360,180)2( 5.⋅+=n n n n a nr a r R 21,412226.135°,45°. 7.23:1:1(或3:2:2). 8..3:22 9.略. 10.C . 11.B . 12.B .13.(1);231R A A = (2)222R (3).222R 14.AB ∶A ′B ′=1∶2,S 内∶S 外=1∶2. 15.AB ∶A ′B ′=3∶2,S 内∶S 外=3∶4.测试121.;180πRn 2.由组成圆心角的两条半径,圆心角所对的弧,.21,360π2lR R n 3.S △OAB ,S 扇形. 4..9157,π516o ' 5.120°,216°. 6.3πcm . 7.A . 8.D . 9.B . 10..)8π43(2a - 11..π3838- 12.的长等于的长.提示:连结O 2D .13.提示:设A O '=R ,∠AOB =n °,由,180π,180)(π21Rn l d R n l =+=可得R (l 1-l 2)=l 2d .而.)(21212121)(2121)(21211212121d l l d l d l d l l l R R l d R l S +=+=+-=-+=测试131.直角边,圆锥,顶点,底面圆周上任意一点,高. 2.扇形,l ,2πr ,πrl ,πrl +πr 2. 3.8πcm ,20πcm 2,288°. 4.8πcm ,4cm ,,cm 2848πc m 2. 5.C . 6.B . 7.D . 8.B . 9.D . 10.B . 11.16πcm 2.12..cm 53 提示:先求得圆锥的侧面展开图的圆心角等于180°,所以在侧面展开图上,.5363,902222o =+=+==∠AB PA PB PAB第二十五章 概率初步测试11.(3)、(9)、(10)、(11);(1)、(2)、(4)、(5)、(6)、(7)、(8)、(12);(5); (12).2.D . 3.D . 4.C . 5.C .6.可能发生.虽然这个事件发生的几率很小,但它仍然是可能发生的事件,是不确定事件.7.纸片埋在2号区域的可能性最大.因为2号区域的面积是整个区域面积的,21而1号、3号区域的面积都是整个区域面积的,41当随意投入纸片时,落在2号区域的可能性要大.8.这个游戏是公平的.因为黑白两色的直角三角形都全等,且个数也分别相等,所以黑白两色直角三角形面积的和也分别相等,又因为黑白两色弓形的弦长都是直角三角形的斜边,所以黑白两色弓形面积的和也分别相等,因此黑白两色区域面积各占圆面积的50%,即镖扎在黑白两色区域面积的概率均为50%.9.两个人的说法都不同意.两个转盘的面积大小不同,但是蓝色部分所占总面积的比例相同,都是,41因此预计成功的机会都是25%.10.(1)左图中,可能处于A 区域或B 区域,可能性最大的是处于B 区域.右图中,可能处于1,2,3,4,5,6区域,处于各区域的可能性相同. (2)左图中,投掷结果可能为1,2,3,4,5,6,可能性一样. 右图中,投掷结果可能为1或2,可能性一样. (3)投掷结果可能为正面或反面,可能性一样.测试21.频率,概率. 2.0.15.3.(1)4,80%;(2)5006,50.1%,4994,49.9%;(3)0.5.4.D . 5.A . 6.(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 7.①、③、④. 8..50000019.D . 10.D . 11.A .12.最后一位数可以是0~9这10个数字中的一个,故正好按对密码的概率是⋅101 1314.不同意.10次的实验次数太少,所得频率不能充分代表概率,所以应多做实验,如100次实验后,用摸到1的次数除以100,才能近似代表概率值.15.不对.三种情况中,出现“一正一反”的有两种可能,其概率应为⋅=⨯2124116.(1);53(2);52 (3)0; (4)1; (5)小.测试3 1.红. 2.(1);61 (2)⋅313.,41 糖果.4.(1);541 (2);272 (3);5413 (4);2713 (5)⋅27265.D . 6.C . 7.B . 8.P (摸到2的倍数的卡片) ;21105== P (摸到3的倍数的卡片);103=P (摸到5的倍数的卡片)⋅==51102 9.中间两位可能是00~99中的一种情况,故一次就可打开手机的概率是.100110.⋅52 11.⋅41 12.⋅35813.C . 14.D . 15.B . 16.A .17.(1)值班顺序共有6种排列方法;(2)甲在乙前的有3种;(3)概率为⋅=2163 18.可能结果有6种,而猜正确的只能是一种,故概率是.6119.两张牌面数字之和共有16种等可能的结果,其中等于5的有4种,故其概率为;41和等于2和8的概率最小.20.(1)设计12个红球,8个白球,4个黄球;(2)设计红球和黄球各9个,白球6个.测试41.D . 2.D .3.(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙甲白 红 黑 白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑况,每种情况出现的机会均等,乙取胜的概率为⋅=3193 4.(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31 小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193==P (小李赢) ,3296== ,3231=/ ∴此游戏规则对双方是不公平的. 5.列表考虑所有可能情况:转盘A两个数字之积转盘B-1211 -1 02 1 -2 2 0 -4 -2 -11-2-1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P (小力获胜),127=P (小明获胜).125=∴这个游戏对双方不公平.6.剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274= (2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个, P (一人胜二人负).31279== 7.画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个, P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277=8.⋅61 9..43,41 10.⋅10000001 11.2. 12.B . 13.C .14.(1)黄球有654315=--÷(个);(2)任意摸出一个红球的概率是⋅15415..8116.(1)要求只有两个奇数即可;(2)要求必须有1,2,4,5,另外两个数只要大于6即可.因此可以选1,2,4,5,7,8.测试51.概率,频率. 2.8,12,4,26. 3.2. 4.200. 5.A . 6.B .7.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9. 8.可估计三色球总数为100%2525=个,则黄球约为40个,红球约为100-40-25=35个.9.9. 10.⋅154;4111.可能性是;101可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中任取两个,这两个均为红球的概率即为所求. 12.(1)10010052000=⨯(支),估计箱子里有100支不合格产品; (2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.13.(1)先求有标记数与总条数的比,67928得池塘鱼数242567928100=÷=条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.14.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为;20n重复多次实验,用实验频率估计理论概率;用2030n ÷求出袋中球的总数,再用总数减去30个橙球数,就得出放进去的白球数.15.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为,10001n-对手用户数量为m nm -1000名. 16.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为,1m则估计袋中棋子有10m 粒. 方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为,1n估计袋中原有白棋子(10n -10)粒.测试61.近似值,0. 2.1,30,6. 3.300. 4.⋅515.C . 6.B .7.(1)0.6;(2)0.6,0.4;(3)白球12,黑球8; (4)尝试自己设计出一种方案与同学交流. 8.能.设男教师人数为x ,则,200805050=+x 解得x =75,估计该校约有75位男教师. 9.,41略. 10.⋅2111.估计,127.015019==≈N n P 又.149.35.0127.01.022π,π2=⨯⨯=≈∴=Pa l a l P 12.随实验次数的增加,可以看出石子落在⊙O 内(含⊙O 上)的频率趋近0.5,有理由相信⊙O 面积会占封闭图形ABC 面积的一半,所以求出封闭图形ABC 的面积为2π. 13.如图,当所抛圆碟的圆心在图中边框内(宽为5cm)部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为⋅16714.用计算器设定1~365(一年按365天计)共365个随机数,每组取10个随机数,有两个数相同的记为1,否则记为0,做10组实验,求出现两个数相同的频率,用此数据来估计概率. 15.由于间谍侦查到的班是随机的,设敌国有x 个班严重缺员,那么,2202220x=解得x =200,可见敌国有200个班严重缺员,仅有的20个班基本满员,又加上士气不振,可以说“敌国已基本上无战斗力了”.第二十一章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).第二十二章 一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-497.2. 8.3. 9.A. 10.A. 11.A. 12.D. 13.C. 14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x(4)x 1=-7,x 2=3; (5);231,23121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略. 16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆ 2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2. 19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412 第二十三章 旋转全章测试1.(1)左,.210 (2)C ,180°,中心,C 点.2.旋转中心,旋转角,形状、大小. 3.A 点,60°,正三角形.4.⋅415.45°. 6.-1, -5.7.C . 8.D . 9.A . 10.B . 11.(1)150°;(2)等腰三角形;(3)15°. 12.(1)A 1(1,2),B 1(0,3);(2)A 2(3,2),B 2(2,3),C (2,0);(3)A 3(-3,-2),B 2(-2,-3),D (-2,0).13.(1);6xy =(2)P 1(2,3),P 2(3,2),P 3(-2,-3),P 4(-3,-2).14.PC =3.提示:将△ABP 绕B 点顺时针旋转90°,这时A 点与C 点重合,P 点的对应点是P ',连结PP ′,则△ABP ≌△CBP ′,△PBP ′为等腰直角三角形,∠PP ′C =90°,.3)7()2(''2222=+=+=C P PP PC第二十四章 圆全章测试1.D . 2.A . 3.B . 4.C . 5.D . 6.C . 7.A . 8.C . 9.C . 10.B . 11.A .12.30°. 13.cm.3π14.cm.32 15.8πcm . 16.105°. 17.πcm.58418.五.19.提示:连结BP . 20.提示:连结BM .21.提示:延长CH 到E ,使CE =CD ,连结BE ,证:△ABH ≌△EBH . 22.cm 64或cm.3423.36πcm 2.提示:连结OC 、OA .第二十五章 概率初步全章测试1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .11.略. 12..0,6113.P (A )=0.375,P (B )=0.5,P (C )=0.125.14.0.4. 15..3116.⋅158 17.0.4. 18.1.19(2)读者对该杂志满意的概率约是0.998;(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==2142)2(抽到P或画树状图: 第一次抽第二次抽从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=851610=. ∴游戏不公平.21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.期末检测题1.a -2. 2..25 3..21,21-+4,.2,0 5.75. 6.⋅527.45°. 8.15.9.10. 10..2311.D . 12.C . 13.B . 14.A . 15.B . 16.D . 17.A . 18.B . 19.B . 20.D . 21..123-22.(1)∵方程有两个不相等的实数根,∴b 2-4ac =16 -4k >0, ∴k <4. (2)当k 取最大整数时,即k =3,这时方程为x 2 -4x +3=0, ∴x 1=1,x 2=3. 当相同根为x =1时,有1+m -1=0,m =0,当相同根为x =3时,有9+3m -1=0,,38-=m∴m 的值是0或⋅-3823.连结AD . ∵ CA =CD ,∴∠D =∠CAD .∵ ∠D =∠CF A , ∴ ∠CAD =∠CF A . ∵ ∠CF A =∠B +∠FCB ,∴ ∠CAF +∠F AD =∠B +∠FCB .∵ CA =CB , ∴∠CAF =∠B .∴∠F AD =∠FCB . ∵ ∠F AD =∠FCD ,∴∠FCB =∠FCD . ∴ CF 平分∠BCD .24.(1)乙甲A B C D(D ,A ) (D ,B ) (D ,C ) E (E ,A ) (E ,B ) (E ,C )有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2)因为选中A 型电脑有2种方案,即(A ,D ),(A ,E ),所以A 型电脑被选中的概率是⋅31(3)由(2)已知,当选用方案(A ,D )时,设购买A 型、D 型电脑分别为x ,y 台.根据题意⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x 经检验不合题意舍去.当选方案(A ,E )时,设购买A 型号、E 型号电脑分别为x ,y 台.根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x 所以希望中学购买了7台A 型号电脑.25.设新品种花生亩产量的增长率为x ,根据题意得.132)211%(50)1(200=+⨯+x x 解得x 1=0.2,x 2=-3.2(舍去).答:新品种花生亩产量的增长率为20%.26.(1)∵PC 是∠APB 的平分线,=.∴当PC 是圆的直径,即∠P AC =90°时,四边形P ACB 面积最大.在Rt △P AC 中,∠APC =30°,,3===AB PB AP∴PC =2..3212=⋅==∴∆AB PC S S ACP PACB 四边形 (2)①当∠P AC =120°时,四边形P ACB 是梯形.∵PC 是∠APB 的平分线,∴∠APB =∠BPC =∠CAB =30°.∴∠APB =60°,∴∠P AC +∠APB =180°.∴AC //PB ,且AP 与BC 不平行,∴四边形P ACB 是梯形.②当∠P AC =60°时,四边形P ACB 是梯形.∵=,∴AC =BC .∵∠BAC =30°,∴∠ACB =120°.∴∠P AC +∠ACB =180°,∴BC //AP 且AC 与PB 不平行.∴四边形P ACB 是梯形.27.(1)①);(4π22b a S -=阴影 ②连结PP ′,证△PBP ′为等腰直角三角形,从而PC =6.(2)将△P AB 绕点B 顺时针旋转90°到△P ′CB 的位置,由勾股逆定理证出∠P ′CP =90°,再证∠BPC +∠APB =180°,即点P 在对角线AC 上.。
北京西城学习探究诊断高中数学必修二第二章平面解析几何初步练习
第二章平面解析几何初步测试十平面直角坐标系中的基本公式Ⅰ学习目标理解和掌握数轴上的基本公式,平面上两点间的距离公式,中点坐标公式.Ⅱ基础训练题一、选择题1.点A(-1,2)关于y轴的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)2.点A(-1,2)关于原点的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)3.已知数轴上A,B两点的坐标分别是x1,x2,且x1=1,d(A,B)=2,则x2等于( )(A)-1或3 (B)-3或3 (C)-1 (D)34.已知点M(-1,4),N(7,0),x轴上一点P满足|PM|=|PN|,那么P点的坐标为( )(A)(-2,0) (B)(-2,1) (C)(2,0) (D)(2,1)5.已知点P(x,5)关于点Q(1,y)的对称点是M(-1,-2),则x+y等于( )9(A)6 (B)12 (C)-6 (D)2二、填空题6.点A(-1,5),B(3,-3)的中点坐标为______.7.已知A(a,3),B(3,a),|AB|=2,则a=______.8.已知M(-1,-3),N(1,1),P(3,x)三点共线,则x=______.9.设点A(0,1),B(3,5),C(4,y),O为坐标原点.若OC∥AB,则y=______;若OC⊥AB,则y=______.10.设点P,Q分别是x轴和y轴上的点,且中点M(1,-2),则|PQ|等于______.三、解答题11.已知△ABC的顶点坐标为A(1,-1),B(-1,3),C(3,0).(1)求证:△ABC是直角三角形;(2)求AB边上的中线CM的长.12.已知矩形ABCD相邻两个顶点A(-1,3),B(-2,4),若矩形对角线交点在x轴上,求另两个顶点C和D的坐标.13.已知AD是△ABC底边的中线,用解析法证明:|AB|2+|AC|2=2(|AD|2+|DC|2).Ⅲ拓展训练题14.利用两点间距离公式求出满足下列条件的实数x的集合:(1)|x-1|+|x-2|=3;(2)|x-1|+|x-2|>3;(3)|x-1|+|x-2|≤3.测试十一 直线的方程Ⅰ 学习目标1.理解直线斜率和倾斜角的概念,掌握两点连线的斜率公式.2.掌握直线方程的点斜式、斜截式及一般式.Ⅱ 基础训练题一、选择题1.已知直线AB 的斜率为21,若点A (m ,-2),B (3,0),则m 的值为( ) (A )1 (B )-1 (C )-7(D )7 2.如图所示,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )(A )k 1<k 2<k 3(B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 23.直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )(A )k sin α>0 (B )k cos α>0 (C )k sin α=0 (D )k cos α符号不定4.一条光线从点M (5,3)射出,遇x 轴后反射,反射光线过点N (2,6),则反射光线所在直线方程是( )(A )3x -y -12=0 (B )3x +y +12=0(C )3x -y +12=0 (D )3x +y -12=05.直线x -2y +2k =0与两坐标轴围成的三角形面积不小于1,那么k 的取值范围是( )(A )k ≥-1 (B )k ≤1 (C )|k |≤1 (D )|k |≥1二、填空题6.斜率为-2且在x 轴上截距为-1的直线方程是______.7.y 轴上一点M 与点N (-3,1)所在直线的倾斜角为120°,则M 点坐标为______.8.已知直线3a x -2y -4a =0(a ≠0)在x 轴上的截距是它在y 轴上的截距的3倍,则a =______.9.已知直线l 过点A (-2,1)且与线段BC 相交,设B (-1,0),C (1,0),则直线l 的斜率k 的取值范围是______.10.如果直线l 沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后又回到原来的位置,则直线l 的斜率为______.三、解答题11.直线l 过原点且平分平行四边形ABCD 的面积.若平行四边形两个相对顶点为B (1,4),D (5,0),求直线l 的方程.12.直线l与直线y=1,x-y-7=0分别交于P、Q两点,线段PQ的中点为(1,-1).求直线l的方程.Ⅲ拓展训练题13.设A(0,3),B(3,3),C(2,0),直线x=a将△ABC分割成面积相等的两部分,求a 的值.14.一条直线l过点P(2,3),并且分别满足下列条件,求直线l的方程.(1)倾斜角是直线x-4y+3=0的倾斜角的两倍;(2)与x轴、y轴的正半轴交于A、B两点,且△AOB的面积最小;(3)|P A|²|PB|为最小(A、B分别为直线与x轴、y轴的正半轴的交点).测试十二 两条直线的位置关系(一)Ⅰ 学习目标掌握两条直线平行、垂直的条件,会利用两条直线平行、垂直的条件解决相关的问题.Ⅱ 基础训练题一、选择题1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么a 等于( )(A )-3 (B )-6 (C )-23 (D )32 2.如果直线ax +2y +2=0与直线3x -y -2=0垂直,那么a 等于( ) (A )-3 (B )-6 (C )-23 (D )32 3.若两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直,则( )(A )A 1A 2+B 1B 2=0 (B )A 1A 2-B 1B 2=0(C )2121B B A A =-1 (D )2121A A B B =1 4.设A ,B 是x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )(A )x +y -5=0 (B )2x -y -1=0(C )2y -x -4=0 (D )x +y -7=05.已知直线y =kx +2k +1与y =-21x +2的交点在第一象限,则k 的取值范围是( ). (A )-6<k <2(B )-21<k <21 (C )-61<k <21 (D )k <21 二、填空题6.以A (1,3)、B (-1,1)为端点的线段的垂直平分线方程是______.7.若三条直线l 1:2x -y =0,l 2:x +y -3=0,l 3:mx +ny +5=0交于一点,则实数m ,n 满足的关系式是______.8.直线y =2x +3关于点(2,3)对称的直线方程为______.9.直线2x -y +1=0绕着它与y 轴的交点逆时针旋转45°角,此时直线的方程为______.10.若三条直线x +y =2,x -y =0,x +ay =3构成三角形,则a 的取值范围是______.三、解答题11.求经过两条直线l 1:2x +3y +1=0和l 2:x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程.12.平行四边形ABCD 的两边AB ,AD 所在的直线方程分别为x +y -1=0,3x -y +4=0,其对角线的交点坐标为(3,3),求另两边BC ,CD 所在的直线方程.13.已知三角形三条边AB,BC,AC中点分别为D(2,1)、E(5,3)、F(3,-4).求各边所在直线的方程.14.已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使l1,l2分别满足下列条件:(1)l1,l2相交于点P(m,-1);(2)l1∥l2;(3)l1与l2重合.测试十三 两条直线的位置关系(二)Ⅰ 学习目标会应用点到直线的距离公式解决相关的问题.Ⅱ 基础训练题一、选择题1.点P (0,2)到直线y =3x 的距离是( )(A )1 (B )510 (C )2 (D )55 2.平行线3x +4y +2=0与3x +4y -12=0之间的距离为( ) (A )2 (B )310 (C )514 (D )33.若直线(2+m )x -y +5-n =0与x 轴平行且与x 轴相距5时,则m +n 等于( )(A )-2或8 (B )-2 (C )8 (D )04.直线l 1:ax -y +b =0与l 2:bx -y +a =0(ab ≠0,a ≠b )在坐标系中的位置可能是( )5.A 、B 、C 为△ABC 的三个内角, 它们的对边分别为a 、b 、c .已知原点到直线x sin A +y sin B +sin C =0的距离大于1,则此三角形形状为( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定二、填空题6.若直线ax +4y -2=0与直线2x -5y +c =0垂直相交于点(1,m ),则a =____,c =_____,m =______.7.已知定点A (0,1).点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是____.8.两平行直线分别过点(1,0)与(0,5),且距离为5,它们的方程为______.9.若点A (1,1)到直线l :x cos θ+y sin θ=2(θ为实数)的距离为f (θ),则f (θ)的最大值是___.10.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 中点M 到原点距离的最小值是______.三、解答题11.过点P (1,2)的直线l 与两点A (2,3),B (4,-5)的距离相等,求直线l 的方程.12.已知直线l :x +2y -2=0,试求:(1)与直线l 的距离为5的直线的方程;(2)点P (-2,-1)关于直线l 的对称点的坐标.13.已知△ABC的垂心H(5,2),且A(-10,2)、B(6,4),求点C的坐标.Ⅲ拓展训练题14.在△ABC中,点B(1,2),BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,求|BC|.测试十四 圆的方程Ⅰ 学习目标掌握圆的标准方程及一般方程,能根据已知条件求圆的方程.Ⅱ 基础训练题一、选择题1.圆x 2+y 2+ax =0的圆心的横坐标为1,则a 等于( )(A )1 (B )2 (C )-1 (D )-22.与圆C :x 2+y 2-2x -35=0的圆心相同,且面积为圆C 的一半的圆的方程是( )(A )(x -1)2+y 2=3 (B )(x -1)2+y 2=6(C )(x -1)2+y 2=9 (D )(x -1)2+y 2=183.曲线x 2+y 2+22x -22=0关于( )(A )直线x =2轴对称(B )直线y =-x 轴对称 (C )点(-2,2)中心对称 (D )点(-2,0)中心对称4.如果圆x 2+y 2+Dx +Ey +F =0与y 轴相交,且两个交点分别在原点两侧,那么( )(A )D ≠0,F >0 (B )E =0,F >0(C )F <0 (D )D =0,E ≠05.方程x -1=()211--y 所表示的曲线是( ) (A )一个圆 (B )两个圆(C )半个圆 (D )四分之一个圆二、填空题6.过原点的直线将圆x 2+y 2-2x +4y =0的面积平分,则此直线的方程为______.7.已知圆的方程(x -a )2+(y -b )2=r 2(r >0),试根据下列条件,分别写出a ,b ,r 应满足的条件.(1)圆过原点且与y 轴相切:______;(2)原点在圆内:______;(3)圆与x 轴相交:______.8.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是______. 9.P (x ,y )是圆x 2+y 2-2x +4y +1=0上任意一点,则x 2+y 2的最大值是______;点P 到直线3x +4y -15=0的最大距离是______.10.设P (x ,y )是圆(x -3)2+y 2=4上的点,则xy 的最小值是______. 三、解答题11.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,求a 的取值范围.12.求过三个点A (0,0),B (4,0),C (2,2)的圆的方程.13.已知圆C的圆心在直线x+y-1=0上,且A(-1,4)、B(1,2)是圆C上的两点,求圆C的方程.Ⅲ拓展训练题14.已知曲线C:x2+y2-4ax+2ay+20a-20=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上.测试十五 直线与圆的位置关系Ⅰ 学习目标1.会用解析法及几何的方法判定直线与圆的位置关系,并会求弦长和切线方程; 2.会用几何的方法判定圆和圆的位置关系.Ⅱ 基础训练题一、选择题1.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) (A )相离 (B )外切 (C )相交 (D )内切2.直线3x +4y +2=0与圆x 2+y 2+4y =0交于A 、B 两点,则线段AB 的垂直平分线的方程是( )(A )4x -3y -2=0 (B )4x -3y -6=0 (C )3x +4y +8=0 (D )3x -4y -8=0 3.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) (A )6π(B )4π (C )3π (D )2π 4.若圆x 2+y 2=r 2(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) (A )[4,6] (B )(4,6] (C )(4,6) (D )[4,6) 5.从直线y =3上的点向圆x 2+y 2=1作切线,则切线长的最小值是( ) (A )22(B )7(C )3(D )10二、填空题6.以点(-2,3)为圆心且与y 轴相切的圆的方程是______.7.已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是______.8.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是______.9.过定点(1,2)可作两直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则k 的取值范围是____. 10.直线x +3y -m =0与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是______. 三、解答题11.圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦. (1)当α=4π3时,求AB 的长; (2)当弦AB 被点P 平分时,求直线AB 的方程.12.求经过点P (6,-4)且被圆x 2+y 2=20截得的弦长为62的直线的方程.13.求过点P (4,-1)且与圆x 2+y 2+2x -6y +5=0外切于点M (1,2)的圆的方程.Ⅱ 拓展训练题14.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55. 求该圆的方程.测试十六空间直角坐标系Ⅰ学习目标1.理解空间直角坐标系的概念,能写出满足某些条件的点的坐标.2.会用空间两点间距离公式进行相关的计算.Ⅱ基础训练题一、选择题1.点A(2,0,3)在空间直角坐标系的位置是( )(A)y轴上(B)xOy平面上(C)xOz平面上(D)yOz平面上2.在空间直角坐标系中,点P(-2,-1,3)到原点的距离为( )(A)14(B)5(C)14 (D)53.点A(-1,2,1)在xOy平面上的射影点的坐标是( )(A)(-1,2,0) (B)(-1,-2,0)(C)(-1,0,0) (D)(1,-2,0)4.在空间直角坐标系中,两个点A(2,3,1)、A′(2,-3,1)关于( )对称(A)平面xOy (B)平面yOz(C)平面xOz(D)y轴5.设a是任意实数,则点P(a,1,2)的集合在空间直角坐标系中所表示的图形是( )(A)垂直于平面xOy的一条直线(B)垂直于平面yOz的一条直线(C)垂直于平面xOz的一条直线(D)以上均不正确二、填空题6.点M(4,-3,5)到x轴的距离为______.7.若点P(x,2,1)与Q(1,1,2)、R(2,1,1)的距离相等,则x的值为______.8.已知点A(-2,3,4),在y轴上求一点B,使|AB|=6,则点B的坐标为______.9.已知两点A(2,0,0),B(0,3,0),那么线段AB的中点的坐标是______.10.在空间直角坐标系中,点A(1,2,a)到点B(0,a,1)的距离的最小值为______.三、解答题11.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M关于各坐标面对称的点、关于各坐标轴对称的点的坐标.12.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M到原点、各坐标轴及各坐标面的距离.13.如图,正方体OABC-A1B1C1D1的棱长为a,|AM|=2|MB|,|B1N|=|NC1|,分别写出点M与点N的坐标.-1)的距离的两倍,求点P的坐标.测试十七 平面解析几何初步全章综合练习Ⅰ 基础训练题一、选择题1.方程y =k (x -2)表示( ) (A )经过点(-2,0)的所有直线 (B )经过点(2,0)的所有直线(C )经过点(2,0)且不垂直于x 轴的所有直线 (D )经过点(2,0)且去掉x 轴的所有直线2.点P (x ,y )在直线x +y -4=0上,O 为坐标原点,则|OP |的最小值为( ) (A )10(B )22(C )6(D )23.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) (A ))3π,6π[(B ))2π,6π((C ))2π,3π((D )]2π,6π[4.若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) (A )1或-1 (B )2或-2 (C )1 (D )-15.如果直线l 将圆:x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( ) (A )[0,2](B )[0,1](C )]21,0[(D ))21,0[二、填空题6.经过点P (-2,3)且在x 轴、y 轴上截距相等的直线方程为______.7.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为______. 8.已知圆x 2+(y -1)2=1及圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是______. 9.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线.A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为______.10.已知两个圆x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为______. 三、解答题11.已知直线l 1:2x -y +3=0与直线l 2关于直线y =-x 对称,求直线l 2的方程.12.圆心在直线x -2y -3=0上,且圆与两坐标轴都相切,求此圆的方程.13.求通过直线2x +y -4=0及圆x 2+y 2+2x -4y +1=0的交点,并且有最小面积的圆的方程.14.在△ABC中,顶点A(2,4)、B(-4,2),一条内角平分线所在直线方程为2x-y=0,求AC边所在的直线方程.Ⅱ拓展训练题15.已知过原点O的一条直线与函数y=log8x的图象交于A、B两点(A在B的右侧),分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.16*.已知圆C:(x-1)2+(y-2)2=25,及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长最短长度及此时的直线方程.参考答案第二章 平面解析几何初步 测试十 平面直角坐标系中的基本公式一、选择题1.B 2.C 3.A 4.C 5.D 提示:1.点(a ,b )关于x 轴、y 轴、坐标原点O 、直线y =x 的对称点坐标为(a ,-b ),(-a ,b ),(-a ,-b ),(b ,a ). 二、填空题6.(1,1); 7.2或4; 8.5; 9.3,316-; 10.52. 提示:9.若AB =(x 1,y 1),CD =(x 2,y 2),则∥⇔x 1y 2-x 2y 1=0(应注意向量平行与直线平行的关系); 则⊥⇔x 1x 2+y 1y 2=0(即⋅=0); 三、解答题11.(1)证明:由已知计算得5||,52)31()11(||22==--++=BC AB5||=AC ,所以,|AB |2+|AC |2=|BC |2,所以△ABC 是直角三角形.另解:由已知=(-2,4),=(2,1), 所以,AB ²AC =-2³2+4³1=0, 所以,AB ⊥AC ,△ABC 是直角三角形. (2)解:由已知,AB 的中点M 的坐标为)231,211(+--,即M (0,1), 所以,.1013||22=+=CM12.设矩形对角线交点为M (x ,0),因为|MA |=|MB |,则22224)2(3)1(++=++x x ,解得x =-5,所以M (-5,0).设C (x 1,y 1),因为M 为AC 中点,所以023,52111=+-=-y x , 解得x 1=-9,y 1=-3,所以,C (-9,-3),同理,D (-8,-4).注:本题也可以利用向量平行、垂直的有关知识来解. 13.提示:通过建立适当的坐标系,利用坐标法来证明.14.(1){x |x =0,x =3};(2){x |x <0或x >3};(3){x |0≤x ≤3}.测试十一 直线的方程一、选择题1 B2 B3 B4 D5 D 提示:3.由题意知,l 的倾斜角α为钝角,cos α<0,k <0,故k cos α>0.4.反射光线过点N (2,6),同时,还经过点M (5,3)关于x 轴的对称点M ′(5,-3),所以,反射光线的斜率为352)3(6-=---,直线方程为3x +y -12=0.要注意,“光线”问题常用对称点的思路去思考问题.5.直线x -2y +2k =0与两坐标轴交点为A (-2k ,0).B (0,k ), 所以,2|||2|21||||21k k k OB OA S AOB =⋅-=⋅=∆,由题意k 2≥1, 得|k |≥1为所求.二、填空题6.2x +y +2=0; 7.(0,-2); 8.a =-2; 9.311-≤≤-k ; 10.⋅-31提示:10.提示:设A (x 0,y 0)为直线l 上一点,根据题意,A 点沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后仍应在直线l 上,即点(x 0-3,y 0+1)在直线l 上.所以直线l 的斜率为⋅-=---+31310000x x y y三、解答题11.提示:平分平行四边形面积的直线必过平行四边形的对角线交点,即过BD 的中点(3,2).所以,所求直线方程为2x -3y =0.12.略解:设P (x 1,1),因为PQ 的中点为(1,-1),根据中点坐标公式,可得Q (2-x 1,-3),因为点Q 在直线x -y -7=0上, 所以,(2-x 1)-(-3)-7=0,解得x 1=-2,所以,P (-2,1),Q (4,-3),⋅-=----=3242)3(1/k所以,l :2x +3y +1=0.13.略解:由已知得AB ∥x 轴,作CD ⊥AB 于D ,∵C (2,0),A (0,3),B (3,3).∴S △ADC >S △BDC . ∵x =a 将△ABC 面积平分,∴x =a 在直线CD 左侧,即0<a <2.由题意得)3(2123321p ABC y a S -⋅=⋅⋅=∆,其中y p 表示AC 与x =a 的交点的纵坐标. ∵直线AC 的方程为132=+yx .即3x +2y -6=0.当x =a 时,236,236ay a y p -=∴-=,代入上式,得.3±=a∵a ∈(0,2).3=∴a 为所求.14.(1)设直线l 的倾斜角为α,则所求直线倾斜角为2α,由已知,41tan =α,所以,tan2α=158tan 1tan 22=-αα,所以,所求直线l 方程为)2(1583-=-x y ,即8x -15y +29=0.(2)依题意,设直线l 方程为y -3=k (x -2),k <0,则)0,32(kA -,B (0,3-2k ),S △AOB 1266)292(621=+≥-+-+==kk y x B A ,此时,kk 292-=-,即.23±=k ,因为k <0,所以23-=k ,所求直线l 方程为)2(233--=-x y ,即3x +2y -12=0. (3)依题意,设直线l 方程为y -3=k (x -2),k <0,则)23,0(),0,32(k B kA --,12)1(6||164499||||222≥-+-⨯=+⨯=+⨯+=⋅kk k k k k PB PA , 此时,kk -=-1,即k =±1,因为k <0,所以k =-1, 所求直线l 方程为y -3=-(x -2),即x +y -5=0.测试十二 两条直线的位置关系(一)一、选择题1.B 2.D 3.A 4.A 5.C 提示:5.提示:可以求出两条直线的交点坐标)1216,1242(+++-k k k k ,解不等式组⎪⎪⎩⎪⎪⎨⎧>++>+-0121601242k k k k,可得⋅<<-2161k 另外,注意到直线y =kx +2k +1可变形为y -1=k (x +2),即此直线过定点(-2,1),又,直线221+-=x y 与x 轴、y 轴的交点坐标为(4,0),(0,2).利用数形结合的思路可得结论. 二、填空题6.x +y -2=0; 7.m +2n +5=0; 8.2x -y -5=0; 9.3x +y -1=0; 10.a ∈R ,a ≠±1且a ≠2. 提示:9.设直线2x -y +1=0的倾斜角为α,由已知,所求直线的倾斜角为α+45°,因为tan α=2,所以,345tan tan 145tan tan )45tan(-=-+=+ααα,又直线2x -y +1=0与y 轴的交点为(0,1),所以,所求直线方程为3x +y -1=0.10.直线x +ay =3与另两条直线不平行也不重合,并且三条直线不过同一点. 三、解答题11.4x -3y +9=0.12.CD :x +y -11=0,BC :3x -y -16=0. 13.方法一:用中点.DE 中点)2,27(G ,又G 为BF 的中点,∴B (4,8). 同理,EF 中点).2,6(),21,4(-∴-C HDF 中点).6,0(),23,25(-∴-A M.01227,627:=---=∴y x x y AB BC :y +2=-5(x -6),5x +y -28=0..01832,632:=---=y x x y AC 方法二:用斜率. EF 斜率为)2(271:27-=-∴⋅x y AB ,得7x -2y -12=0. FD 斜率为-5.∴BC :y -3=-5(x -5),得5x +y -28=0. DE 斜率为)3(324:32-=+∴⋅x y AC ,得2x -3y -18=0, 14.解:(1)由⎩⎨⎧=--=+-,012,082m m n m 解得m =1,n =7.(2)易知m ≠0,所以,当182-=/=n m m 时, 即m =4,n ≠-2,或m =-4,n ≠2时l 1∥l 2.(3)结合(2)的结果,当m =4,n =-2,或m =-4,n =2时,l 1与l 2重合.测试十三 两条直线的位置关系(二)一、选择题1.B 2.C 3.A 4.D 5.C 提示: 5.由已知,1sin sin |sin |22>+BA C ,所以,sin 2C >sin 2A +sin 2B .又R CcB b A a 2sin sin sin ===,所以,c 2>a 2+b 2, 由余弦定理,得02cos 222<-+=abc b a C ,所以,C 为钝角,三角形为钝角三角形. 二、填空题6.10,-12,-2; 7.)21,21(-; 8.y =0,y =5或5x -12y -5=0,5x -12y +60=0; 9.22+; 10..23提示:7.当AB 与已知直线垂直时,线段AB 最短. 9.|2)cos 22sin 22(2||2cos sin |cos sin |2cos sin |)(22-+=-+=+-+=θθθθθθθθθf)4πsin(22|2)4πsin(2|+-=-+=θθ,所以,f (θ)的最大值为.22+10.由已知,点M 到两直线l 1,l 2的距离相等.即点M 在直线x +y -6=0上,于是,问题变成“点M 在直线x +y -6=0上运动,求原点到点M 的最小距离”,可利用第7题的思路加以解决. 三、解答题11.提示:满足题目条件的直线l 或者与直线AB 平行,或者经过线段AB 的中点.当直线l 与直线AB 平行时,l :4x +y -6=0;当直线l 经过线段AB 的中点时,l :3x +2y -7=0. 12.解:(1)设所求直线方程为x +2y +c =0,根据题意55|2|=+c ,解得c =3或c =-7, 所以,所求直线方程为x +2y +3=0或x +2y -7=0. (2)设P (-2,-1)关于直线l 的对称点为P ′(x 0,y 0). 则k pp 'k l =-1,且PP ′的中点在直线l 上,即点)21,22(00--y x 在直线l 上. 所以,⎪⎪⎩⎪⎪⎨⎧-=-⋅++=--⨯+-1)21(2102212220000x y y x ,即⎩⎨⎧=+-=-+0320820000y x y x ,解得⋅==519,5200y x 即)519,52('P .13.解:AB 斜率为81,设C 坐标(x 0,y 0). 所以,85200-=--x y ……………………①因为AH 斜率为0,∴BC 斜率不存在,即BC 直线方程为x =6, 所以,x 0=6.…………………………②②代入①,得y 0=-6.∴C 点坐标(6,-6). 14.略解:解⎩⎨⎧==+-,0,012y y x 得A (-1,0),所以AB :x -y +1=0.设C (x 0,y 0),因为BC 与BC 边上的高线垂直,并且C 关于直线y =0(∠A 的平分线)的对称点C ′在直线AB 上.所以,k BC =-2,C ′(x 0,-y 0)在直线AB 上.所以,⎪⎩⎪⎨⎧=++-=--012120000y x x y 解得x 0=5,y 0=-6,即C (5,-6),故|BC |=54.测试十四 圆的方程一、选择题1.D 2.D 3.D 4.C 5.C 提示:4.只需坐标原点在圆内,即原点与圆心的距离小于半径,已知圆圆心为)2,2(ED --,半径为)04(242222>-+-+F E D F E D ,结合44)02()02(2222FE D E D -+<-+-及D 2+E 2-4F >0,可得F <0.5.方程2)1(11--=-y x 可以等价变形为(x -1)2+(y -1)2=1,且x -1≥0,1-(y -1)2≥0.即(x -1)2+(y -1)2=1,且x ≥1,0≤y ≤2.所以,方程2)1(11--=-y x 所表示的曲线是半个圆.二、填空题 6.2x +y =0;7.(1)a 2+b 2=r 2且|a |=r 或b =0,|a |=r ;(2)a 2+b 2<r 2;(3)|b |<r ; 8.21; 9.6,549+; 10.⋅-552 提示:9.x 2+y 2的几何意义是点P (x ,y )到原点距离的平方.利用这个几何意义求解. 10.xy的几何意义是点P (x ,y )与原点连线的斜率.利用这个几何意义求解. 三、解答题11.提示:将方程配方为222431)()2(a a a y a x --=+++,则,04312>--a a 即3a 2+4a -4<0,(3a -2)(a +2)<0,解得,⋅<<-322a12.提示:方法一:设圆的方程为x 2+y 2+D x +Ey +F =0,由已知三个点在圆上,可得⎪⎩⎪⎨⎧=+++=++=082204160F E D F D F 解得D =-4,E =0,F =0,所以,所求圆方程为x 2+y 2-4x =0.方法二:注意到k AC =1,k BC =-1,k AC k BC =-1,所以,三角形ABC 是直角三角形,∠C =90°,所以,所求圆心为AB 边中点,即(2,0)点,可求半径r =2, 所以,所求圆的方程为(x -2)2+y 2=4.13.提示:因为A (-1,4),B (1,2)是圆C 上的两点,所以圆心在线段AB 的中垂线上,因为AB 中点坐标为(0,3),k AB =-1,所以线段AB 的中垂线方程为x -y +3=0,解⎩⎨⎧=-+=+-0103y x y x 得圆心坐标为(-1,2),半径,2)22()11(22=-+--=r所以,圆C 的方程为(x +1)2+(y -2)2=4.14.分析:(1)曲线C 方程可变形为(x 2+y 2-20)+a (-4x +2y +20)=0,由⎩⎨⎧=++-=-+020*******y x y x ,解得⎩⎨⎧-==24y x . 即点(4,-2)满足曲线C 的方程,故曲线C 过定点(4,-2).(2)曲线C 方程(x -2a )2+(y +a )2=5(a -2)2,因为a ≠2,所以曲线C 是圆心为(2a ,-a ),半径为|2|5-a 的圆. 设圆心坐标为(x ,y ),则有⎩⎨⎧-==ay a x 2,消去a 可得x y 21-=,故圆心必在直线x y 21-=. 测试十五 直线与圆的位置关系一、选择题1.C 2.B 3.C 4.C 5.A 提示:5.圆方程x 2+y 2=1,圆心(0,0),半径1,切线长的平方=圆心到直线y =3距离的最小值的平方.22813222==-=-r二、填空题6.(x +2)2+(y -3)2=4; 7.3; 8.x +y -4=0; 9.⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 ; 10..23<<m提示:9.圆方程配方为,4316)1()2(222k y k x -=+++依题意,2224316)12()21(k k ->+++,且,043162>-k解得k <-3或k >2,且338338<<-k ,所以,⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 . 10.结合图形,求出直线与圆在第一象限相切时的m 值为2,求出直线过(0,1)点时的m值为3.进而得出m 值范围. 三、解答题11.提示:(1)方法一:由已知,AB :x +y -1=0,与圆方程联立,解方程组得,2151±=x 则.304πcos||||12=-=x x AB 方法二:圆心到直线AB 的距离,222|1|=-=d 所以.3021822||22=-=-=dr AB(2)当弦AB 被点P 平分时,AB ⊥OP ,又k OP =-2, 所以,.052:,21=+-=y x AB k AB 12.提示:注意到,过点P (6,-4)倾斜角为90°的直线不满足题意,设所求直线为y +4=k (x -6),由弦长为26,圆半径为20,所以圆心O 到所求直线的距离为2, 即21|46|2=++k k ,解得k =-1或177-=k ,所以所求直线方程为x +y -2=0或7x +17y +26=0.13.略解:圆(x +1)2+(y -3)2=5的圆心为(-1,3),设圆心(a ,b ),得⎪⎩⎪⎨⎧---=--++-=-+-,112312)1()4()2()1(2222a b b a b a解得⎩⎨⎧==13b a ,圆心(3,1),半径为5,所以,所求圆方程为(x -3)2+(y -1)2=5.14.分析:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |,|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为r 2, 故r 2=2b 2.又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1. 又点P (a ,b )到直线x -2y =0的距离555|2|=-=b a d ,所以|a -2b |=1, 解⎩⎨⎧=-=-121|2|22a b b a ,得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a . 由于r 2=2b 2,知2=r ,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2.测试十六 空间直角坐标系一、选择题1.C 2.A 3.A 4.C 5.B 二、填空题6.34; 7.1; 8.(0,-1,0),(0,7,0); 9.)0,23,1(; 10.26.三、解答题11.答:点M 关于平面xOy 的对称点为(1,-2,-3);点M 关于平面yOz 的对称点为(-1,-2,3); 点M 关于平面xOz 的对称点为(1,2,3); 点M 关于x 轴的对称点为(1,2,-3);点M 关于y 轴的对称点为(-1,-2,-3);点M 关于z 轴的对称点为(-1,2,3). 12.答:点M 到原点的距离为14;点M 到平面xOy 的距离为3;点M 到平面yOz 的距离为1;点M 到平面xOz 的距离为2; 点M 到x 轴的距离为13;点M 到y 轴的距离为10; 点M 到z 轴的距离为5. 13.答:).,,21(),0,32,(a a a N a a M 14.答:(1,0,0)或(-1,0,0).测试十七 平面解析几何初步全章综合练习一、选择题1.C 2.B 3.B 4.D 5.A 提示:3.直线3:-=kx y l 过定点)3,0(-,直线2x +3y -6=0与x 轴、y 轴交点坐标为(3,0)、(0,2),作图分析可得答案. 二、填空题6.x +y -1=0,3x +2y =0; 7.0<m 2+n 2<3; 8.34; 9.22; 10.两圆(x -a )2+(y -b )2=r 2与(x -c )2+(y -d )2=r 2的对称轴的方程为2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0. 提示: 9.r PA S PACB ||212⨯=(r 是圆的半径),由已知r =1,所以,即求|P A |的最小值,又|P A |=12-PC ,而|PC |的最小值为C 到直线3x +4y +8=0的距离,即343|843|22=+++,所以,所求最小值为.22||212=⨯=r PA S PACB 三、解答题11.提示:直线l 1与l 2的交点坐标为(-1,1),直线l 1与y 轴交点坐标为(0,3),且(0,3)点关于直线y =-x 对称点坐标为(-3,0),所以,直线l 2过点(-3,0)和(-1,1),l 2:x -2y +3=0.12.提示:设圆心为(a ,b ),由已知|a |=|b |=r ,又a -2b -3=0,解⎩⎨⎧==--b a b a 032及⎩⎨⎧-==--b a b a 032得⎩⎨⎧-=-=33b a 或⎩⎨⎧-==11b a ,所以,所求圆方程为(x +3)2+(y +3)2=9或(x -1)2+(y +1)2=1.13.提示:所求圆即为以已知直线和已知圆相交的弦为直径的圆.解⎩⎨⎧=-+=+-++,042014222y x y x y x 得⎩⎨⎧==21y x 或⎪⎪⎩⎪⎪⎨⎧==51851y x .即直线与圆的交点坐标为)518,51(),2,1(,弦长为554, 所以圆心为)514,53(,半径为552, 所求圆方程为54)514()53(22=-+-y x . 14.提示:注意到点A (2,4)在直线2x -y =0上,所以,已知直线为∠A 的平分线l ,过B作与l 垂直的直线m :x +2y =0,l 与m 的交点为(0,0),B (-4,2)关于(0,0)的对称点为B ′(4,-2),AB ′所在直线即为AC 边所在的直线,所以AC 边所在的直线方程为3x +y -10=0.15.(1)证明:设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1、x 2>1,点A (x 1,log 8x 1),B (x 2,log 8x 2). 因为A 、B 在过点O 的直线上,⋅=∴228118log log x x x x又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于,log 32log log log ,log 32log log log 28828221881812x x x x x x ====所以OC 的斜率和OD 的斜率分别为:228222118112log 3log ,log 3log x x x xk x x x x k OD OC ====由此得k OC =k OD ,即点O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,解得x 2=31x .将其代入228118log log x x x x =,得1811831log 3log x x x x =. 由x 1>1,知log 8x 1≠0,故31x =3x 1,即31=x ,于是点A 的坐标为).3log ,3(816.分析:(1)直线l 的方程可化为x +y -4+m (2x +y -7)=0,则l 是过定点(3,1)的直线束.又(3-1)2+(1-2)2=5<25,∴点(3,1)在圆内部,因此不论m 为何实数,直线l 与圆恒相交.(2)由(1)可知,直线l 过点M (3,1),则过此点的直线l 与圆O 的半径垂直且M 为AB 中点时,l 被圆所截得的弦长|AB |最短.)542|(|22=-=OM r AB .此时212311=---=-=OMl k k , 直线方程为y -1=2(x -3),即2x -y -5=0.。
西城区学习探究诊断 第六章 平面直角坐标系
第六章平面直角坐标系测试1平面直角坐标系学习要求认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y 轴的负半轴上在原点2.如图,写出图中各点的坐标.A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );L ( , );M ( , );N ( , );O ( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A (-6,-4)、B (-4,-3)、C (-2,-2)、D (0,-1)、E (2,0)、F (4,1)、G (6,2)、H (8,3).(2)A (-5,-2)、B (-4,-1)、C (-3,0)、 D (-2,1)、E (-1,2)、 F (0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、 D (4,1)、 E (6,32)、 F (-1,-4)、G (-2,-2)、 H (-3,-34)、 L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、 H (3,5)、L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限;(2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上;(4)若x <0,则点P 在______象限或在______上;(5)若y =0,则点P 在______上;(6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A(-2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.图1(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.图29.选择题(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2)D.(0,1)(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).A.第一象限B.第二象限C.第三象限D.第四象限(4)如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在( ).A.第四象限B.第三象限C.第二象限D.第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内.A.1 B.2 C.3 D.410.点P(-m,m-1)在第三象限,则m的取值范围是______.11.若点P(m,n)在第二象限,则点Q(|m|,-n)在第______象限.12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.13.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D 的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.测试2 坐标方法的简单应用学习要求能建立适当的平面直角坐标系描述物体的位置.在同一直角坐标系中,感受图形变换后点的坐标的变化.(一)课堂学习检测1.回答下面的问题.(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是①建立______选择一个____________为原点,确定x轴、y轴的____________;②根据具体问题确定适当的______在坐标轴上标出____________;③在坐标平面内画出这些点,写出各点的______和各个地点的______.2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.(二)综合运用诊断一、填空4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.二、选择题11.下列说法不正确的是( ).A.坐标平面内的点与有序数对是一一对应的B.在x轴上的点纵坐标为零C.在y轴上的点横坐标为零D.平面直角坐标系把平面上的点分为四部分12.下列说法不正确的是( ).A.把一个图形平移到一个确定位置,大小形状都不变B.在平移图形的过程中,图形上的各点坐标发生同样的变化C.在平移过程中图形上的个别点的坐标不变D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是( ).A .(3,-2)B .(-3,-2)C .(0,0)D .(0,-3)14.已知三角形内一点P (-3,2),如果将该三角形向右平移2个单位长度,再向下平移1个单位长度,那么点P 的对应点P ′的坐标是( ).A .(-1,1)B .(-5,3)C .(-5,1)D .(-1,3)15.将线段AB 在坐标系中作平行移动,已知A (-1,2),B (1,1),将线段AB 平移后,其两个端点的坐标变为A (-2,1),B (0,0),则它平移的情况是( ).A .向上平移了1个单位长度,向左平移了1个单位长度B .向下平移了1个单位长度,向左平移了1个单位长度C .向下平移了1个单位长度,向右平移了1个单位长度D .向上平移了1个单位长度,向右平移了1个单位长度16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.17.(1)如果动点P (x ,y )的坐标坐标满足关系式试121+=x y ,在表格中求出相对应的值,并在平面直角坐标系里描出这些点:点的名称A B C D E 点的横坐标x-2 2 点的纵坐标y -1 1 3 (2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A 1、B 1、C 1、D 1、E 1,试画出这几个点,并分别写出它们的坐标.(三)拓广、探究、思考18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;2)填空:平行四边形ABCD的面积等于______.19.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.全章测试一、填空题:1.若点P(a,b)在第四象限,则(1)点P1(a,-b)在第______象限;(2)点P2(-a,b)在第______象限;(3)点P3(-a,-b)在第______象限.2.在x轴上,若点P与点Q(-2,0)的距离是5,则点P的坐标是______.3.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是______.4.(1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.5.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).6.若点P(m-3,m+1)在第二象限,则m的取值范围是______.7.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.8.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.9.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.10.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______.二、选择题:11.若点P(a,b)的坐标满足关系式ab>0,则点P在( ).(A)第一象限(B)第三象限(C)第一、三象限(D)第二、四象限12.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).(A)原点(B)x轴上(C)y轴上(D)x轴上或y轴上13.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).(A)(1,2)(B)(2,1)(C)(1,2),(1,-2),(-1,2),(-1,-2)(D)(2,1),(2,-1),(-2,1),(-2,-1)14.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限15.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点( ).(A)(1,3)(B)(-2,1)(C)(-1,2)(D)(-2,2)16.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.(A)(0,3),(0,1),(-1,-1)(B)(-3,2),(3,2),(-4,0)(C)(1,-2),(3,2),(-1,-3)(D)(-1,3),(3,5),(-2,1)三、解答题:17.一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.18.如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是______,△ABC的面积是______.19.已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.20.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案第六章平面直角坐标系测试11.(1)垂直、重合、数轴,x轴、横轴,向右方向;y轴、纵轴,向上方向;原点、平面(2)有序数对.A点的坐标,横坐标,纵坐标.(3)两条坐标轴,第一象限、第二象限、第三象限、第四象限、坐标轴上的点.(4)略2.A(2,5);B(-4,6);C(-7,2);D(-6,0);E(-5,-3);F(-4,-5);G(0,-6);H(2,-5);L(5,-2);M(5,0);N(6,3);O(0,0).3.(1) (2)4.(1) (2)5.B、D;A;E和F6.(1)一或三 (2)二或四(3)一或二象限或y轴正半轴上.(4)二或三象限或x轴的负半轴上.(5)x轴上.(6)y轴上.7.(1)A(4,0),B(4,4),C(0,4),D(0,0)(2)A(2,-2),B(2,2),C(-2,2),D(-2,-2)(3)A(2,-4),B(2,0),C(-2,0),D(-2,-4)(4)A(0,-4),B(0,0),C(-4,0),D(-4,-4)8.(1)任意实数,3;垂直,(0,3),平行,3.(2)-2,任意实数;垂直,(-2,0),平行,2.(3)相等,平分.9.(1)A;(2)D;(3)C;(4)C;(5)B.10.0<m<1.11.第四象限.12.(-6,2),(-6,-2).13.原点.14.m=-2,n=3.15.(-4,-6).16.以点B为原点,射线BC、射线BA分别为x轴、y轴正半轴建立直角坐标系.A(0,3),B(0,0),C(6,0),D(6,3).17.(1)提示:作AD⊥x轴于D点,S△ABC=15.(2)提示:作AD⊥y轴于D点,作BE⊥y轴于E点,S△ABC=S梯形ABED-S△ACD-S△BCE=12.18.(1)a=3,b=4;(2)a=-3,b=-4;(3)a=-3,b=4.19.(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1=0,解得m=1,所以P点的坐标为(6,0);(3)令m-1=(2m+4)+3,解得m=-8,所以P点的坐标为(-12,-9);(4)令m-1=-3,解得m=-2.所以P点的坐标为(0,-3).20.(1)当x=-1时,点P在x轴的负半轴上;(2)当x=1时,点P在y轴的正半轴上;(3)当x>1时,点P在第一象限;(4)当-1<x<1时,点P在第二象限;(5)当x<-1时,点P在第三象限;(6)点P不可能在第四象限.测试21.(1)A(-150,50),B(150,200),C(-250,300),D(450,-400),E(500,-100),F(350,400),G(-100,-300),H(300,-250),L(-150,-500).(2)略.2.略.3.(2)画图答案如图所示:①C1(4,4);②C2(-4,-4);③D(0,-1).4.x轴,y轴.5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).6.右,左,a个单位长度,上,下,b个单位长度.7.(-2,5),(-4,3).8.(1,2).9.2,4.10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.11.D12.C13.C14.A15.B16.(5,4).17.(1)点的名称 A B C D E点的横坐标x-4 -2 0 2 4点的横坐标y-1 0 1 2 3图略.(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.18.解:(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.(第18题答图)19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)(第19题答图)全章测试1.(1)一;(2)三;(3)二.2.(-7,0)或(3,0).3.(0,-3)或(0,9).4.(1)4,5;(2)2|n|,3|m|.5.A(-5,0),B(0,-3),C(5,-2),D(3,2),E(0,2),F(-3,3).6.-1<m<3.7.(-3,2).8.B'(-3,-6),(-4,-1).9.y轴.10.(2,-1).11.C;12.D;13.D;14.A;15.B;16.D.17.在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C18.(1)略;(2)(-2,2)或(-1,1);2或419.如图所示,可以画出三个平行四边形,即平行四边形ABD1C,平行四边形AD2BC,平行四边形ABCD3,其中D1(8,3),D2(0,-5),D3(-4,3).20.(1)S△ABC=4;(2)P1(-6,0)、P2(10,0)、P3(0,5)、P4(0,-3).。
西城区学习探究诊断 第四章 图形认识初步
第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体:{ } 棱柱体:{ }圆柱体:{ } 球体:{ }圆锥体:{ }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D图像是______号摄像机所拍。
12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如下图所示,那么长方体的下底面共有______朵花.18.如果图(1)~(10)均是正方体A的展开图,正方体的每一面分别有1,2,3,4,5,6六个数,请你在图(2)~(10)的空格上填上相应的数.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)19.有一个长方形的硬纸正好可以分成15个小正方形,如图,试把它剪成3份,每份有5个小正方形相连,折起来都可以成为一个无盖的正方体纸盒,应该怎样剪?测试2点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.课堂学习检测一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是().(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是().(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考1819.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1.(1)把一条线段二等分的______叫做这条线段的______.(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4.在下列说法中,正确的是()(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A ,B 就得到AB 的距离5.如图,下列关系式中与右图不符合的是( )(A)AC +CD =AB -BD (B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合、运用、诊断一、选择题6.如下图,从A 地到B 地有多条道路,人们会走中间的直路,而不会走其他的曲折的路,这是因为( ).(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7.对于线段的中点,有以下几种说法:①因为AM =MB ,所以M 是AB 的中点;②若AM =MB =21AB ,则M 是AB 的中点;③若AM =21AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM =MB ,则M 是AB 的中点.以上说法正确的是 ).(A)①②③ (B)①③ (C)②④ (D)以上结论都不对 8.已知A ,B ,C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那A ,C 两点间的距离是( ). (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9.已知线段OA =5cm ,OB =3cm ,则下列说法正确的是( ) (A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度. 10.已知线段AB =10cm ,AP +BP =20cm .下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11.能判定A ,B ,C 三点共线的是( )(A)AB =3,BC =4,AC =6 (B)AB =13,BC =6,AC =7 (C)AB =4,BC =4,AC =4 (D)AB =3,BC =4,AC =512.已知数轴上的三点A ,B ,C 所对应的数a ,b ,c 满足a <b <c ,abc <0和a +b +c =0,那么线段AB 与BC 的大小关系是( ). (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二、解答题13.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长. 14.已知C ,D 两点将线段AB 分为三部分,且AC ∶CD ∶DB =2∶3∶4,若AB 的中点为M ,BD 的中点为N ,且MN =5cm ,求AB 的长.15.如图,延长线段AB 到C ,使,21AB BCD 为AC 的中点,DC =2,求AB 的长.拓展、探究、思考16.已知:如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段AC =6,BC =4,求线段MN 的长度; (2)若AB =a ,求线段MN 的长度;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出MN 的长度.17.如图,这是一根铁丝围成的长方体,长、宽、高分别为6cm 、5cm 、4cm .有一只蚂蚁从A 点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到A 点时,最多爬行多少厘米?把蚂蚁所走的路线用字母按顺序表示出来.测试5 角的度量学习要求理解角的概念,掌握角的表示方法,能利用画图工具作一个角,会度量一个角的大小(在角度制下),能进行简单的计算.理解周角、平角的概念.课堂学习检测一、填空题1.(1)____________的图形叫做角,____________________叫做角的顶点,__________ ___________叫做角的边.(2)角也可以看作是由一条___________绕着它的___________而形成的图形,这条射线的起始位置叫做角的______,其终止位置叫做角的__________.(3)一条射线绕其端点O按逆时针方向旋转得到∠AOB,当角的终边OB旋转到与角的始边OA成一条直线时,称∠AOB为______;若角的终边继续旋转,当角的终边OB与角的始边OA重合时,称∠AOB为______.(4)以度、分、秒为单位的角度制规定,把一个周角______,每一份叫做1度,记作______;把1度的角______,每一份叫做1分,记作______;把1分的角______,每一份叫做1秒,记作______.这样,1周角是______°,1平角是______°,1°=______',1′=______″.2.用三个字母表示图中所注的∠1、∠2、∠3:(1)(2)(3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________.12.图中共有______个小于平角的角,它们分别是__________________,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______';(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C,则蚂蚁共转了____________的角.19.如图,(1)中有______个角,(2)中有______个角;(3)中有______个角.以此类推,若一个角内有n条射线,则可有______个角.测试6 角的比较与运算学习要求会比较两个角的大小,能进行角的运算(和、差、倍、分).理解角的平分线以及直角、锐角、钝角的概念.课堂学习检测一、填空题1.要比较∠α 和∠β 的大小,可先让∠α 的顶点与∠β 的顶点______,∠α 的始边与∠β 的始边也______,并且∠α 的终边与∠β 的终边都在它们的始边的同一侧.若∠α 的终边落在∠β 的内部,则称∠α ______∠β ;若∠α 的终边落在∠β 的外部,则称∠α ______∠β ;若∠α 的终边恰与∠β 的终边重合,则称∠α ______∠β .(如图所示,∠AOB =α ;∠AOC =β )2.如图,若OC 是∠AOB 的平分线,则______=______;或______=______21=______; 或______=2______=2______.3.如图,OM 是∠AOB 的平分线且∠AOM =30°,则∠BOM =______;∠AOB =______.4.如图,在横线上填上适当的角:(1)∠AOC =______+______; (2)∠AOD -∠BOD =______; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______. 5.按图填空:(1)∠ABC 是∠ABD 与∠DBC 的______; (2)∠BDC 是∠ADC 与∠ADB 的_______. 6.如图,(1)若∠AOB =∠COD ,则∠AOC =∠______. (2)若∠AOC =∠BOD , 则∠______=∠______.二、选择题7.在小于平角的∠AOB 的内部取一点C ,并作射线OC ,则一定存在( ). (A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8.如图,∠AOB =∠COD ,则( ).(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9.射线OC 在∠AOB 的内部,下列四个式子中不能判定OC 是∠AOB 的平分线的是( ). (A)∠AOB =2∠AOC (B)∠BOC =∠AOC(C)∠AOC 21=∠AOB (D)∠AOC +∠BOC =∠AOB 10.不能用一副三角板拼出的角是( ).(A)120° (B)105° (C)100° (D)75°11.如图,OC 是∠AOB 的平分线,OD 平分∠AOC ,且∠COD =25°,则∠AOB =( ).(A)100° (B)75°(C)50° (D)20°12.如果∠AOB =34°,∠BOC =18°,那么∠AOC 的度数是( ).(A)52° (B)16° (C)52°或16° (D)52°或18° 13.如图,射线OD 是平角∠AOB 的平分线,∠COE =90°,那么下列式子中错误的是( ).(A)∠AOC =∠DOE(B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC 14.已知α 、β 是两个钝角,计算)(61β+a 的值,四位同学算出了四种不同的答案,分别为24°,48°,76°,86°,其中只有一个答案是正确的,那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三、解答题15.下面是小马虎解的一道题.题目:在同一平面上,若∠BOA =70°,∠BOC =15°,求∠AOC 的度数. 解:根据题意可画出下图.∵∠AOC =∠BOA -∠BOC=70°-15° =55°,∴∠AOC =55°.若你是老师,会给小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.综合、运用、诊断16.如图,OT 平分∠AOB ,也平分∠COD ,那么∠AOT =∠______,∠AOC =∠______, ∠AOD =∠______17.如图,OA ⊥OB ,OC ⊥OD ,∠AOD =146°,则∠BOC =______.18.读语句画图并填空:画平角∠AOC ,用量角器画∠AOC 的平分线OB ,因为OB 平分∠AOC ,所以∠AOB =∠=AOC 21_______,再用量角器画∠BOC 的平分线OD ,图中∠AOD =∠______+∠______=______°.19.作图.(1)用一副三角板可以画出多少个小于平角的角?请用一副三角板画出15°,75°角.(2)作∠MPQ 的平分线PR ,则∠______=∠______21=∠______.(3)利用圆规和直尺画一个角.已知:∠AOB,求作:∠A′O′B′,使得∠A′O′B′=∠AOB.20.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOC=2∠AOD,∠BOC=2∠______.∵∠AOD=40°,∠BOE=25°,∴∠BOC=______,∠AOC=______.∴∠AOB=____.21.已知:如图,∠ABC=∠ADC,DE是∠ADC的平分线,BF是∠ABC的平分线.求证:∠2=∠3.证明:∵DE是∠ADC的平分线,∴∠2=______.∵BF 是∠ABC 的平分线, ∴∠3=______.又∵∠ABC =∠ADC , ∴∠2=∠3.拓展、探究、思考22.已知:∠AOB =31.5°,∠BOC =24.3°,求∠AOC 的度数.23.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.(2)若OE 平分∠BOC ,OF 、OG 三等分∠COD ,求∠EOG .24.如图,∠AOB 的平分线为OM ,ON 为∠MOA 内的一条射线,OG 为∠AOB 外的一条射线,某同学经过认真的分析,得出一个关系式是∠MON =21(∠BON -∠AON ),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来。
新版西城区学习探究诊断七年级上册_第4章__图形认识初步
第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.如图1是一些具体物体的图形,分别是:三棱镜、方砖、笔筒、铅锤、粮囤,图2中是一些立体图形,在图1中找出与图2中立体图形类似的物体填入括号内.二、选择题2.如图几何体的俯视图是( )3.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )(A)图1、图2 (B)图1、图3(C)图2、图3 (D)只有图14.如图,从上面看该物体得到的平面图形是( )(A) (B) (C) (D) 5.如果用□表示1个立方体,那么下面右图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )6.甲、乙、丙、丁四人分别面对面坐在一张四边形桌子旁边(如图所示),桌上一张纸上写着字母“W ”.甲说他看到的是“W ”,乙说他看到的是“”,丙说他看到的是“W”,丁说他看到的是“”,则下列说法中正确的是().(A)丙在乙的对面,丙的左边是甲,右边是丁 (B) 甲在乙的对面,甲的右边是丙,左边是丁 (C)甲在丁的对面,乙在甲的左边,丙在丁的右边 (D)甲在丁的对面,乙在甲的右边,丙在丁的右边综合、运用、诊断一、填空题7.分别写出表面能展开成如图所示的10个平面图的几何体的名称.W8.小熊的房子如图所示,松鼠、大象、小鸟从三个不同的角度观察此房子,则松鼠观察到的是,大象观察到的是,小鸟观察到的是.二、选择题9.如图是一个长方体包装盒,则它的平面展开图是( ).10.一个几何体是由一些大小相同的正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ). (A) 4个 (B)5个 (C)6个 (D)7个11.如图是正方体的一种展开图,其中每个面上都标有一个数字。
那么在原正方体中,与数字“2”相对的面上的数字是( )(A)1 (B)4 (C)5 (D)6 三、画图12.请画出如图所示物体的视图. (1)从上面看;(2)从正面看;(3)从左面看.13.将如图所示的正方体纸盒沿所示的粗线剪开,请画出其平面展开图的示意图.从正面看从左面看从上面看拓展、探究、思考14.由若干个相同的小正方体搭成一个几何体,从上向下看如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的从正面看是( )测试2 点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里:长方体:{ } 棱柱体:{ }圆柱体:{ } 球体:{ }圆锥体:{ }2.面与面相交得到______,线与线相交得到______,圆锥的侧面和底面相交成______条线,这条线是______线(填“直”或“曲”).3.几何图形是由、、、构成的;四棱锥的底面一定是形;如图,三棱锥有面,他们相交形成了条棱,这些棱相交形成了点.4.笔尖在纸上划过就能写出汉字,这说明了___ ___;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了____ __;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了____ __.5.如图,左面的几何体叫三棱柱,它有5个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱.(1)四棱柱有______个顶点,______条棱,______个面;(2)五棱柱有______个顶点,______条棱,______个面;(3)由此猜出n棱柱有______个顶点,______条棱,______个面.二、选择题6.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱7.如图所示,将平面图形绕轴旋转一周,得到的几何体是( )综合、运用、诊断解答题8.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.9.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.10.现将一个长为4cm,宽为3cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的别是多大?(结果保留π)11.两个往前相同的长方体的长、宽、高分别为3,2,1,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积的最小值为多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC ,BD 交于点O ,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______,图中以A 点为端点的射线有______条,它们是______,图中有______条直线,它们是______.9.下列说法中,所有正确说法的序号是.①射线AB 和射线BA 是同一条射线;②反向延长射线MN 到C ;③延长线段MN 到A 使NA=MA ;④连接两点的线段叫做两点间的距离. 二、选择题10.下图对“反向延长线段CD ”这句话表示正确的是( ).11.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是( )12.有下列说法:①直线是射线长度的2倍;②线段AB 是直线BA 的一部分;③直线、射线、线段中,线段最短.其中说法正确的有( ) (A)3个 (B)2个 (C)1个 (D)0个 三、作图题13.如图,已知平面上有四个点A ,B ,C ,D .(1)连接AB ,并画出AB 的中点P ;(2)作射线AD ;(3)作直线BC 与射线AD 交于点E .综合、运用、诊断ADCB一、判断题(正确的画“√”,错误的画“×”)( )(1)右图中,射线EO和射线ED是同一条射线;( )(2)右图中,射线EO和射线OE是同一条射线;( )(3)右图中,射线EO和射线OD是同一条射线;( )(4)右图中,线段DE和线段ED是同一条线段;( )(5)右图中,直线DO和直线ED是同一条直线;( )(6)两条线段最多有一个公共点;( )(7)反向延长射线AB;( )(8)延长直线AB到C;( )(9)射线是直线长度的一半;( )(10)在一条直线上取n个点可以得到2n条射线;( )(11)三点能确定三条直线;( )(12)如果直线a和b有两个公共点,那么它们一定重合;( )(13)延长线段AB就得到直线AB;( )(14)若三条直线两两相交,则交点有三个;( )(15)两条直线的位置关系有两种:相交或平行.二、解答题15.回答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)画图表示,平面上4条直线最多可以把一个平面分成多少个部分?(4)平面上n条直线最多可以把一个平面分成多少个部分?拓展、探究、思考16.如图,两条直线相交只有1个焦点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有个交点,二十条直线相交最多有个交点,n条直线相交最多有个交点.1个交点3个交点6个交点10个交点17.解答下列问题:(1)经过平面上三个点中的每两点画直线,一共可以画多少条直线?(2)经过平面上四个点中的每两点画直线,一共可以画多少条直线?(3)若在平面上有n个点,过其中任意两点画直线,最多可以画几条直线?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1.(1)把一条线段二等分的______叫做这条线段的______.(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB;想一想:AB-AC________BC2.如图,点C ,D 在线段上,且C 为AB 的一个四等分点,D 为AC 中点.若BC=2,则BD 的长为.二、选择题3.在所有连接两点的线中( ) (A)直线最短 (B)线段最短 (C)弧线最短 (D)射线最短 4.在下列说法中,正确的是( )(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A ,B 就得到AB 的距离 5.如图,下列说法中不正确...的是( )(A)直线AC 经过点A(B)射线DE 与直线AC 有公共点 (C)点D 在直线AC 上(D)直线AC 与线段BD 相交于点A综合、运用、诊断一、选择题6.如下图,从A 地到B 地有多条道路,人们会走中间的直路,而不会走其他的曲折的路,这是因为( ).(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7.对于线段的中点,有以下几种说法: ①因为AM =MB ,所以M 是AB 的中点;②若AM =MB =21AB ,则M 是AB 的中点;③若AM =21AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM =MB ,则M 是AB 的中点.其中说法正确的是( ). (A)①②③ (B)①③ (C)②④ (D)以上结论都不对 8.(1)如果C 是线段AB 上的一点,线段AB =9cm ,BC =1cm ,那A ,C 两点的距离是( ). (A)8cm (B)10cm (C)8cm 或10cm (D)以上都不对 (2)如果C 为射线AB 上的一点,线段AB =9cm ,BC =1cm ,那A ,C 两点的距离是( ). (A)8cm (B)10cm (C)8cm 或10cm (D)以上都不对(2)如果C为直线AB上的一点,线段AB=9cm,BC=1cm,那A,C两点的距离是( ).(A)8cm (B)10cm (C)8cm或10cm (D)以上都不对(3)已知线段AB=10cm,BC=1cm,那么下列说法正确的是( )(A)AC=8cm (B)AC=10cm(C)AC=8cm或10cm (D)不能确定AC的长度9.已知线段AB=10cm,AP+BP=20cm.下列说法正确的是( )(A)点P不能在直线AB上(B)点P只能在直线AB上(C)点P只能在线段AB的延长线上(D)点P不能在线段AB上10.已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱的侧面展开图是( )(A) (B) (C) (D)二、作图题11.已知线段a,b,c.用圆规和直尺画图(不用写画法,保留画图痕迹).(1)画线段AB,使得AB=a+b-c;(2)画直线AB,在直线AB外任取一点K,画射线AK和直线BK;(3)延长KA至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK的和与线段AB的大小.三、解答题12.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+______=______cm.∵D是AC的中点,∴AD= 12______=______cm.∴BD=AD-______=______cm.13.已知C为线段AB的中点,AB=10cm,D是AB上一点,若CD=2cm,求BD的长.14.如图,已知A,B,C,D顺次在同一直线上,BC=13AB=14CD,点E,F分别是AB,CD的中点,若BC=30,求EF的长.15.已知点A,B,C在一条直线上,AB=6,BC=2,点M是线段AC的中点,求线段AM的长度.拓展、探究、思考16.已知线段AB长为10cm,C是直线AB上一动点,M是线段AC的中点,N 是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=cm;(2)猜想线段MN与线段AB长度的关系,及MNAB,并说明理由.17.已知数轴上三点M,O,N对应的数分别为−3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?测试5 角的度量学习要求理解角的概念,掌握角的表示方法,能利用画图工具作一个角,会度量一个角的大小(在角度制下),能进行简单的计算.理解周角、平角的概念.课堂学习检测一、填空题1.(1)____________的图形叫做角,____________________叫做角的顶点,_____________________叫做角的边.(2)如图1,角也可以看作是由一条___________绕着它的___________而形成的图形,这条射线的起始位置叫做角的______,其终止位置叫做角的__________.(3)如图2,一条射线绕其端点O按逆时针方向旋转得到∠AOB,当角的终边OB旋转到与角的始边OA成一条直线时,称∠AOB为______;若角的终边继续旋转,当角的终边OB与角的始边OA重合时,称∠AOB为______.(4)以度、分、秒为单位的角度制规定,把一个周角______,每一份叫做1度,记作____;把1度的角______,每一份叫做1分,记作______;把1分的角______,每一份叫做1秒,记作______.这样,1周角是______°,1平角是______°,1°=______',1′=______″.2.(1)0.4°=';(2)0.6'=″;(3)24'=°;(4)12″=';(5)57.32°=°'″;(6)17°14' 24″=.3.如图以OC为边的角有______个,它们分别是______二、选择题4.下列关于角的说法正确的是( ).(A)两条射线组成的图形叫做角(B)延长一个角的两边(C)角的两边是射线,所以角不可以度量(D)角的大小与这个角的两边长短无关5.下列语句正确的是( ).(A)如图,∠A 就是∠BAC(B)在∠BAC 的边AB 延长线上取一点D(C)对于一个角的表示没有要求,可以任意书写(D)角可以看作是由一条射线绕角的端点旋转而成 6.下列说法中正确的是( ). (A)一个周角就是一条射线 (B)平角是一条直线 (C)角的两边越长,角就越大 (D)∠AOB 也可以表示为∠BOA7.钟表上的时间指示为两点半,这时时针与分针形成的(小于平角)角的度数是( ). (A)120° (B)105° (C)100° (D)90° 8.如图所示,点O 在直线AB 上,图中小于180°的角共有( ).(A)7个 (B)8个 (C)9个(D)10个练合、运用、诊断一、填空题9.如图,图中能用一个大写字母表示的角是;以A 为顶点的角有 个,它们分别是_________________________.1011.计算:E C D BAC DBA(1)18°31′42″+21°37′19″;(2)135°16′–91°45′35″;(3)17°40′÷3;(4)25°36′18″×6;(5)18.6°+42°34′(6)360°÷7(精确到1′)(7)32°16′25″×4-78°25′二、解答题12.1点20分时,时钟的时针与分针的夹角是几度?2点15分时,时钟的时针与分针的夹角又是几度?12.从1点15分到1点35分,时钟的分针与时针各转过了多大角度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.图1中有______个角,图2中有______个角;图3中有______个角;以此类推,若一个角内有n 条射线,则可有______个角.图1 图2 图3测试6 角的比较与运算学习要求会比较两个角的大小,能进行角的运算(和、差、倍、分).理解角的平分线以及直角、锐角、钝角的概念.课堂学习检测一、填空题1.如图所示,∠AOB=∠α;∠AOC=∠β,要比较∠α和∠β的大小,可先让∠α的顶点与∠β的顶点______,∠α的始边与∠β的始边也______,并且∠α的终边与∠β的终边都在它们的始边的同一侧.若∠α的终边落在∠β的内部,则称∠α______∠β;(图1) 若∠α的终边落在∠β的外部,则称∠α______∠β;(图2)若∠α的终边恰与∠β的终边重合,则称∠α______∠β.(图3)图1 图2 图32.如图,若OC 是∠AOB 的平分线,则______=______; 或______=______21 ______;或______=2______=2______.3.如图,已知直线AB ,CD 相交于点O ,OE 平分∠COB ,若∠EOB=50°,则∠BOD 的度数是. 4.如图,在横线上填上适当的角:(1)∠AOC =______+______; (2)∠AOD -∠BOD =______; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +∠BOD -______.5.如图,∠1=15°,∠AOC=90°,点B ,O ,DEDCBAO在同一条直线上,则∠2的度数为. 6.如图,(1)若∠AOB =∠COD ,则∠AOC =∠______. (2)若∠AOC =∠BOD , 则∠______=∠______.二、选择题7.在小于平角的∠AOB 的内部取一点C ,并作射线OC ,则一定存在( ). (A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC8.如图,∠AOC=90°,ON 是锐角∠COD 的角平分线,OM 是∠AOD 的角平分线,那么∠MON=( )(A)90° (B)75° (C)60° (D)45°9.不能用一副三角板拼出的角是( ).(A)120° (B)105° (C)100° (D)75° 10.如图,OC 是∠AOB 的平分线,OD 平分∠AOC ,且∠COD =25°,则∠AOB =( ). (A)100° (B)75° (C)50° (D)20°11.如图,射线OD 是平角∠AOB 的平分线,∠COE =90°,那么下列式子中错误的是( ). (A)∠AOC =∠DOE (B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC12.如果∠AOB =34°,∠BOC =18°,那么∠AOC 的度数是( ).(A)52° (B)16° (C)52°或16° (D)52°或18° 13.已知OC 是从∠AOB 的顶点引出的一条射线,若∠AOB =70°,∠AOB =2∠BOC ,则∠AOC 的度数是( ). (A)35° (B)105° (C)35°或105° (D)35°或115° 14.将一长方形纸片按如图的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )(A)60° (B)75° (C)90°(D)95°三、解答题 15.如图,OD ,OE 分别是∠AOC 和∠BOC 的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.MN O DAC解:∵解:因为OD 平分∠AOC ,OE 平分∠BOC , ∴∠AOC=2∠AOD ,∠BOC=2______,( ) ∵∠AOD=40°,∠BOE=25°, ∴∠BOC=,∠AOC=______. ∴∠AOB=______.16.已知:如图,直线AB 和CD 相交于点O ,∠BOC=30°,OE 平分∠AOD ,∠AOD 内的一条射线OF 满足∠EOF =90°,求∠COF 的度数. 将以下解答过程补充完整:解:∵直线AB 和CD 相交于点O ,∴∠AOD =180°-∠BOD , ∠BOC =180°-∠BOD . ∴∠________=∠________.( )∵∠BOC =30°,∴∠AOD =________°. ∵OE 平分∠AOD ,∴∠DOE =12________=________°.( )∵∠EOF =90°,∠DOE +∠EOF +∠COF =180°, ∴∠COF =________°.综合、运用、诊断一、作图题17.已知∠1和∠2,求作一个角,使它等于∠2-2∠1.18.如图,点B 为射线OA 上一点,①在OA 的上方,画∠AOC=120°,画∠OBD=90°; ②画∠AOC 的平分线OE ,交射线BD 于点P . 测量点O 、P 之间的距离(精确到0.1cm ).19.如图,直线AB ,CD 相交于点O ,OE 是∠AOD 的平分线,若∠AOC=60°,DEAFCBO∠EOF=90°,求∠FOC的度数.拓展、探究、思考20.如图,OM是∠AOB的平分线,射线OC在∠BOM内,ON是∠BOC的平分线,已知∠AOC=80°,求∠MON的度数.21.如图,BD平分∠ABC,BE分∠ABC分2∶5两部分,∠DBE=21°,求∠ABC的度数.22.(1)已知:如图1,点C为∠AOB内一点,OM,ON分别平分∠AOC和∠BOC,求证:∠MON=12∠AOB;(2)如果C为∠AOB外一点,如图2,其他条件不变,(1)中的结论还成立吗?若变化,请说明理由;若不变请证明.23.如图,OM为∠AOB的平分线,ON为∠MOA内的一条射线,某同学经过认真的分析,得出一个关系式是∠MON =21(∠BON -∠AON ),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来。
北京市西城区教辅资料-学习探究诊断-高中数学选修2-1全本练习-含详细答案
北京市西城区学习探究诊断高中数学选修2-1全本练习册及参考答案第一章 常用逻辑用语测试一 命题与量词Ⅰ 学习目标会判断命题的正误,理解全称量词与存在量词的意义.Ⅱ 基础性训练一、选择题1.下列语句中不是命题的是( )(A )团结就是力量 (B )失败乃成功之母(C )世上无难事 (D )向雷锋同志学习2.下列语句能作为命题的是( )(A )3>5 (B )星星和月亮 (C )高一年级的学生 (D )x 2+|y |=03.下列命题是真命题的是( )(A )y =sin |x |是周期函数 (B )2≤3(C )空集是集合A 的真子集 (D )y =tan x 在定义域上是增函数4.下列命题中真命题的个数是( )①∃x ∈R ,x ≤0;②至少有一个整数,它既不是合数,也不是质数;③∃x ∈{x |x 是无理数},x 2是有理数.(A )0 (B )1 (C )2 (D )35.下列语句中表示真命题的是( )(A )x >12 (B )函数21x y =在(0,+∞)上是减函数 (C )方程x 2-3x +3=0没有实数根 (D )函数222++=x x x y 是奇函数 6.已知直线a ,b 和平面α ,下列推导错误的是( )(A )b a a b a ⊥⇒⊂∀⊥⎪⎭⎪⎬⎫α(B )b a b a ////⇒⎭⎬⎫⊂∃αα (C )αα⊂⇒⎭⎬⎫⊥⊥∃a b b a 或α//a (D )b a b a ////⇒⎭⎬⎫⊂αα 7.下列命题是假命题的是( )(A )对于非零向量a ,b ,若a ·b =0,则a ⊥b(B )若|a |=|b |,则a =b(C )若ab >0,a >b ,则ba 11< (D )a 2+b 2≥2ab8.若命题“ax 2-2ax +3>0对x ∈R 恒成立”是真命题,则实数a 的取值范围是( )(A )0≤a <3 (B )0≤a ≤3 (C )0<a <3 (D )0≤a <3二、填空题9.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对于∀x ∈R 均成立,则实数a 的取值范围是______.10.设A 、B 为两个集合,下列四个命题:①A ⊄B ⇔对任意x ∈A ,有x ∉B②A ⊆/B ⇔A ∩B =∅ ③A ⊆/B ⇔A ⊇B ④A ⊆/B ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题11.判断下列语句哪些是命题?如果是命题,是真命题还是假命题?(1)末位数字是0的整数能被5整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行则斜率相等;(4)△ABC 中,若sin A =sin B ,则A =B ;(5)余弦函数是周期函数吗?12.用符号“∀”、“ ∃”表达下列命题:(1)实数的平方大于等于0;(2)存在一个实数x ,使x 3>x 2;(3)存在一对实数对,使2x +3y +3<0成立.13.判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)∃x ∈{x |x ∈Z },log 2x >0.参考答案第一章 常用逻辑用语测试一 命题与量词1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.A9.2321<<-a ; 10.④ 11.(1)是命题,是真命题 (2)是命题,是假命题 (3)是命题,是假命题(4)是命题,是真命题 (5)不是命题12.(1)∀x ∈R ,x 2≥0.(2)∃x ∈R ,使x 3>x 2.(3)∃(x ,y ),x 、y ∈R ,使2x +3y +3<0成立.13.(1)全称命题,真命题. (2)存在性命题,真命题. (3)存在性命题,真命题.测试二 基本逻逻辑联结词Ⅰ 学习目标1.了解逻辑联结词“或”、“且”、“非”的含义.2.能正确地对含有一个量词的命题进行否定.Ⅱ 基础性训练一、选择题1.命题“菱形的对角线互相垂直平分”是( )(A )简单命题 (B )“非p ”形式的命题(C )“p 且q ”形式的命题 (D )“p 或q ”形式的命题2.下列结论中正确的是( )(A )p 是真命题时,“p 且q ”一定是真命题(B )p 是假命题时,“p 且q ”不一定是假命题(C )“p 且q ”是假命题时,p 一定是假命题(D )“p 且q ”是真命题时,p 一定是真命题3.如果“p 或q ”与“非p ”都是真命题,那么( )(A )q 一定是真命题 (B )q 不一定是真命题(C )p 不一定是假命题 (D )p 与q 的真假相同4.“xy ≠0”是指( )(A )x ≠0且y ≠0 (B )x ≠0或y ≠0(C )x ,y 至少一个不为零 (D )x ,y 不都为零5.命题5:p 的值不超过2,命题2:q 是无理数,则( )(A )命题“p 或q ”是假命题(B )命题“p 且q ”是假命题 (C )命题“非p ”是假命题(D )命题“非q ”是真命题 6.下列命题的否定是真命题的是( )(A )∀x ∈R ,x 2-2x +2≥0(B )所有的菱形都是平行四边形 (C )∃x ∈R ,|x -1|<0(D )∃x ∈R ,使得x 3+64=0 7.下列命题的否定是真命题的是( )(A )∃x ∈R ,x 2=1(B )∃x ∈R ,使得2x +1≠0成立 (C )∀x ∈R ,x 2-2x +1>0 (D )∃x ∈R ,x 是x 3-2x +1=0的根8.已知U =R ,A ⊆U ,B ⊆U ,若命题A p ∈2:∪B ,则命题“⌝p ”是( )(A )2∉A(B )2∈U B (C )2∉A ∩B (D )2∈(U A )∩(U B )9.由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题中,“p 或q ”为真、“p 且q ”为假、“非p ”为真的是( )(A)p:11不是质数,q:6是18和15的公约数(B)p:0∈N,q:{0}{-1,0}(C)p:方程x2-3x+1=0的两根相同,q:方程2x2-2=0的两根互为相反数(D)p:矩形的对角线相等,q:菱形的对角线互相垂直10.命题p:∃a∈R,使方程x2+ax+1=0有实数根,则“⌝p”形式的命题是( )(A)存在实数a,使方程x2+ax+1=0没有实数根(B)不存在实数a,使方程x2+ax+1=0没有实数根(C)对任意实数a,使方程x2+ax+1=0没有实数根(D)至多有一个实数a,使方程x2+ax+1=0有实数根二、填空题11.命题“∀x∈A,x∈A∪B”的命题的否定是________________.12.“l⊥α ”的定义是“若∀g⊂α ,l⊥g,则称l⊥α ”,那么“直线l不垂直于平面α ”的定义是_____________________________.13.已知命题:“非空集合A的元素都是集合B的元素”是假命题.那么给出下列命题:①“A中的元素都不是集合B的元素”;②“A中有不属于B的元素”;③“A中有B的元素”;④“A中的元素不都是B的元素”.其中真命题的序号是______.(将正确命题的序号都填上)14.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A,都有x∈B,则称A⊆B”.那么“A不是B的子集”可用数学语言表达为________________.三、解答题15.写出下列命题的否定,并判断真假:(1)质数都是奇数;(2)∀x∈R,3x-5>2x;(3)∀A⊆U(U为全集),∅是集合A的真子集.16.命题p:正方形是菱形;q:正方形是梯形.写出其构成的“p或q”,“p且q”,“非p”形式的命题,并判断其真假.测试二基本逻辑联结词1.C2.D3.A4.A5.B6.C7.C8.D9.C10.C11.∃x∈A,但x∉A∪B12.∃g⊂α,l不垂直g,则称直线l不垂直于平面α13.②④14.若∃x∈A但x∉B,则称A不是B的子集15.解:(1)命题的否定:质数不都是奇数,真命题(2)命题的否定:∃x∈R,使3x-5≤2x,真命题(3)命题的否定:∃A⊆U,∅不是集合A的真子集,真命题16.答:p 或q :正方形是菱形或梯形.(真命题)p 且q :正方形是菱形且是梯形.(假命题)非p :正方形不是菱形.(假命题)测试三 充分条件、必要条件与四种命题Ⅰ 学习目标1.了解命题及其逆命题、否命题与逆否命题.2.理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.Ⅱ 基础性训练一、选择题1.“两个三角形相似”的一个充分不必要条件是( )(A )它们的面积相等 (B )它们的三边对应成比例(C )这两个三角形全等 (D )这两个三角形有两个对应角相等2.已知a 为正数,则“a >b ”是“b 为负数”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件3.条件p :ac 2>bc 2是条件q :a >b(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分又不必要条件4.若条件甲:“=”,条件乙:“ABCD 是平行四边形”,则甲是乙的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分又不必要条件5.若命题p 的逆命题是q ,命题p 的逆否命题是r ,则q 是r 的( )(A )逆命题 (B )否命题(C )逆否命题 (D )非四种命题关系6.原命题的否命题为假,可判断( )(A )原命题为真 (B )原命题的逆命题为假(C )原命题的逆否命题为假 (D )都无法判断7.已知集合A ={x |x 2-5x -6≤0},B =x |x 2-6x +8≤0,则x ∈A 是x ∈B 的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件8.在下列命题中,真命题是( )(A )命题“若ac >bc ,则a >b ”(B )命题“若a n 是n 的一次函数,则数列{a n }是等差数列”的逆命题(C )命题“若x =3,则x 2-4x +3=0”的否命题(D )命题“若x 2=4,则x =2”的逆命题9.设x ,y ∈R ,|x -1|+(y -2)2≠0等价于( )(A )x =1且y =2 (B )x =1或y =2(C )x ≠1或y ≠2 (D )x ≠1且y ≠210.下列4组条件中,甲是乙的充分不必要条件的是( )(A )甲:a >b ,乙:ba 11< (B )甲:ab <0,乙:|a +b |<|a -b |(C )甲:a =b ,乙:ab b a 2=+(D )甲:⎩⎨⎧<<<<1010b a ,乙:⎩⎨⎧<-<-<+<1120b a b a二、填空题11.原命题“若x <3,则x <4”的逆否命题是_________________________.12.“直线l ∥平面α ”是“直线l 在平面α 外”的__________________条件.13.命题“若xy =0,则x =0或y =0”的逆否命题是__________________.14.“函数y =x 2+bx +c ,x ∈[1,+∞)是单调函数”的充要条件是__________________. 15.举一个反例,说明命题“若a ,b 是无理数,则a +b 是无理数”是假命题:____________________________________.16.给出下列命题:①“角平分线上的点到角的两边距离相等”的逆否命题②“圆内接四边形的对角互补”的否命题③“若ac >bc ,则a >b ”的逆命题 ④“若a +5∈Q ,则a ∈Q ”的逆命题其中正确的命题是______(请填入正确命题的序号).17.①“若xy =1,则x ,y 互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若a ≤-1,则方程x 2-2ax +a 2⊆+a =0有实数根”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中正确的命题是______.(填上你认为正确的命题序号)18.设全集为S ,集合A ,B ⊆S ,有下列四个命题:①A ∩B =A ; ②s A ⊇s B ; ③(s B )∩A =∅; ④(s A )∩B =∅.其中是命题A ⊆B 的充要条件的命题序号是______.测试三 充分条件、必要条件与四种命题1.C 2.B 3.A 4.B 5.B 6.B 7.B 8.D 9.C 10.D11.若x ≥4,则x ≥312.充分不必要13.若x ≠0且y ≠0,则xy ≠014.b ≥-215.2,2-==b a 都是无理数,但a +b =0是有理数;也可举例2,21-=+=b a 等.16.①②④17.①③18.①②③第二章 圆锥曲线与方程测试四 曲线与方程Ⅰ 学习目标1.了解曲线与方程的对应关系,进一步感受数形结合的基本思想.2.初步掌握求曲线方程的基本方法.Ⅱ 基础性训练一、选择题1.在点A (4,4),B (3,4),C (-3,3),)62,2(D 中,有几个点在方程x 2-2x +y 2=24的曲线上( )(A )1个 (B )2个 (C )3个 (D )4个2.方程x 2+3(y -1)2=9的曲线一定( )(A )关于x 轴对称 (B )关于y 轴对称(C )关于原点对称 (D )以上都不对3.已知等腰△ABC 的底边两端点的坐标分别为B (4,0),C (0,-4),则顶点A 的轨迹方程是( )(A )y =x (B )y =x (x ≠2) (C )y =-x (D )y =-x (x ≠2)4.方程log (2x )y =1与下列方程表示同一曲线的是( )(A )y =2x (x ≥0) (B )y =2x (x >0且21=/x ) (C )y =2x (x >0) (D )y =2x (y >0)5.方程(2x -y -1)(3x +2y +1)=0与方程(2x -y -1)2+(3x +2y +1)2=0的曲线是( )(A )均表示两条直线 (B )前者是两条直线,后者表示一个点(C )均表示一个点 (D )前者是一个点,后者表示两条直线二、填空题6.直线x +2y -9=0与曲线xy =10的交点坐标为______.7.圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)经过坐标原点的充要条件是______.8.到两平行线l 1:3x +2y -4=0,l 2:3x +2y -8=0距离相等的点的轨迹方程是______.9.若动点P 到点(1,1)的距离等于它到y 轴的距离,则动点P 的轨迹方程是______.10.已知两定点A (-1,0),B (3,0),动点P 满足21||||=PB PA ,则动点P 的轨迹方程是 ________________________.三、解答题11.已知动点P 到两定点M (1,3),N (3,1)的距离平方之和为20,求动点P 的轨迹方程.12.试画出方程|x +|y |=1的曲线,并研究其性质.13.如图,设D 为圆C :x 2+y 2-4x +4y +6=0的圆心,若P 为圆C 外一动点,过P 向圆C作切线PM ,M 为切点,设2=PM ,求动点P 的轨迹方程.Ⅲ 拓展性训练14.如图,已知点P (-3,0),点Q 在x 轴上,点A 在y 轴上,且0=⋅AQ PA ,AQ QM 2=.当点A 在y 轴上移动时,求动点M 的轨迹方程.第二章 圆锥曲线与方程测试四 曲线与方程1.C 2.B 3.D 4.B 5.B6.(5,2),)25,4( 7.F =0 8.3x +2y -6=09.)21(2)1(2-=-x y 10.3x 2+3y 2+14x -5=011.x 2+y 2-4x -4y =0.12.方程的曲线如图.(1)曲线的组成:由四条线段首尾连接构成的正方形;(2)曲线与坐标轴的交点:四个交点分别是(1,0)、(0,1)、(-1,0)、(0,-1);(3)曲线的对称性:关于两坐标轴对称,关于原点对称13.圆C 化简为:(x -2)2+(y +2)2=2,∴圆心D (2,-2),半径2=r ,设点P (x ,y ),由题意,得DM ⊥PM ,∴|PD |2=|PM |2+|DM |2,∵2=PM ,2||=DM ,6||=PD , ∴6)2()2(22=++-y x ,故动点P 的轨迹方程为(x -2)2+(y +2)2=6.14.设动点M (x ,y ),A (0,b ),Q (a ,0),∵P (-3,0),∴),(),,(),,3(y a x b a b -=-==,∵0=⋅,∴(3,b )·(a ,-b )=0,即3a -b 2=0. ① ∵2=,∴(x -a ,y )=2(a ,-b ),即x =3a ,y =-2b . ②由①②,得y 2=4x .∴轨迹E 的方程为y 2=4x .测试五 椭圆AⅠ 学习目标1.理解椭圆的定义,掌握椭圆的两种标准方程.2.掌握椭圆的几何性质,椭圆方程中的a ,b ,c ,e 的几何意义、相互关系、取值范围等对图形的影响.Ⅱ 基础性训练一、选择题1.长半轴长为4,短半轴长为1,目焦点在x 轴上的椭圆标准方程是( )(A )1422=+y x (B )1422=+y x (C )11622=+y x (D )11622=+y x 2.椭圆1251622=+y x 的焦点坐标是( ) (A )(0,3),(0,-3)(B )(3,0),(-3,0) (C )(0,5),(0,-5) (D )(4,0),(-4,0)3.若椭圆13610022=+y x 上一点P 到其焦点F 1的距离为6,则P 到另一焦点F 2的距离为( ) (A )4 (B )194 (C )94 (D )144.已知F 1,F 2是定点,821=F F ,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( )(A )椭圆 (B )直线 (C )圆 (D )线段5.如果方程x 2+ky 2=1表示焦点在x 轴上的椭圆,那么实数k 的取值范围是( )(A )k <1 (B )k >1 (C )0<k <1 (D )k >1,或k <0二、填空题6.经过点)2,3(-M ,)1,32(-N 的椭圆的标准方程是______.7.设a ,b ,c 分别表示离心率为21的椭圆的长半轴长、短半轴长、半焦距,则a 、b 、c 的大小关系是______. 8.设P 是椭圆14522=+y x 上一点,若以点P 和焦点F 1、F 2为顶点的三角形的面积为1,则点P 的坐标为_______.9.过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的△ABF 2的周长是_______.10.已知△ABC 的周长为20,B (-4,0),C (4,0),则点A 的轨迹方程是____________.三、解答题11.设椭圆)0(1:2222>>=+b a by a x C 的两个焦点为F 1,F 2,点P 在椭圆C 上,且PF 1⊥,F 1F 2,34||1=PF ,314||2=PF ,求椭圆C 的方程.12.已知椭圆164100:221=+y x C ,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.13.设椭圆149:22=+y x C 的左右焦点分别为F 1,F 2,点P 为C 上的动点,若021<⋅PF 求点P 的横坐标的取值范围测试五 椭圆A1.C 2.A 3.D 4.D 5.B6.151522=+y x 7.a >b >c 8.)1,215(±± 9.22 10.)0(1203622=/=+y y x11.因为点P 在椭圆C 上,所以2a =|PF 1|+|PF 2|=6,所以a =3.在Rt △PF 1F 2中,52||||||212221=-=PF PF F F , 故椭圆的半焦距5=c ,从而b 2=a 2-c 2=4,所以,椭圆C 的方程为14922=+y x .12.(1)长半轴长10,短半轴长8,焦点坐标(6,0)、(-6,0),离心率53=e ; (2)椭圆164100:222=+x y C ,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴,y 轴,原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④离心率:53=e . 13.由题意,)0,5(),0,5(21F F -,设P (x ,y ),则),5(),,5(21y x PF y x --=---=,所以052221<+-=⋅y x PF ,由14922=+y x ,得94422x y -=,代入上式,得094122<--x x ,解得553553<<-x . 测试六 椭圆BⅠ 学习目标1.能初步应用椭圆的定义、几何性质解决与椭圆有关的简单问题.2.通过解决与椭圆的有关问题,进一步体会数形结合的思想、函数与方程的思想.Ⅱ 基础性训练一、选择题1.椭圆)2(12522>=-++m m y m x 的焦点坐标是( )(A )(±7,0)(B )(0,±7)(C ))0,7(±(D ))7,0(±2.过点(3,-2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆方程是( )(A )1101522=+y x (B )110522=+y x (C )1151022=+y x(D )1202522=+y x3.曲线192522=+y x 与)9(192522<=-+-k ky k x 有相同的( ) (A )短轴(B )焦点(C )长轴(D )离心率4.已知F (c ,0)是椭圆)0(1:2222>>=+b a by a x C 的右焦点,设b >c ,则椭圆C 的离心率e 满足( ) (A )20<<e(B )220<<e (C )210<<e (D )122<<e 5.已知两定点M (-1,0)、N (1,0),直线l :y =-2x +3,在l 上满足|PM |+|PN |=4的点P 有( ) (A )0个 (B )1个 (C )2个 (D )3个 二、填空题6.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则实数m 的取值范围是______.7.若椭圆)8(19822->=++k y k x 的离心率21=e ,则k 的值为________. 8.过椭圆)0(12222>>=+b a by a x 的中心的直线l 与椭圆相交于两点A 、B ,设F 2为该椭圆的右焦点,则△ABF 2面积的最大值是________.9.椭圆192522=+y x 上一点M 到左焦点F 1的距离为2,点N 是MF 1的中点,设O 为坐标原点,则ON =________.10.P 为椭圆16410022=+y x 上一点,左右焦点分别为F 1、F 2,若∠F 1PF 2=60°,则△PF 1F 2的面积为________. 三、解答题11.求出直线y =x +1与椭圆12422=+y x 的公共点A ,B 的坐标,并求线段AB 中点的坐标.12.已知点P 为椭圆x 2+2y 2=98上一个动点,A (0,5),求|P A |的最值.13.求过点P (3,0)且与圆x 2+6x +y 2-91=0相内切的动圆圆心的轨迹方程.Ⅲ 拓展性训练14.我们把由半椭圆)0(12222≥=+x b y a x 与半椭圆)0(12222≤=+x cx b y 合成的曲线称作“果圆”,其中a 2=b 2+c 2,a >0,b >c >0.如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点,M 是线段A 1A 2的中点.(1)若△F 0F 1F 2是边长为1的等边三角形,求该“果圆”的方程;(2)设P 是“果圆”的半椭圆)0(12222≤=+x cx b y 上任意一点.求证:当|PM |取得最小值时,P 在点B 1,B 2或A 1处;(3)若P 是“果圆”上任意一点,求|PM |取得最小值时点P 的横坐标.测试六 椭圆B1.C 2.A 3.B 4.B 5.C 6.2529<<m 7.4或45- 8.22b a b - 9.4 10.3364 提示:9.设F 2为椭圆的右焦点,由椭圆的定义|MF 2|+MF 1|=2a ,得|MF 2|=10-2=8,在△MF 1F 2中,∵|MN |=NF 1|,|OF 1|=|OF 2|, ∴4||21||2==MF ON . 10.设|PF 1|=r 1,|PF 2|=r 2,由椭圆定义,得r 1+r 2=20……①由余弦定理,得ο60cos 2)2(2122212r r r r c -+=,即②ΛΛ144212221=-+r r r r , 由①2-②,得3r 1r 2=256,∴33642332562160sin 212121=⨯⨯==∆οr r S F PF .11.设A (x 1,y 1),B (x 2,y 2),把y =x +1代入椭圆方程12422=+y x ,得3x 2+4x -2=0,解得3102,310221--=+-=x x , 所以)3101,3102(),3101,3102(---++-B A ,故AB 中点)2,2(2121y y x x ++的坐标为)31,32(-.(注:本题可以用韦达定理给出中点横坐标,简化计算) 12.设P (x ,y ),则2510)5(||2222+-+=-+=y y x y x PA ,因为点P 为椭圆x 2+2y 2=98上一点,所以x 2=98-2y 2,-7≤y ≤7, 则148)5(2510298||222++-=+-+-=y y y y PA ,因为-7≤y ≤7,所以,当y =-5时,372148|max ==PA ;当y =7时,|P A |min =2. 13.圆的方程整理为(x +3)2+y 2=102,圆心为C 1(-3,0),半径R =10.设所求动圆圆心为C (x ,y ),半径为r ,则有⎩⎨⎧-==.||,||1r R CC r CP 消去r ,得CC 1|+CP |=10,又C 1(-3,0),P (3,0),|C 1P |=6<10,所以,由椭圆的定义知圆心C 的轨迹是以C 1,P 为焦点的椭圆, 且半焦距c =3,2a =10,a =5,从而b =4,所以,所求的动圆的圆心C 的轨迹方程为1162522=+y x .14.(1)∵),0(),,0(),0,(2222210c b F c b F c F ---,∴1)(||32220==+-=b c c b F F ,12||2221=-=c b F F ,于是47,432222=+==c b a c , 所求“果圆”方程为)0(134),0(1742222≤=+≥=+x x y x y x .(2)∵M 是线段A 1A 2的中点,又A 1(-c ,0),A 2(a ,0),∴)0,2(ca M -,设P (x ,y ),则12222=+c x b y ,即22222x c b b y -=,又222)2(||y c a x PM +=--=0,4)().()1(22222≤≤-+-+---=x c b c a x c a x cb ,∵0122<-cb ∴|PM |2的最小值只能在x =0或x =-c 处取到.即当|PM |取得最小值时,P 在点B 1,B 2或A 1处.(3)∵|A 1M |=|MA 2|,且B 1和B 2同时位于“果圆”的半椭圆)0(12222≥=+x by a x和半椭圆)0(12222≤=+x c x b y 上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆2222by a x +=1(x ≥0)上的情形即可. 222)2(||y c a x PM +--=22222222224)(4)(]2)([c c a a c a b c c a a x a c ---++--=.当a c c a a x ≤-=222)(即a ≤2c 时,|PM |2的最小值在222)(c c a a x -=时取到, 此时P 的横坐标是222)(cc a a - 当a cc a a x >-=222)(,即a >2c 时,由于|PM |2在x <a 时是递减的, |PM |2的最小值在x =a 时取到,此时P 的横坐标是a .综上所述,若a ≤2c ,当|PM |取得最小值时,点P 的横坐标是222)(c c a a -;若a>2c ,当|PM |取得最小值时,点P 的横坐标是a 或-c .测试七 双曲线Ⅰ 学习目标1.理解双曲线的定义,掌握椭圆的两种标准方程.2.掌握双曲线的几何性质,双曲线方程中的a ,b ,c ,e 的几何意义、相互关系、取值范围等对图形的影响.3.能初步应用双曲线的定义、几何性质解决与双曲线有关的简单问题,并初步体会数形结合的思想.Ⅱ 基础性训练一、选择题1.双曲线117822=-x y 的焦点坐标为( )(A )(±5,0)(B )(±3,0)(C )(0,±3)(D )(0,±5)2.顶点在x 轴上,两顶点间的距离为8,离心率45=e 的双曲线为( ) (A )191622=-y x (B )1251622=-y x(C )116922=-y x (D )1162522=-y x3.若方程11222=+-+m y m x 表示双曲线,则m 的取值范围为( )(A )m >-1 (B )m >-2(C )m >-1,或m <-2 (D )-2<m <14.设动点M (x ,y )到A (-5,0)的距离与它到B (5,0)距离的差等于6,则M 点的轨迹方程是( )(A )116922=-y x(B )116922=-x y(C ))3(116922-≤=-x y x(D ))3(116922≥=-x y x5.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则双曲线的方程是( )(A )193622=-y x (B )198122=-y x(C )1922=-y x (D )131822=-y x二、填空题6.双曲线4x 2-9y 2=36的焦点坐标____________,离心率____________,渐近线方程是__________.7.与双曲线191622=-y x 共渐近线,且过点)3,32(-A 的双曲线的方程为________.8.椭圆14222=+a y x 与双曲线12222=-y a x 有相同的焦点,则a =____________. 9.双曲线191622=-y x 上的一点P ,到点(5,0)的距离为15,则点P 到点(-5,0)的距离为_____________________.10.已知双曲线)2(12222>=-a y a x 两条渐近线的夹角为3π,则此双曲线的离心率为_________________.三、解答题11.已知三点P (5,2),F 1(-6,0),F 2(6,0).(1)求以F 1,F 2为焦点,且过点P 的椭圆的标准方程;(2)设点P ,F 1,F 2关于直线y =x 的对称点分别为P ′,F 1′,F 2′,求以F 1′,F 2′为焦点且过点P ′的双曲线的标准方程.12.已知定圆O 1:x 2+y 2+10x +24=0,定圆O 2:x 2+y 2-10x +9=0,动圆M 与定圆O 1,O 2都外切,求动圆圆心M 的轨迹方程.13.以双曲线)0,0(1:2222>>=-b a by a x C 的虚轴为实轴,实轴为虚轴的双曲线叫做C 的共轭双曲线.(1)写出双曲线15422=-y x 的共轭双曲线的方程;(2)设双曲线C 与其共轭双曲线的离心率分别为e 1,e 2,求证1112221=+e e .测试七 双曲线1.D 2.A 3.C 4.D 5.C6.x y 32,313),0,13()0,13(±=-、7.144922=-x y 8.-1或1 9.7或23 10.332 11.(1)521||,55211||222221=+==+=PF PF ,由椭圆定义,得6,56||||221==+=c PF PF a ,所以b 2=a 2-c 2=9,所以,椭圆的方程为194522=+y x ;(2)点P ,F 1,F 2关于直线y =x 的对称点分别为P '(2,5),F 1'(0,-6),F 2 '(0,6), 由双曲线定义,得2a =|''1F P |-|''2F P |=54,c =6,所以,b 2=c 2-a 2=16,所以,双曲线的方程为1162022=-x y .12.圆O 1方程化为:(x +5)2+y 2=1,所以圆心O 1(-5,0),r 1=1,圆O 2方程化为:(x -5)2+y 2=16,所以圆心O 2(5,0),r 2=4, 设动圆半径为r ,因为动圆M 与定圆O 1,O 2都外切,所以|MO 1|=r +1,|MO 2|=r +4, 则|MO 2|-MO 1=3,由双曲线定义,得动点M 轨迹是以O 1,O 2为焦点的双曲线的一支(左支),所以491,5,2322=--===a cbc a , 故双曲线的方程为)23(19149422>-≤=-x y x .13.(1)双曲线15422=-y x 的共轭双曲线的方程为14522=-x y ;(2)在双曲线C 中,半焦距22b ac +=,所以离心率ab a ace 221+==; 双曲线C 共轭双曲线方程为)0,0(12222>>=-b a x by α,其半焦距为22b a +,所以离心率bb a e 222+=. 所以,1112222222221=+++=+b a b b a a e e. 测试八 抛物线AⅠ 学习目标1.初步掌握抛物线的定义、简单性质和抛物线的四种形式的标准方程.2.初步了解用抛物线的定义及性质去求抛物线的方程,了解抛物线的简单应用.Ⅱ 基础性训练一、选择题1.顶点在原点,焦点是(0,5)的抛物线的方程是( ) (A )y 2=20x(B )x 2=20y(C )x y 2012=(D )y x 2012=2.抛物线x 2=-8y 的焦点坐标是( ) (A )(-4,0) (B )(0,-4) (C )(-2,0) (D )(0,-2) 3.若抛物线y 2=8x 上有一点P 到它的焦点距离为20,则P 点的坐标为( ) (A )(18,12) (B )(18,-12) (C )(18,12),或(18,-12) (D )(12,18),或(-12,18) 4.方程2x 2-5x +2=0的两根可分别作为( ) (A )一椭圆和一双曲线的离心率 (B )两抛物线的离心率(C )一椭圆和一抛物线的离心率 (D )两椭圆的离心率5.点P 到点F (4,0)的距离比它到直线l :x =-6的距离小2,则点P 的轨迹方程为( ) (A )x y 612=(B )y 2=4x (C )y 2=16x (D )y 2=24x二、填空题6.准线为x =2的抛物线的标准方程是____________. 7.过点A (3,2)的抛物线的标准方程是___________. 8.抛物线y =4x 2的准线方程为____________.9.已知抛物线y 2=2px (p >0),若点A (-2,3)到其焦点的距离是5,则p =________. 10.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是_______.(要求填写合适条件的序号) 三、解答题11.抛物线的顶点在原点,焦点在直线x -2y -4=0上,求抛物线的标准方程.12.求以抛物线2y =8x 的顶点为中心,焦点为右焦点且渐近线为x y 3±=的双曲线方程.13.设P 是抛物线221x y =上任意一点,A (0,4),求|P A |的最小值. 测试八 抛物线A 1.B 2.D 3.C 4.A 5.C6.x y 82-= 7.x y 342=或y x 292= 8.161-=y 9.4 10.②,④ 11.由题意,焦点既在坐标轴上,又在直线x -2y -4=0上,令x =0,得焦点为(0,-2);令y =0,得焦点为(4,0) 当焦点为(0,-2)时,抛物线方程为x 2=-8y ; 当焦点为(4,0)时,抛物线方程为y 2=16x . 12.抛物线y 2=8x 的顶点为(0,0),焦点为(2,0),所以,双曲线的中心为(0,0),右焦点为(2,0),由双曲线的渐近线为x y 3±=知,可设所求双曲线方程为)0(322>=-λλy x ,即1322=-λλy x ,由222b a c +=,得λ+3λ=4,解得λ=1, 所以,所求双曲线方程为1322=-y x .13.由题意,设P (x ,y ),则168)4()0(||2222+-+=-+-=y y x y x PA ,因为P (x ,y )是抛物线221x y =上任意一点,所以x 2=2y ,y ≥0, 代入上式,得7)3(166|22+-=+-=y y y PA ,因为y ≥0,所以当y =3时,|P A |min =7, 即当点)3,6(±P 时,|P A |有最小值7.测试九 抛物线BⅠ 学习目标1.进一步掌握抛物线定义、性质、图形及其应用.2.通过解决与抛物线有关的问题,进一步体会数形结合的思想,函数与方程的思想.Ⅱ 基础性训练一、选择题1.抛物线x 2=y 的准线方程是( ) (A )4x +1=0 (B )4y +1=0 (C )2x +1=0 (D )2y +1=02.抛物线的顶点在原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离是( ) (A )32(B )3(C )321(D )3413.连接抛物线x 2=4y 的焦点F 与点M (1,0)所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( ) (A )21+-(B )223- (C )21+(D )223+ 4.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是( ) (A )34 (B )57 (C )58 (D )35.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为( ) (A ))22,2(±(B )(1,2)(C )(1,±2)(D ))22,2(二、填空题6.过抛物线y 2=6x 的焦点F ,作垂直于抛物线对称轴的直线l ,设l 交抛物线于A ,B 两点,则|AB |=_________.7.抛物线y =-ax 2(a >0)的焦点坐标为_________.8.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_________. 9.过抛物线y 2=4x 的焦点作直线交抛物线于A 、B 两点,若线段AB 的中点横坐标为3, 则|AB |=_________.10.设F 是抛物线y 2=6x 的焦点,A (4,-2),点M 为抛物线上的一个动点,则|MA |+|MF |的最小值是_________.三、解答题11.设抛物线C 的焦点在y 轴正半轴上,且抛物线上一点Q (-3,m )到焦点的距离为5,求其抛物线的标准方程.12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线C 上,且2x 2=x 1+x 3,求证:2|FP 2|=|FP 1|+|FP 3|.13.已知点A (0,-3),B (2,3),设点P 为抛物线x 2=y 上一点,求△P AB 面积的最小值及取到最小值时P 点的坐标.Ⅲ 拓展性训练14.设F 为抛物线C :y 2=2px (p >0)的焦点,点P 为抛物线C 上一点,若点P 到点F 的距离等于点P 到直线l :x =-1的距离. (1)求抛物线C 的方程;(2)设B (m ,0),对于C 上的动点M ,求|BM |的最小值f (m ).测试九 抛物线B1.B 2.B 3.B 4.A 5.C 6.6 7.)41,0(a -8.2 9.8 10.211 11.由题意,设抛物线为x 2=2py (p >0),因为点Q (-3,m )在抛物线上,所以(-3)2=2pm ,即Pm 29=① 因为点Q (-3,m )到焦点的距离为5,所以52||=+Pm②由①②得,5229=+pp ,解得p =1或9, 所以抛物线的标准方程为x 2=2y ,或x 2=18y . 12.由抛物线定义,知2||11p x PF +=,2||22p x F P +=,2||33px F P +=, 所以|FP 1|+|FP 3|=x 1+x 2+p ,2|FP 2|=2x 2+p ,又x 1+x 3=2x 2,所以2|FP 2|=|FP 1|+|FP 3|. 13.直线AB 的方程为30233--+=x y ,即3x -y -3=0, 102)33()20(||22=--+-=AB ,因为点P 在x 2=y 上,所以设P (x ,x 2),所以点P 到直线AB 的距离10|43)23(|91|33|22+-=+--=x x x d , 因为x ∈R ,所以当23=x 时,1043min =d , 故当)49,23(P 时,△P AB 面积有最小值43104310221=⨯⨯=S . 14.(1)由抛物线定义,知抛物线的方程为x y 42=;(2)设C 上的动点M 的坐标为(x 0,y 0), ∴2020*******)0()(||y m mx x y m x BM ++-=-+-=,∵20y =4x 0, ∴44)]2([42||2002020-+--=++-=m m x x m mx x BM .∵x 0≥0,∴当m -2<0时,|BM |min =|m |; 当m -2≥0时,44||min -=m BM ;综上,对于C 上的动点M ,|BM |的最小值⎩⎨⎧≥-<=)2(,12)2(|,|)(m m m m m f .测试十 圆锥曲线综合练习(选学)Ⅰ 学习目标1.能熟练地解决直线和圆锥曲线的位置关系问题.2.能应用数形结合思想、方程思想等数学思想解决圆锥曲线综合问题.Ⅱ 基础性训练一、选择题1.过点P (2,4)作直线l ,使l 与抛物线y 2=8x 只有一个公共点,这样的直线l 有( ) (A )1条 (B )2条 (C )3条 (D )4条2.一个正三角形的顶点都在抛物线y 2=4x 上,其中一个顶点在坐标原点,则这个三角形的面积是( ) (A )348(B )324(C )3916(D )3463.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB |=4,则这样的直线有( ) (A )1条(B )2条(C )3条(D )4条4.已知椭圆)0(12222>>=+b a by a x 上总存在点P ,使021=⋅,其中F 1,F 2是椭圆的焦点,那么该椭圆的离心率的取值范围是( ) (A )]21,12[-(B ))12,0(- (C )]22,21[ (D ))1,22[5.已知双曲线)0,0(12222>>=-b a by a x 的左焦点F 1,左、右顶点分别为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )(A )相切 (B )相交 (C )相离 (D )以上情况都有可能 二、填空题6.直线y =x +1与抛物线y 2=4x 的公共点坐标为____________.7.若直线y =kx +1与椭圆1522=+my x 恒有公共点,则m 的取值范围是___________. 8.设P 是等轴双曲线x 2-y 2=a 2(a >0)右支上一点,F 1、F 2是左右焦点,若=⋅212F F PF 0, |PF 1|=6,则该双曲线的方程是_____________________.9.过椭圆192522=+y x 的焦点,倾斜角为45°的弦AB 的长是_______________.10.若过双曲线)0,0(12222>>=-b a b y a x 的右焦点F ,作渐近线x ab y =的垂线与双曲线左、右两支都相交,则此双曲线的离心率e 的取值范围是_______________.三、解答题11.中心在原点,一个焦点为)50,0(F 的椭圆C ,被直线y =3x -2截得的弦的中点的横坐标为0.5,求椭圆C 的方程.12.已知双曲线C :3x 2-y 2=1,过点M (0,-1)的直线l 与双曲线C 交于A 、B 两点.(1)若10||=AB ,求直线l 的方程;(2)若点A 、B 在y 轴的同一侧,求直线l 的斜率的取值范围.13.正方形ABCD 在坐标平面内,已知其一边AB 在直线y =x +4上,另外两点C 、D 在抛物线y 2=x 上,求正方形ABCD 的面积.Ⅲ 拓展性训练 14.设点M 在x 轴上,若对过椭圆)0(1:2222>>=+b a by a x C 左焦点F 的任一条与两坐标轴都不垂直的弦AB ,都有MF 为△AMB 的一条内角平分线,则称点M 为该椭圆的“左特征点”.(1)判断椭圆的“左特征点”是否存在,若存在,求出该点坐标;若不存在,请说明理由;(2)参考椭圆的“左特征点”定义,给出双曲线)0,0(12222>>=-b a by a x 的“左特征点”定义,并指出该点坐标.测试十 圆锥曲线综合练习(选学)1.B 2.A 3.C 4.D 5.A6.(1,2) 7.m ≥1且m ≠5 8.x 2-y 2=4 9.179010.2>e 11.由题意,设椭圆150:2222=-+a x ay C , 把直线y =3x -2代入椭圆方程150222=-+a x ay , 得(a 2-50)(3x -2)2+a 2x 2=a 2(a 2-50),整理得(10a 2-450)x 2-12(a 2-50)x -a 4+54a 2-200=0, 设直线与椭圆的两个交点A (x 1,y 1),B (x 2,y 2),则有45010)50(122221--=-a a x x ,∆=144(a 2-50)2-4(10a 2-450)(-a 4+54a 2-200)>0, 由题意,得2145010)50(622221=--=+a a x x ,解得a 2=75, 所以椭圆方程为1257522=+x y . 12.(1)设直线l :y =kx -1或x =0(舍去),A (x 1,y 1)、B (x 2,y 2),联立⎩⎨⎧-==-.1,1322kx y y x消去y ,得(3-k 2)x 2+2kx -2=0.由题意,得3-k 2≠0,∆=(2k )2-4·(3-k 2)·(-2)=24-4k 2>0, 且32,32221221-=-=+⋅k x x k kx x , ∴||1)()(||212221221x x ky y x x AB -+=-+-=⋅2122124)(1x x x x k -++=⋅.∴10324)32(12222=-⨯--+⋅k k k k, 解得k =±1,或733±=k .验证知3-k 2≠0且∆>0,∴直线l 的方程为:y =±x -1,或1733-±=x y ; (2)由A 、B 在y 轴的同一侧,得⎪⎪⎩⎪⎪⎨⎧>-=∆>-==/-0424032.0322212k k x x k , 解得:)3,6(--∈k ∪)6,3(.13.因为AB //CD ,所以设直线CD 方程为y =x +t ,把y =x +t 代入y 2=x ,消去y ,得x 2+(2t -1)x +t 2=0, 设C (x 1,y 1)、D (x 2,y 2),所以x 1+x 2=1-2t , x 1·x 2=t 2,∆=(2t -1)2-4t 2>0,所以)41(2]4)21[(2)()(||22221221t t t y y x x CD -=--=-+-=,又AB 与CD 间的距离为2|4|||-=t AD , 由正方形ABCD ,得|AD |=|CD |,即2|4|)41(2-=-t t , 解得t =-2,或t =-6, 从而,边长|AD |=23或25,所以正方形面积为18)23(21==S 或50)25(22==S .14.(1)判断:椭圆的“左特征点”存在,具体证明如下.方法1:设x 轴上点M (x 0,0)是椭圆的“左特征点”,F (-c ,0), 其中c 2=a 2-b 2(c >0).设过F 与两坐标轴都不垂直的直线AB : y =k (x +c )(k ≠0),A (x 1,y 1)、B (x 2,y 2).联立方程⎪⎩⎪⎨⎧+==+)(12222c x k y b y a x ,消去y ,得:(b 2+a 2k 2)x 2+2a 2k 2cx +a 2k 2c 2-a 2b 2=0,∴22222212k a b c k a x x +-=+, 2222222221.k a b b a c k a x x +-=,∆))((4)2(22222222222b ac k a k a b c k a -+-=>0. 又∵直线AM 的斜率为:011011)(0x x c x k x x y k AM -+=--=,直线BM 的斜率为:022022)(0x x c x k x x y k BM -+=--=.∴))(())(())(()()(0201012021022011x x x x x x c x k x x c x k x x c x k x x c x k k k BM AM ---++-+=-++-+=+,上式中的分子:k (x 1+c )(x 2-x 0)+k (x 2+c )(x 1-x 0)=k [2x 1·x 2+c (x 1+x 2)-x 0(x 1+x 2)-2cx 0]0222220222222222222222222[cx ka b c k a x k a b c k a c ab b ac k a k k-+-⨯-+-⨯++-⨯= ∵M (x 0,0)是椭圆的“左特征点”,∴∠AMF =∠BMF .∴k AM =-k BM ,即k AM +k BM =0, ∴分子0222220222222222222222222[cx ka b c k a x k a b c k a c ab b ac k a k k-+-⨯-+-⨯++-⨯=0,∵上式要对任意非零实数k 都成立, ∴02222202222202222222222222=-+-⨯-+-⨯++-⨯cx ka b c k a x k a b c k a c ab b ac k a k∴2a 2k 2c 2-2a 2b 2-2a 2k 2c 2+2a 2k 2cx 0-2b 2cx 0-2a 2k 2cx 0=0,∴0220222=--cx b b a ∴ca x 20-=.故对过F 与两坐标轴都不垂直的任意弦AB ,点)0,(2c a M -都能使MF 为△AMB的一条内角平分线,所以,椭圆的“左特征点”存在,即为点)0,(2c a M -.方法2:先用特殊值法(可用一条特殊直线AB ,如斜率为1的直线)找出符合“左特征点”性质的一个点M (具体找的过程略,可找到点)0,(2c a M -,即为椭圆的左准线与x 轴的交点),再验证对任意一条与两坐标轴都不垂直的弦AB ,∠AMF = ∠BMF 都成立.(证明过程可类似方法1,或用下面方法证明)如图,椭圆的左准线与x 轴的交点为M ,过A 作AP 垂直左准线于P ,过B 作BQ 垂直左准线于Q ,。
西城区学习探究诊断RJ七年级下含答案
第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC和∠AOF(C)∠AOF(D)∠BOE和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45° (C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角. ( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( ) 12.有一条公共边的两个角是邻补角. ( ) 13.如果两个角是邻补角,那么它们一定互为补角. ( ) 14.对顶角的角平分线在同一直线上. ( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. ( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a ,b ,c 两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO 的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A 村到B 村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直. ( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m(D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D=______-______=______°-______°=______°.11.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,( )∴∠BAC+∠______=180°.( )∵PM∥AB,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB ∥DE ,∠1=25°,∠2=110°,求∠BCD 的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E 点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是___________.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?全章测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135° (C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ). (A)30° (B)60° (C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90°(B)α=β (C)0°<α≤90°,90°≤β <180°(D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α (C)180°+α (D)270°-α 5.以下五个条件中,能得到互相垂直关系的有( ). ①对顶角的平分线 ②邻补角的平分线③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线 (A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个 (B)2个 (C)1个(D)0个7.在5×5的方格纸中,将图a 中的图形N 平移后的位置如图b 所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格 (B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图① 图② 图③ 图④(A)①② (B)①③ (C)②③ (D)③④9.如图,AB ∥CD ,若EM 平分∠BEF ,FM 平分∠EFD ,EN 平分∠AEF ,则与∠BEM 互余的角有( ).(A)6个 (B)5个 (C)4个 (D)3个10.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论正确的有( ).(1)∠C ′EF =32° (2)∠AEC =148° (3)∠BGE =64° (4)∠BFD =116° (A)1个 (B)2个 (C)3个(D)4个二、填空题11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°.12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD =(y +4)°,则∠AOD 的度数为____.13.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有____________________________________________________.14.如图,若AB∥CD,EF与AB、CD分别相交于点E,F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP ⊥FP,则∠BEP=______°.15.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2第六章平面直角坐标系测试1平面直角坐标系学习要求认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y轴的负半轴上在原点2.如图,写出图中各点的坐标.A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );L ( , ); M ( , );N ( , );O ( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A (-6,-4)、B (-4,-3)、C (-2,-2)、D (0,-1)、E (2,0)、F (4,1)、G (6,2)、H (8,3).(2)A (-5,-2)、B (-4,-1)、C (-3,0)、 D (-2,1)、E (-1,2)、 F (0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来. (1)A (1,4)、 B (2,2)、C (1,34)、 D (4,1)、 E (6,32)、 F (-1,-4)、G (-2,-2)、 H (-3,-34)、L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、 C (-1,-3)、 D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、H (3,5)、 L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P(x,y)是坐标平面上的任一点,根据下列条件填空:(1)若xy>0,则点P在______象限;(2)若xy<0,则点P在______象限;(3)若y>0,则点P在______象限或在______上;(4)若x<0,则点P在______象限或在______上;(5)若y=0,则点P在______上;(6)若x=0,则点P在______上.7.已知正方形ABCD的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A(-2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.图1(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.图29.选择题(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2)D.(0,1)(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).A.第一象限B.第二象限C.第三象限D.第四象限(4)如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在( ).A.第四象限B.第三象限C.第二象限D.第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内.A.1 B.2 C.3 D.410.点P(-m,m-1)在第三象限,则m的取值范围是______.11.若点P(m,n)在第二象限,则点Q(|m|,-n)在第______象限.12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.13.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.测试2 坐标方法的简单应用学习要求能建立适当的平面直角坐标系描述物体的位置.在同一直角坐标系中,感受图形变换后点的坐标的变化.(一)课堂学习检测1.回答下面的问题.(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是①建立______选择一个____________为原点,确定x轴、y轴的____________;②根据具体问题确定适当的______在坐标轴上标出____________;③在坐标平面内画出这些点,写出各点的______和各个地点的______.2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.(二)综合运用诊断一、填空4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移。
北京市西城区教辅资料-学习探究诊断-高中数学(必修3)-算法初步
北京市西城区教辅资料-学习探究诊断-高中数学必修3全册练习及参考答案第一章算法初步测试一算法与程序框图概念Ⅰ学习目标1.了解算法思想及算法的意义.2.了解框图的概念,明确框图符号的意义.Ⅱ基础性训练一、选择题1.下列程序框通常用来表示赋值、计算功能的是()(A)(B) (C) (D)2.算法的有穷性指的是()(A)算法是明确和有效的(B)算法能够在有限步内完成(C)算法的每个操作步骤是可执行的(D)用数字进行四则运算的有限过程3.对算法理解正确的是( )(A)一种解题方法(B)基本运算及规定的运算顺序构成的完整的解题步骤(C)计算的方法(D)一种语言程序4.算法中,每一步的结果有()(A)一个或两个(B)任意多个(C)确定的一个(D)两个*5.有一堆形状大小相同的珠子,其中只有一粒重量比其他的珠子重,其余所有珠子重量相同.一个同学利用科学的算法,仅两次利用天平就找出了这颗最重的珠子,则这堆珠子最多有()(A)6粒(B)7粒(C)8粒(D)9粒二、填空题6.完成不等式2x+3<3x+2的算法过程:(1)将含x的项移项至不等式的左边,将常数项移至不等式的右边,得____________;(2)在不等式两边同时除以x的系数,得____________.7.阅读流程图(图1),试写出流程图所给出的算法含义:__________________.图18.写出图2中顺序框图的运算结果____________.图29.写出图3中顺序框图的运算结果____________.图310.“判断整数n (n >2)是否为质数”的算法可以按如下步骤进行:S 1 给定大于2的整数n .S 2 令i =2.S 3 用i 除n ,得到余数r .S 4 判断余数r 是否为0.若为0,则不是质数,结束算法;否则将i 的值增加1仍用i 表示.S 5 判断i 是否大于n -1.若是,则是质数,结束算法;否则返回第三步.现设给定的整数为35,则算法结束时i 的值是______.三、解答题11.写出判断直线ax +by +c =0与圆x 2+y 2=1的位置关系的算法.12.写出求解二元一次方程组⎩⎨⎧=+=21y x ax 的算法步骤.13.在某商场购物时,商场会按顾客购物款的数额的大小分别给予不同的优惠折扣.计算顾客应付货款的算法步骤如下:S 1 输入购物款x .(购物款以元为单位)S 2 若x <250,则折扣率d =0;若 250≤x <500,则折扣率d =0.05;若 500≤x <1000,则折扣率d =0.10;若 x ≥1000,则折扣率d =0.15;S3 计算应付货款T=x(1-d);S4 输出应付货款T.现已知某顾客的应付货款是882元,求该顾客的购物款是多少元.14.输入直角三角形两直角边长度,输出第三条边长度,画出此题的顺序框图.测试二 程序框图(一)Ⅰ 学习目标理解三种逻辑结构,会读逻辑框图,尝试写出程序框图.Ⅱ 基础性训练一、选择题1.程序框图中“处理框”的功能是( )(A)赋值 (B )计算(C)赋值或计算 (D )判断某一条件是否成立2.尽管算法千差万别,但程序框图按其逻辑结构分类只有( )(A)2类 (B )3类 (C )4类(D )5类 3.程序框图如图1所示,输出的结果为( )图1(A)2,5 (B)4,7 (C)2,4(D)1,2 4.程序框图如图2所示,输出的结果为( )图2(A)2 (B )9 (C )3(D )1 5.程序框图如图3所示,当a =1,b =-3时输出的结果为( )(A)0,-1 (B)2,-4 (C )21-,43- (D )-2,4图3二、填空题6.用流程图表示求解不等式ax >b (a ≠0)的算法时,判断框内的内容可以是_________.7.在表示求解一元二次方程的算法中,需要使用选择结构,因为__________________.8.如图4,当a =-1时,框图的输出结果是______.图49.如图5,框图的输出结果是______.图510.如图6所示框图,设火车托运重量为p (kg )的行李时,每千克的费用标准为⎩⎨⎧>-+⨯≤=,)kg 30)(30(5.0303.0,)kg 30(3.0P P P P y 则图中①②处分别填的内容为:①______;②________________.图6三、解答题11.已知函数f(x)=|x-3|,程序框图(图7)表示的是给出x值,求相应函数值的算法.请将该框图补充完整.写出①②两处应填的内容.图712.观察所给算法的流程框图(图8),说明它表示的函数.如果输入数字1,则输出的数字是什么?图8Ⅲ拓展性训练13.设计一个求任意实数的绝对值的算法,并画出流程图.14.已知三个实数a,b,c,试给出寻找这三个数中最大数的一个算法,并画出该算法的流程图.测试三 程序框图(二)Ⅰ 学习目标理解三种逻辑结构,会读逻辑框图,尝试写出程序框图.Ⅱ 基础性训练一、选择题1.下列关于框图的逻辑结构说法正确的是( )(A)用顺序结构画出“求点到直线的距离”的程序框图是唯一的(B)条件结构中不含顺序结构(C)条件结构中一定含有循环结构(D)循环结构中一定包含条件结构2.已知函数⎩⎨⎧>-≤=,0,,0,)(x x x x x f 在由给定的自变量x 计算函数值f (x )的算法中,应该至少包含以下基本逻辑结构中的( )(A)顺序结构、循环结构 (B )条件结构、循环结构(C)顺序结构、条件结构 (D )顺序结构、循环结构3.下列四个说法中正确的有( )①任意一个算法都离不开顺序结构②算法程序框图中,根据条件是否成立有不同的流向③循环体是指按照一定条件,反复执行某一处理步骤④循环结构中一定有条件结构,条件结构中一定有循环结构(A)1个 (B )2个 (C )3个 (D )4个4.要解决下面四个问题,只用顺序结构画不出其流程图的是( )(A)计算1+2+…+10的值 (B )当圆的面积已知时,求圆的周长(C)给定一个数x ,求其绝对值 (D )求函数f (x )=x 3-3x 的值5.算法:S 1 m =a ;S 2 若b <m ,则m =b ;S 3 若c <m ,则m =c ;S 4 若d <m ,则m =d ;S 5 输出m .则输出的m 为( )(A)a ,b ,c ,d 中的最小值 (B )a ,b ,c ,d 中的最大值(C)d (D )a二、填空题6.程序框图中的“处理框”的功能是____________.7.有如图1所示的程序框图,该程序框图表示的算法功能是____________.图18.如图2所示是求小于等于1000所有正偶数的和的程序框图,则空白处①应为_________;②应为___________.图29.如图3所示表示的是计算前10个奇数倒数之和的算法的程序框图,其中判断框内应填入的条件是___________.图3三、解答题10.给出如图4所示的程序框图.在执行上述框图表达的算法后,输出的S,i的值分别是多少?图411.写出表示解方程ax+b=0(a,b为常数)的一个程序框图.Ⅲ拓展性训练12.设计求S=1+3+5+…+2007和T=1×3×5×…×2007的一个算法,并画出相应的流程图.13.某工厂2004年的生产总值为200万元,技术革新后,预计以后每年的生产总值比上一年增加5%,问最早需要到哪一年年生产总值超过300万元,写出算法并画出相应的程序框图.测试四 算法语言Ⅰ 学习目标了解算法语言,尝试用算法语言实现一些算法.Ⅱ 基础性训练1.编写一个输入底面边长和侧棱长,求正四棱锥体积的程序.2.已知函数f (x )=2x -3,编写一段程序,用来求f [f (x )]的值.(其中,x 值由用户输入)3.给出三个正数a ,b ,c ,问能否构成一个三角形,若能则求其面积.请设计一个程序解决该问题.(注:已知三角形三边分别为a ,b ,c ,则其面积))()((c p b p a p p S ---=,其中p =2c b a ++)4.已知等式“□3×6528=3□×8256”中,方框内是同一个数字,请设计程序,用尝试的方法求出满足等式的一个数字.5.请编写一个程序,计算1!+2!+3!+4!+ (100)(注:其中4!=1×2×3×4,5!=1×2×3×4×5,...,100!=1×2×3× (100)Ⅲ 拓展性训练6.已知数列{a n }满足:a 1=1,a 2=3,对于任意的n ≥3,有a n =3a n -1-2a n -2.求该数列的前n 项和.7.写出一个用二分法求方程x 3+x 2-2x -2=0在某个区间上的近似解的程序.要求:初始区间和计算精度都能在运行中指定.8.求二次函数在给定区间上的最值.测试五 逻辑框图综合测试一、选择题 1.找出乘积为528的两个相邻偶数,流程图如图1,其中填充①②处语句正确的选择是( )图1(A)S =i *(i +2),输出i ,i -2 (B)S =i *i +2,输出i ,i -2 (C)S =i *(i +2),输出i ,i +2 (D)S =i *(i -2),输出i +2,i2.如图2所示的算法流程图中,第三个输出的数是( )图2(A)1(B )23 (C )2 (D )25 3.阅读流程图3,若输入的a ,b ,c 分别为21,32,75,则输出的a ,b ,c 分别是( )图3(A)75,21,32 (B )21,32,75 (C )32,21,75 (D )75,32,214.如图4,程序框图所进行的求和运算是( )图4(A)101211+++Λ (B)1814121+++Λ(C)2014121+++Λ(D)191311+++Λ5.如果如图5程序框图的输出结果为-18,那么在判断框①中表示的“条件”应该是( )图5(A)i ≥9(B)i >9 (C)i ≥8 (D)i >116.函数⎪⎩⎪⎨⎧<=>-=0,1.0,00,1x x x y 求值的程序框图如图6所示,则空白处需要填的语句为:①_________;②_________;③_________.图67.如图7是一个算法的程序框图,当输入的值为5时,则其输出的结果是______.图78.阅读流程图8填空:①最后一次输出的i=______;②一共输出i的个数为______个.图89.分别写出图9和图10的运行结果:图9______;图10______.图9 图10北京市西城区教辅资料-学习探究诊断-高中数学必修3全册练习及参考答案第一章 算法初步测试一1.C 2.B 3.B 4.C 5.D6.-x <-1,x >1 7.已知一个数的13%,求这个数 8.259.10 10.5 11.S 1 求出原点到直线ax +by +c =0的距离22||ba c d +=.S 2 比较d 与圆的半径r =1的大小,若d >r ,则直线与圆相离;若d =r ,则直线与圆相切;若d <r ,则直线与圆相交.12.S 1 判断a 是否为0,若是,则执行S 4,若不是,则执行S 2.S 2 解出ax 1=. S 3 将a x 1=代入x +y =2,解出ay 12-=. S 4 输出方程组的解.若a =0,则输出“方程组无解”;否则,输出方程组的解⎪⎪⎩⎪⎪⎨⎧-==.12,1a y ax13.解:设该顾客的购物款为x 元.根据题意,x >882.如果x <1000,则0.9x =882,解得x =980;如果x ≥1000,则0.85x =882,解得x ≈1037.65; 所以,该顾客的购物款是980元或1037.65元. 14.测试二1.C 2.B 3.A 4.B 5.C 6.a >0,或a <07.当方程根的判别式∆≥0时,方程有实根;当方程根的判别式∆<0时,方程没有实根.8.“是负数” 9.12,21 10.①0.3*p ②0.3*30+0.5*(p —30). 11.x <3,y =x -3.或x ≤3,y =x -3. 12.流程框图表示的是下面的函数:⎪⎩⎪⎨⎧-<--=->+=3,213,73,21x x x x x y输出的数字是3. 13.S 1 输入xS 2 如果x ≥0,则y ←x ;否则y ←-x S 3 输出y .14.S 1 输入a ,b ,cS 2 x ←aS 3 如果b >x ,则x ←b ;否则,执行S 4 S 4 如果c >x ,则x ←c ;否则,执行S 5 S 5 输出x测试三1.D 2.C 3.C 4.C 5.A 6.赋值或计算 7.从小到大连续n 个正整数乘积大于1000时,计算出最小的自然数n .或其他等价的回答. 8.S =S +i ,i =i +2 9.n ≤10?10.3205,5111.12.S1赋值S=1,T=1S2 赋值i=3S3赋值S=S+i,赋值T=T×iS4 赋值i=i+2S5 若i≤2007,则执行S3S6输出S,T.13.S1 赋值n=0,a=200,r=0.05S2 年增量T=arS3年产量a=a+TS4 若a≤300,那么n=n+2,重复执行S2S5N=2004+nS6 输出N.测试四算法语言1.a=input("底面边长a=");1=input("侧棱长l=");//注:这里应该对输入数据的合理性作出判别.h=sqrt(1^2-(sqrt(2)/2*a)^2); //计算棱锥的高V=a^2*h/3; //计算棱锥的体积disp(V,"正四棱锥的体积为");2.[法一]x=input("x=");y=2*x-3; //计算y=f(x)y=2*y-3; //计算y=f(f(x))disp(y);[法二]//定义函数f(x)=2*x-3function y=f(x)y=2*x-3;endfunction//下面可直接调用f(x)x=input("x=");y=f(f(x)); //与代数中的表达方式一样disp(y);3.disp("请输入三角形的三条边长:");a=input("a=");b=input("b=");c=input("c=");if(a+b>c)&(a+c>b)&(b+c>a)thenp=(a+b+c)/2;S=sqrt(p*(p-a)*(p-b)*(p-c));disp(S,"三角形面积为");elsedisp("不能构成三角形!");end;4.for i=1∶9if((10*i+3)*6528==(30+i)*8256)thendisp(i,"这个数字是:");break;end;end;5.[法一]用for语句实现S=0;an=1;for i=1∶100an=an*i;S=S+an;end;disp(S,"1!+2!+3!+…+100!=");[法二]用while语句实现S=0;an=1;i=1while i<=100an=an*i;S=S+an;i=i+1;end;disp(S,"1!+2!+3!+…+100!=");6.a_n_2=1;a_n_1=3;n=input("要求前多少项的和呢?请输入n=");S=0;//如果只要求前1项或2项的和,则不需要用到递推关系if(n==1)thenS=a_n_2;elseif(n==2)thenS=a_n_2+a_n_1;end;//如果n大于2,则要用递推关系i=3;while(i<=n)a_n=3*a_n_1-2*a_n_2;//先由递推关系求出下一项S=S+a_n; //然后累加到和S中a_n_2=a_n_1; //原来的第(n-1)项在下一轮循环中将变成第(n-2)项a_n_1=a_n; //原来的第n项在下一轮循环中将变成第(n-1)项i=i+1; //项的脚标增1(表示下一轮循环要计算下一项了) end;printf("前%d项和为:%d",int(n),int(S));7.//定义函数f(x)=x^3+x^2-2x-2//方程f(x)=0有三个实数解:-sqrt(2),-1,sqrt(2)function y=f(x)y=x^3+x^2-2*x-2;endfunction//用户输入初始区间的左右端点disp("请输入实根所在初始区间[a,b]:");a=input("a=");b=input("b=");ya=f(a);yb=f(b);//用户输入计算精度d=abs(input("请输入计算精度(输入的越小精度越高,但计算花费的时间就越多):"));//下面通过二分法求符合精度的近似解x=0;err=%f;while(abs(b-a)>=d)x=(a+b)/2;y=f(x);if(y==0)then break;end; //若此时x的值正好是方程的解,则退出循环if(y*ya<0)thenb=x;yb=f(b);elseif(y*yb<0)thena=x;ya=f(a);elseerr=%t;break;end;end;if(err==%t)thendisp("计算中出现问题,可能是在您输入的初始区间中没有实根.");elseprintf("方程的近似解为:x=%f.",x);end;8.[法一]disp("请依次输入f(x)=ax^2+bx+c的系数");a=input("a=");if(a==0)thendisp("系数a不能为0!");abort;end;b=input("b=");c=input("c=");disp("请输入区间的左右端点:");x1=input("x1=");x2=input("x2=");if(x1>=x2)then begindisp("区间端点输入错误!");abort;end;x0=-b/(2*a); //对称轴if(a>0)then //如果开口朝上if(x0<x1)then //如果对称轴在给定区间的左侧,则min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<(x1+x2)/2)then //如果对称轴在区间[x1,x2]的左半部分,则min_v=a*x0^2+b*x0+c; //在顶点处取得最小值max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<x2)then //如果对称轴在区间[x1,x2]的右半部分,则min_v=a*x0^2+b*x0+c; //在顶点处取得最小值max_v=a*x1^2+b*x1+c; //在x=x1处取得最大值else //如果对称轴在区间[x1,x2]右侧,则min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值min_v=a*x1^2+b*x1+c; //在x=x1处取得最大值end;else //如果开口朝下if(x0<x1)then //如果对称轴在给定区间的左侧,则max_v=a*x1^2+b*x1+c; //在x=x1处取得最大值min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值elseif(x0<(x1+x2)/2)then //如果对称轴在区间[x1,x2]的左半部分,则max_v=a*x0^2+b*x0+c; //在顶点处取得最大值min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值elseif(x0<x2)then //如果对称轴在区间[x1,x2]的右半部分,则max_v=a*x0^2+b*x0+c; //在顶点处取得最大值min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值else //如果对称轴在区间[x1,x2]右侧,则max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值end;end;printf("最小值=%f,\n最大值=%f",min_v,max_v);[法二](为[法一]的简化版)a=input("a=");b=input("b=");c=input("c=");x1=input("x1=");x2=input("x2=");x0=-b/(2*a); //对称轴if(x0<x1)then //如果对称轴在给定区间的左侧,则v1=a*x1^2+b*x1+c; //在x=x1处取得最小值v2=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<(x1+x2)/2)then //如果对称轴在区间[x1,x2]的左半部分,则v1=a*x0^2+b*x0+c; //在顶点处取得最小值v2=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<x2)then //如果对称轴在区间[x1,x2]的右半部分,则v1=a*x0^2+b*x0+c; //在顶点处取得最小值v2=a*x1^2+b*x1+c; //在x=x1处取得最大值else //如果对称轴在区间[x1,x2]右侧,则v1=a*x2^2+b*x2+c; //在x=x2处取得最小值v2=a*x1^2+b*x1+c; //在x=x1处取得最大值end;if(a>0)thenprintf("最小值=%f,\n最大值=%f",v1,v2);elseprintf("最小值=%f,\n最大值=%f",v2,v1);end;测试五1.C2.C3.A4.C5.A6.y=-1;x=0?;y=07.28.57,89.6,5。
北京西城学习探究诊断高中数学选修全本练习
北京西城区学习探究诊断高中数学选修2- 1第一章 常用逻辑用语 测试一 命题与量词Ⅰ 学习目标会判断命题的正误,理解全称量词与存在量词的意义.Ⅱ 基础性训练一、选择题1.下列语句中不是命题的是( )(A)团结就是力量 (B)失败乃成功之母 (C)世上无难事(D)向雷锋同志学习2.下列语句能作为命题的是( ) (A)3>5(B)星星和月亮(C)高一年级的学生 (D)x 2+|y |=0 3.下列命题是真命题的是( )(A)y =sin |x |是周期函数 (B)2≤3(C)空集是集合A 的真子集 (D)y =tan x 在定义域上是增函数4.下列命题中真命题的个数是( )①∃x ∈R ,x ≤0;②至少有一个整数,它既不是合数,也不是质数; ③∃x ∈{x |x 是无理数},x 2是有理数. (A)0(B)1(C)2(D)35.下列语句中表示真命题的是( )(A)x >12(B)函数21x y =在(0,+∞)上是减函数(C)方程x 2-3x +3=0没有实数根(D)函数222++=x xx y 是奇函数6.已知直线a ,b 和平面??,下列推导错误的是( )(A)b a ab a ⊥⇒⊂∀⊥⎪⎭⎪⎬⎫α(B)b a b a ////⇒⎭⎬⎫⊂∃αα(C)αα⊂⇒⎭⎬⎫⊥⊥∃a b b a 或α//a (D)b a b a ////⇒⎭⎬⎫⊂αα7.下列命题是假命题的是( )(A)对于非零向量a ,b ,若a ·b =0,则a ⊥b (B)若|a |=|b |,则a =b (C)若ab >0,a >b ,则ba 11< (D)a 2+b 2≥2ab8.若命题“ax 2-2ax +3>0对x ∈R 恒成立”是真命题,则实数a 的取值范围是( )(A)0≤a<3 (B)0≤a≤3 (C)0<a<3 (D)0≤a<3二、填空题9.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对于∀x ∈R 均成立,则实数a 的取值范围是______.10.设A 、B 为两个集合,下列四个命题:①A ⊄B ⇔对任意x ∈A ,有x ∉B ②A ⊆/B ⇔A ∩B =∅③A ⊆/B ⇔A ⊇B④A ⊆/B ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题11.判断下列语句哪些是命题?如果是命题,是真命题还是假命题?(1)末位数字是0的整数能被5整除; (2)平行四边形的对角线相等且互相平分; (3)两直线平行则斜率相等;(4)△ABC 中,若sin A =sin B ,则A =B ; (5)余弦函数是周期函数吗? 12.用符号“∀”、“∃”表达下列命题:(1)实数的平方大于等于0; (2)存在一个实数x ,使x 3>x 2;(3)存在一对实数对,使2x +3y +3<0成立.13.判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0.参考答案第一章 常用逻辑用语测试一 命题与量词1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.A 9.2321<<-a ; 10.④ 11.(1)是命题,是真命题 (2)是命题,是假命题 (3)是命题,是假命题(4)是命题,是真命题 (5)不是命题 12.(1)∀x ∈R ,x 2≥0.(2)∃x ∈R ,使x 3>x 2.(3)∃(x ,y ),x 、y ∈R ,使2x +3y +3<0成立.13.(1)全称命题,真命题. (2)存在性命题,真命题. (3)存在性命题,真命题.测试二 基本逻逻辑联结词Ⅰ 学习目标1.了解逻辑联结词“或”、“且”、“非”的含义. 2.能正确地对含有一个量词的命题进行否定.Ⅱ 基础性训练一、选择题1.命题“菱形的对角线互相垂直平分”是( )(A)简单命题(B)“非p ”形式的命题(C)“p 且q ”形式的命题 (D)“p 或q ”形式的命题 2.下列结论中正确的是( )(A)p 是真命题时,“p 且q ”一定是真命题 (B)p 是假命题时,“p 且q ”不一定是假命题 (C)“p 且q ”是假命题时,p 一定是假命题 (D)“p 且q ”是真命题时,p 一定是真命题 3.如果“p 或q ”与“非p ”都是真命题,那么( )(A)q 一定是真命题 (B)q 不一定是真命题 (C)p 不一定是假命题(D)p 与q 的真假相同4.“xy ≠0”是指( )(A)x ≠0且y ≠0(B)x ≠0或y ≠0(C)x ,y 至少一个不为零 (D)x ,y 不都为零 5.命题5:p 的值不超过2,命题2:q 是无理数,则( )(A)命题“p 或q ”是假命题 (B)命题“p 且q ”是假命题(C)命题“非p ”是假命题 (D)命题“非q ”是真命题6.下列命题的否定是真命题的是( )(A)∀x ∈R ,x 2-2x +2≥0(B)所有的菱形都是平行四边形(C)∃x ∈R ,|x -1|<0 (D)∃x ∈R ,使得x 3+64=07.下列命题的否定是真命题的是( )(A)∃x ∈R ,x 2=1(B)∃x ∈R ,使得2x +1≠0成立 (C)∀x ∈R ,x 2-2x +1>0(D)∃x ∈R ,x 是x 3-2x +1=0的根8.已知U =R ,A ⊆U ,B ⊆U ,若命题A p ∈2:∪B ,则命题∈“⌝p ”是( )(A)2∉A (B)2∈U B (C)2∉A ∩B(D)2∈(U A )∩(U B )9.由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题中,“p 或q ”为真、“p 且q ”为假、“非p ”为真的是( )(A)p :11不是质数,q :6是18和15的公约数 (B)p :0∈N ,q :{0}{-1,0}(C)p :方程x 2-3x +1=0的两根相同,q :方程2x 2-2=0的两根互为相反数 (D)p :矩形的对角线相等,q :菱形的对角线互相垂直10.命题p :∃a ∈R ,使方程x 2+ax +1=0有实数根,则“⌝p ”形式的命题是( )(A)存在实数a ,使方程x 2+ax +1=0没有实数根 (B)不存在实数a ,使方程x 2+ax +1=0没有实数根 (C)对任意实数a ,使方程x 2+ax +1=0没有实数根 (D)至多有一个实数a ,使方程x 2+ax +1=0有实数根 二、填空题11.命题“∀x ∈A ,x ∈A ∪B ”的命题的否定是________________.12.“l ⊥??”的定义是“若∀g ⊂??,l ⊥g ,则称l ⊥??”,那么“直线l 不垂直于平面??”的定义是_____________________________.13.已知命题:“非空集合A 的元素都是集合B 的元素”是假命题.那么给出下列命题:①“A 中的元素都不是集合B 的元素”;②“A中有不属于B的元素”;③“A中有B的元素”;④“A中的元素不都是B的元素”.其中真命题的序号是______.(将正确命题的序号都填上)14.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A,都有x∈B,则称A⊆B”.那么“A 不是B的子集”可用数学语言表达为________________.三、解答题15.写出下列命题的否定,并判断真假:(1)质数都是奇数;(2)∀x∈R,3x-5>2x;(3)∀A⊆U(U为全集),∅是集合A的真子集.16.命题p:正方形是菱形;q:正方形是梯形.写出其构成的“p或q”,“p且q”,“非p”形式的命题,并判断其真假.测试二基本逻辑联结词1.C 2.D 3.A 4.A 5.B 6.C 7.C 8.D 9.C 10.C11.∃x∈A,但x∉A∪B12.∃g⊂?,l不垂直g,则称直线l不垂直于平面??13.②④14.若∃x∈A但x∉B,则称A不是B的子集15.解:(1)命题的否定:质数不都是奇数,真命题(2)命题的否定:∃x∈R,使3x-5≤2x,真命题(3)命题的否定:∃A⊆U,∅不是集合A的真子集,真命题16.答:p或q:正方形是菱形或梯形.(真命题)p且q:正方形是菱形且是梯形.(假命题)非p:正方形不是菱形.(假命题)测试三充分条件、必要条件与四种命题Ⅰ学习目标1.了解命题及其逆命题、否命题与逆否命题.2.理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.Ⅱ基础性训练一、选择题1.“两个三角形相似”的一个充分不必要条件是( )(A)它们的面积相等(B)它们的三边对应成比例(C)这两个三角形全等(D)这两个三角形有两个对应角相等2.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3.条件p:ac2>bc2是条件q:a>b(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件4.若条件甲:“=”,条件乙:“ABCD是平行四边形”,则甲是乙的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件5.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的( )(A)逆命题 (B)否命题(C)逆否命题 (D)非四种命题关系 6.原命题的否命题为假,可判断( )(A)原命题为真(B)原命题的逆命题为假 (C)原命题的逆否命题为假 (D)都无法判断 7.已知集合A ={x |x 2-5x -6≤0},B =x |x 2-6x +8≤0,则x ∈A 是x ∈B 的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件8.在下列命题中,真命题是( )(A)命题“若ac >bc ,则a >b ”(B)命题“若a n 是n 的一次函数,则数列{a n }是等差数列”的逆命题 (C)命题“若x =3,则x 2-4x +3=0”的否命题 (D)命题“若x 2=4,则x =2”的逆命题9.设x ,y ∈R ,|x -1|+(y -2)2≠0等价于( )(A)x =1且y =2 (B)x =1或y =2 (C)x ≠1或y ≠2(D)x ≠1且y ≠210.下列4组条件中,甲是乙的充分不必要条件的是( )(A)甲:a >b ,乙:ba 11< (B)甲:ab <0,乙:|a +b |<|a -b | (C)甲:a =b ,乙:ab b a 2=+(D)甲:⎩⎨⎧<<<<1010b a ,乙:⎩⎨⎧<-<-<+<1120b a b a二、填空题11.原命题“若x <3,则x <4”的逆否命题是_________________________. 12.“直线l ∥平面??”是“直线l 在平面??外”的__________________条件. 13.命题“若xy =0,则x =0或y =0”的逆否命题是__________________.14.“函数y =x 2+bx +c ,x ∈[1,+∞)是单调函数”的充要条件是__________________. 15.举一个反例,说明命题“若a ,b 是无理数,则a +b 是无理数”是假命题:____________________________________. 16.给出下列命题:①“角平分线上的点到角的两边距离相等”的逆否命题 ②“圆内接四边形的对角互补”的否命题 ③“若ac >bc ,则a >b ”的逆命题 ④“若a +5∈Q ,则a ∈Q ”的逆命题其中正确的命题是______(请填入正确命题的序号). 17.①“若xy =1,则x ,y 互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若a ≤-1,则方程x 2-2ax +a 2⊆+a =0有实数根”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中正确的命题是______.(填上你认为正确的命题序号) 18.设全集为S ,集合A ,B ⊆S ,有下列四个命题:①A ∩B =A ; ②s A ⊇s B ; ③(s B )∩A =∅; ④(s A )∩B =∅.其中是命题A ⊆B 的充要条件的命题序号是______.测试三 充分条件、必要条件与四种命题1.C 2.B 3.A 4.B 5.B 6.B 7.B 8.D 9.C 10.D 11.若x ≥4,则x ≥3 12.充分不必要13.若x ≠0且y ≠0,则xy ≠0 14.b ≥-2 15.2,2-==b a 都是无理数,但a +b =0是有理数;也可举例2,21-=+=b a 等.16.①②④ 17.①③ 18.①②③第二章 圆锥曲线与方程 测试四 曲线与方程Ⅰ 学习目标1.了解曲线与方程的对应关系,进一步感受数形结合的基本思想. 2.初步掌握求曲线方程的基本方法.Ⅱ 基础性训练一、选择题1.在点A (4,4),B (3,4),C (-3,3),)62,2(D 中,有几个点在方程x 2-2x +y 2=24的曲线上( )(A)1个(B)2个 (C)3个(D)4个2.方程x 2+3(y -1)2=9的曲线一定( )(A)关于x 轴对称 (B)关于y 轴对称 (C)关于原点对称(D)以上都不对 3.已知等腰△ABC 的底边两端点的坐标分别为B (4,0),C (0,-4),则顶点A 的轨迹方程是( ) (A)y =x(B)y =x (x ≠2)(C)y =-x(D)y =-x (x ≠2) 4.方程log (2x )y =1与下列方程表示同一曲线的是( )(A)y =2x (x ≥0) (B)y =2x (x >0且21=/x ) (C)y =2x (x >0) (D)y =2x (y >0)5.方程(2x -y -1)(3x +2y +1)=0与方程(2x -y -1)2+(3x +2y +1)2=0的曲线是( )(A)均表示两条直线 (B)前者是两条直线,后者表示一个点 (C)均表示一个点(D)前者是一个点,后者表示两条直线二、填空题6.直线x +2y -9=0与曲线xy =10的交点坐标为______.7.圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)经过坐标原点的充要条件是______. 8.到两平行线l 1:3x +2y -4=0,l 2:3x +2y -8=0距离相等的点的轨迹方程是______. 9.若动点P 到点(1,1)的距离等于它到y 轴的距离,则动点P 的轨迹方程是______. 10.已知两定点A (-1,0),B (3,0),动点P 满足21||||=PB PA ,则动点P 的轨迹方程是 ________________________. 三、解答题11.已知动点P 到两定点M (1,3),N (3,1)的距离平方之和为20,求动点P 的轨迹方程.12.试画出方程|x +|y |=1的曲线,并研究其性质.13.如图,设D 为圆C :x 2+y 2-4x +4y +6=0的圆心,若P 为圆C 外一动点,过P 向圆C 作切线PM ,M为切点,设2=PM ,求动点P 的轨迹方程.Ⅲ 拓展性训练14.如图,已知点P (-3,0),点Q 在x 轴上,点A 在y 轴上,且0=⋅AQ PA ,AQ QM 2=.当点A 在y 轴上移动时,求动点M 的轨迹方程.第二章 圆锥曲线与方程测试四 曲线与方程1.C 2.B 3.D 4.B 5.B6.(5,2),)25,4( 7.F =0 8.3x +2y -6=0 9.)21(2)1(2-=-x y 10.3x 2+3y 2+14x -5=011.x 2+y 2-4x -4y =0. 12.方程的曲线如图.(1)曲线的组成:由四条线段首尾连接构成的正方形;(2)曲线与坐标轴的交点:四个交点分别是(1,0)、(0,1)、(-1,0)、(0,-1); (3)曲线的对称性:关于两坐标轴对称,关于原点对称 13.圆C 化简为:(x -2)2+(y +2)2=2, ∴圆心D (2,-2),半径2=r ,设点P (x ,y ),由题意,得DM ⊥PM , ∴|PD |2=|PM |2+|DM |2, ∵2=PM ,2||=DM ,6||=PD , ∴6)2()2(22=++-y x ,故动点P 的轨迹方程为(x -2)2+(y +2)2=6. 14.设动点M (x ,y ),A (0,b ),Q (a ,0),∵P (-3,0),∴),(),,(),,3(y a x b a b -=-==,∵0=⋅AQ PA,∴(3,b )·(a ,-b )=0,即3a -b 2=0. ① ∵2=,∴(x -a ,y )=2(a ,-b ),即x =3a ,y =-2b . ② 由①②,得y 2=4x . ∴轨迹E 的方程为y 2=4x .测试五 椭圆AⅠ 学习目标1.理解椭圆的定义,掌握椭圆的两种标准方程.2.掌握椭圆的几何性质,椭圆方程中的a ,b ,c ,e 的几何意义、相互关系、取值范围等对图形的影响.Ⅱ 基础性训练一、选择题1.长半轴长为4,短半轴长为1,目焦点在x 轴上的椭圆标准方程是( )(A)1422=+y x (B)1422=+y x(C)11622=+y x(D)11622=+y x2.椭圆1251622=+y x 的焦点坐标是( )(A)(0,3),(0,-3) (B)(3,0),(-3,0) (C)(0,5),(0,-5)(D)(4,0),(-4,0)3.若椭圆13610022=+y x 上一点P 到其焦点F 1的距离为6,则P 到另一焦点F 2的距离为( )(A)4(B)194(C)94(D)144.已知F 1,F 2是定点,821=F F ,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( )(A)椭圆 (B)直线 (C)圆 (D)线段5.如果方程x 2+ky 2=1表示焦点在x 轴上的椭圆,那么实数k 的取值范围是( )(A)k <1 (B)k >1(C)0<k <1(D)k >1,或k <0二、填空题6.经过点)2,3(-M ,)1,32(-N 的椭圆的标准方程是______. 7.设a ,b ,c 分别表示离心率为21的椭圆的长半轴长、短半轴长、半焦距,则a 、b 、c 的大小关系是______.8.设P 是椭圆14522=+y x 上一点,若以点P 和焦点F 1、F 2为顶点的三角形的面积为1,则点P 的坐标为_______.9.过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的△ABF 2的周长是_______. 10.已知△ABC 的周长为20,B (-4,0),C (4,0),则点A 的轨迹方程是____________. 三、解答题11.设椭圆)0(1:2222>>=+b a b y a x C 的两个焦点为F 1,F 2,点P 在椭圆C 上,且PF 1⊥,F 1F 2,34||1=PF ,314||2=PF ,求椭圆C 的方程. 12.已知椭圆164100:221=+y x C ,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.13.设椭圆149:22=+y x C 的左右焦点分别为F 1,F 2,点P 为C 上的动点,若021<⋅PF 求点P 的横坐标的取值范围测试五 椭圆A1.C 2.A 3.D 4.D 5.B6.151522=+y x 7.a >b >c 8.)1,215(±± 9.22 10.)0(1203622=/=+y y x 11.因为点P 在椭圆C 上,所以2a =|PF 1|+|PF 2|=6,所以a =3.在Rt △PF 1F 2中,52||||||212221=-=PF PF F F ,故椭圆的半焦距5=c ,从而b 2=a 2-c 2=4,所以,椭圆C 的方程为14922=+y x .12.(1)长半轴长10,短半轴长8,焦点坐标(6,0)、(-6,0),离心率53=e; (2)椭圆164100:222=+x y C ,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴,y 轴,原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④离心率:53=e. 13.由题意,)0,5(),0,5(21F F -,设P (x ,y ),则),5(),,5(21y x PF y x PF --=---=,所以052221<+-=⋅y x PF ,由14922=+y x ,得94422x y -=,代入上式,得094122<--x x ,解得553553<<-x . 测试六 椭圆BⅠ 学习目标1.能初步应用椭圆的定义、几何性质解决与椭圆有关的简单问题.2.通过解决与椭圆的有关问题,进一步体会数形结合的思想、函数与方程的思想.Ⅱ 基础性训练一、选择题1.椭圆)2(12522>=-++m m y m x 的焦点坐标是( )(A)(±7,0)(B)(0,±7)(C))0,7(±(D))7,0(±2.过点(3,-2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆方程是( )(A)1101522=+y x (B)110522=+y x (C)1151022=+y x(D)1202522=+y x3.曲线192522=+y x 与)9(192522<=-+-k ky k x 有相同的( ) (A)短轴(B)焦点(C)长轴(D)离心率4.已知F (c ,0)是椭圆)0(1:2222>>=+b a by a x C 的右焦点,设b >c ,则椭圆C 的离心率e 满足( )(A)20<<e (B)220<<e (C)210<<e (D)122<<e 5.已知两定点M (-1,0)、N (1,0),直线l :y =-2x +3,在l 上满足|PM |+|PN |=4的点P 有( )(A)0个 (B)1个 (C)2个 (D)3个二、填空题6.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则实数m 的取值范围是______.7.若椭圆)8(19822->=++k y k x 的离心率21=e ,则k 的值为________.8.过椭圆)0(12222>>=+b a by a x 的中心的直线l 与椭圆相交于两点A 、B ,设F 2为该椭圆的右焦点,则△ABF 2面积的最大值是________.9.椭圆192522=+y x 上一点M 到左焦点F 1的距离为2,点N 是MF 1的中点,设O 为坐标原点,则ON =________.10.P 为椭圆16410022=+y x 上一点,左右焦点分别为F 1、F 2,若∠F 1PF 2=60°,则△PF 1F 2的面积为________. 三、解答题11.求出直线y =x +1与椭圆12422=+y x 的公共点A ,B 的坐标,并求线段AB 中点的坐标.12.已知点P 为椭圆x 2+2y 2=98上一个动点,A (0,5),求|PA |的最值. 13.求过点P (3,0)且与圆x 2+6x +y 2-91=0相内切的动圆圆心的轨迹方程.Ⅲ 拓展性训练14.我们把由半椭圆)0(12222≥=+x b y a x 与半椭圆)0(12222≤=+x cx b y 合成的曲线称作“果圆”,其中a 2=b 2+c 2,a >0,b >c >0.如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点,M 是线段A 1A 2的中点.(1)若△F 0F 1F 2是边长为1的等边三角形,求该“果圆”的方程;(2)设P 是“果圆”的半椭圆)0(12222≤=+x cx b y 上任意一点.求证:当|PM |取得最小值时,P 在点B 1,B 2或A 1处;(3)若P 是“果圆”上任意一点,求|PM |取得最小值时点P 的横坐标.测试六 椭圆B1.C 2.A 3.B 4.B 5.C 6.2529<<m 7.4或45- 8.22b a b - 9.4 10.3364 提示:9.设F 2为椭圆的右焦点,由椭圆的定义|MF 2|+MF 1|=2a ,得|MF 2|=10-2=8,在△MF 1F 2中,∵|MN |=NF 1|,|OF 1|=|OF 2|, ∴4||21||2==MF ON. 10.设|PF 1|=r 1,|PF 2|=r 2,由椭圆定义,得r 1+r 2=20……①由余弦定理,得60cos 2)2(2122212r r r r c -+=,即② 144212221=-+r r r r ,由①2-②,得3r 1r 2=256,∴33642332562160sin 212121=⨯⨯==∆ r r S F PF .11.设A (x 1,y 1),B (x 2,y 2),把y =x +1代入椭圆方程12422=+y x ,得3x 2+4x -2=0,解得3102,310221--=+-=x x , 所以)3101,3102(),3101,3102(---++-B A ,故AB 中点)2,2(2121y y x x ++的坐标为)31,32(-.(注:本题可以用韦达定理给出中点横坐标,简化计算) 12.设P (x ,y ),则2510)5(||2222+-+=-+=y y x y x PA ,因为点P 为椭圆x 2+2y 2=98上一点,所以x 2=98-2y 2,-7≤y ≤7, 则148)5(2510298||222++-=+-+-=y y y y PA ,因为-7≤y ≤7,所以,当y =-5时,372148|max ==PA ;当y =7时,|PA |min =2.13.圆的方程整理为(x +3)2+y 2=102,圆心为C 1(-3,0),半径R =10.设所求动圆圆心为C (x ,y ),半径为r , 则有⎩⎨⎧-==.||,||1r R CC r CP 消去r ,得CC 1|+CP |=10,又C 1(-3,0),P (3,0),|C 1P |=6<10,所以,由椭圆的定义知圆心C 的轨迹是以C 1,P 为焦点的椭圆, 且半焦距c =3,2a =10,a =5,从而b =4,所以,所求的动圆的圆心C 的轨迹方程为1162522=+y x .14.(1)∵),0(),,0(),0,(2222210c b F c b F c F ---,∴1)(||32220==+-=b c c b F F ,12||2221=-=c b F F ,于是47,432222=+==c b a c, 所求“果圆”方程为)0(134),0(1742222≤=+≥=+x x y x y x .(2)∵M 是线段A 1A 2的中点,又A 1(-c ,0),A 2(a ,0),∴)0,2(ca M -,设P (x ,y ),则12222=+c x b y ,即22222x c b b y -=,又222)2(||y c a x PM +=--=0,4)().()1(22222≤≤-+-+---=x c b c a x c a x cb ,∵0122<-cb ∴|PM |2的最小值只能在x =0或x =-c 处取到.即当|PM |取得最小值时,P 在点B 1,B 2或A 1处.(3)∵|A 1M |=|MA 2|,且B 1和B 2同时位于“果圆”的半椭圆)0(12222≥=+x by a x和半椭圆)0(12222≤=+x c x b y 上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆2222by a x +=1(x≥0)上的情形即可.22222222224)(4)(]2)([c c a a c a b cc a a x a c ---++--=. 当a c c a a x ≤-=222)(即a ≤2c 时,|PM |2的最小值在222)(c c a a x -=时取到,此时P 的横坐标是222)(cc a a - 当a cc a a x >-=222)(,即a >2c 时,由于|PM |2在x <a 时是递减的, |PM |2的最小值在x =a 时取到,此时P 的横坐标是a .综上所述,若a ≤2c ,当|PM |取得最小值时,点P 的横坐标是222)(cc a a -;若a >2c ,当|PM |取得最小值时,点P 的横坐标是a 或-c .测试七 双曲线Ⅰ 学习目标1.理解双曲线的定义,掌握椭圆的两种标准方程.2.掌握双曲线的几何性质,双曲线方程中的a ,b ,c ,e 的几何意义、相互关系、取值范围等对图形的影响.3.能初步应用双曲线的定义、几何性质解决与双曲线有关的简单问题,并初步体会数形结合的思想.Ⅱ 基础性训练一、选择题1.双曲线117822=-x y 的焦点坐标为( )(A)(±5,0)(B)(±3,0)(C)(0,±3)(D)(0,±5)2.顶点在x 轴上,两顶点间的距离为8,离心率45=e的双曲线为( ) (A)191622=-y x (B)1251622=-y x(C)116922=-y x (D)1162522=-y x3.若方程11222=+-+m y m x 表示双曲线,则m 的取值范围为( )(A)m >-1(B)A >-2 (C)m >-1,或m <-2(D)-2<m <14.设动点M (x ,y )到A (-5,0)的距离与它到B (5,0)距离的差等于6,则M 点的轨迹方程是( )(A)116922=-y x(B)116922=-x y(C))3(116922-≤=-x y x(D))3(116922≥=-x y x5.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则双曲线的方程是( )(A)193622=-y x (B)198122=-y x(C)1922=-y x (D)131822=-y x二、填空题6.双曲线4x 2-9y 2=36的焦点坐标____________,离心率____________,渐近线方程是__________.7.与双曲线191622=-y x 共渐近线,且过点)3,32(-A 的双曲线的方程为________.8.椭圆14222=+a y x 与双曲线12222=-y a x 有相同的焦点,则a =____________. 9.双曲线191622=-y x 上的一点P ,到点(5,0)的距离为15,则点P 到点(-5,0)的距离为_____________________.10.已知双曲线)2(12222>=-a y a x 两条渐近线的夹角为3π,则此双曲线的离心率为_________________. 三、解答题11.已知三点P (5,2),F 1(-6,0),F 2(6,0).(1)求以F 1,F 2为焦点,且过点P 的椭圆的标准方程;(2)设点P ,F 1,F 2关于直线y =x 的对称点分别为P ′,F 1′,F 2′,求以F 1′,F 2′为焦点且过点P ′的双曲线的标准方程.12.已知定圆O 1:x 2+y 2+10x +24=0,定圆O 2:x 2+y 2-10x +9=0,动圆M 与定圆O 1,O 2都外切,求动圆圆心M 的轨迹方程.13.以双曲线)0,0(1:2222>>=-b a b y a x C 的虚轴为实轴,实轴为虚轴的双曲线叫做C 的共轭双曲线.(1)写出双曲线15422=-y x 的共轭双曲线的方程;(2)设双曲线C 与其共轭双曲线的离心率分别为e 1,e 2,求证1112221=+e e . 测试七 双曲线1.D 2.A 3.C 4.D 5.C6.x y 32,313),0,13()0,13(±=-、7.144922=-x y 8.-1或1 9.7或23 10.332 11.(1)521||,55211||222221=+==+=PF PF ,由椭圆定义,得6,56||||221==+=c PF PF a , 所以b 2=a 2-c 2=9,所以,椭圆的方程为194522=+y x ;(2)点P ,F 1,F 2关于直线y =x 的对称点分别为P '(2,5),F 1'(0,-6),F 2 '(0,6),由双曲线定义,得2a =|''1F P |-|''2F P |=54,c =6,所以,b 2=c 2-a 2=16,所以,双曲线的方程为1162022=-x y .12.圆O 1方程化为:(x +5)2+y 2=1,所以圆心O 1(-5,0),r 1=1,圆O 2方程化为:(x -5)2+y 2=16,所以圆心O 2(5,0),r 2=4, 设动圆半径为r ,因为动圆M 与定圆O 1,O 2都外切,所以|MO 1|=r +1,|MO 2|=r +4, 则|MO 2|-MO 1=3,由双曲线定义,得动点M 轨迹是以O 1,O 2为焦点的双曲线的一支(左支),所以491,5,2322=--===a c b c a, 故双曲线的方程为)23(19149422>-≤=-x y x . 13.(1)双曲线15422=-y x 的共轭双曲线的方程为14522=-x y ;(2)在双曲线C 中,半焦距22b ac +=,所以离心率ab a ace 221+==; 双曲线C 共轭双曲线方程为)0,0(12222>>=-b a x by α,其半焦距为22b a +,所以离心率bb a e 222+=. 所以,1112222222221=+++=+ba b b a a e e.测试八 抛物线AⅠ 学习目标1.初步掌握抛物线的定义、简单性质和抛物线的四种形式的标准方程.2.初步了解用抛物线的定义及性质去求抛物线的方程,了解抛物线的简单应用.Ⅱ 基础性训练一、选择题1.顶点在原点,焦点是(0,5)的抛物线的方程是( )(A)y 2=20x(B)x 2=20y(C)x y 2012=(D)y x2012=2.抛物线x 2=-8y 的焦点坐标是( )(A)(-4,0) (B)(0,-4) (C)(-2,0) (D)(0,-2)3.若抛物线y 2=8x 上有一点P 到它的焦点距离为20,则P 点的坐标为( )(A)(18,12)(B)(18,-12)(C)(18,12),或(18,-12)(D)(12,18),或(-12,18) 4.方程2x 2-5x +2=0的两根可分别作为( )(A)一椭圆和一双曲线的离心率 (B)两抛物线的离心率 (C)一椭圆和一抛物线的离心率(D)两椭圆的离心率5.点P 到点F (4,0)的距离比它到直线l :x =-6的距离小2,则点P 的轨迹方程为( )(A)x y 612=(B)y 2=4x (C)y 2=16x (D)y 2=24x二、填空题6.准线为x =2的抛物线的标准方程是____________. 7.过点A (3,2)的抛物线的标准方程是___________. 8.抛物线y =4x 2的准线方程为____________.9.已知抛物线y 2=2px (p >0),若点A (-2,3)到其焦点的距离是5,则p =________. 10.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是_______.(要求填写合适条件的序号) 三、解答题11.抛物线的顶点在原点,焦点在直线x -2y -4=0上,求抛物线的标准方程.12.求以抛物线2y =8x 的顶点为中心,焦点为右焦点且渐近线为x y 3±=的双曲线方程. 13.设P 是抛物线221x y =上任意一点,A (0,4),求|PA |的最小值. 测试八 抛物线A1.B 2.D 3.C 4.A 5.C 6.x y 82-= 7.x y342=或y x 292= 8.161-=y 9.4 10.②,④ 11.由题意,焦点既在坐标轴上,又在直线x -2y -4=0上,令x =0,得焦点为(0,-2);令y =0,得焦点为(4,0) 当焦点为(0,-2)时,抛物线方程为x 2=-8y ; 当焦点为(4,0)时,抛物线方程为y 2=16x . 12.抛物线y 2=8x 的顶点为(0,0),焦点为(2,0),所以,双曲线的中心为(0,0),右焦点为(2,0),由双曲线的渐近线为x y 3±=知,可设所求双曲线方程为)0(322>=-λλy x ,即1322=-λλy x ,由222b a c +=,得λ+3λ=4,解得λ=1, 所以,所求双曲线方程为1322=-y x .13.由题意,设P (x ,y ),则168)4()0(||2222+-+=-+-=y y x y x PA ,因为P (x ,y )是抛物线221x y =上任意一点,所以x 2=2y ,y ≥0, 代入上式,得7)3(166|22+-=+-=y y y PA ,因为y ≥0,所以当y =3时,|PA |min =7, 即当点)3,6(±P 时,|PA |有最小值7.测试九 抛物线BⅠ 学习目标1.进一步掌握抛物线定义、性质、图形及其应用.2.通过解决与抛物线有关的问题,进一步体会数形结合的思想,函数与方程的思想.Ⅱ 基础性训练一、选择题1.抛物线x 2=y 的准线方程是( )(A)4x +1=0(B)4y +1=0(C)2x +1=0(D)2y +1=02.抛物线的顶点在原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离是( )(A)32(B)3(C)321 (D)341 3.连接抛物线x 2=4y 的焦点F 与点M (1,0)所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )(A)21+-(B)223- (C)21+(D)223+ 4.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是( )(A)34 (B)57 (C)58 (D)35.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为( ) (A))22,2(± (B)(1,2)(C)(1,±2)(D))22,2(二、填空题6.过抛物线y 2=6x 的焦点F ,作垂直于抛物线对称轴的直线l ,设l 交抛物线于A ,B 两点,则|AB |=_________.7.抛物线y =-ax 2(a >0)的焦点坐标为_________.8.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_________. 9.过抛物线y 2=4x 的焦点作直线交抛物线于A 、B 两点,若线段AB 的中点横坐标为3,则|AB |=_________.10.设F 是抛物线y 2=6x 的焦点,A (4,-2),点M 为抛物线上的一个动点,则|MA |+|MF |的最小值是_________. 三、解答题11.设抛物线C 的焦点在y 轴正半轴上,且抛物线上一点Q (-3,m )到焦点的距离为5,求其抛物线的标准方程.12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线C 上,且2x 2=x 1+x 3,求证:2|FP 2|=|FP 1|+|FP 3|.13.已知点A (0,-3),B (2,3),设点P 为抛物线x 2=y 上一点,求△PAB 面积的最小值及取到最小值时P点的坐标.Ⅲ 拓展性训练14.设F 为抛物线C :y 2=2px (p >0)的焦点,点P 为抛物线C 上一点,若点P 到点F 的距离等于点P 到直线l :x =-1的距离. (1)求抛物线C 的方程;(2)设B (m ,0),对于C 上的动点M ,求|BM |的最小值f (m ).测试九 抛物线B1.B 2.B 3.B 4.A 5.C 6.6 7.)41,0(a -8.2 9.8 10.211 11.由题意,设抛物线为x 2=2py (p >0),因为点Q (-3,m )在抛物线上, 所以(-3)2=2pm ,即Pm29=① 因为点Q (-3,m )到焦点的距离为5,所以52||=+P m②由①②得,5229=+pp ,解得p =1或9, 所以抛物线的标准方程为x 2=2y ,或x 2=18y .12.由抛物线定义,知2||11p x PF +=,2||22p x F P +=,2||33px F P +=, 所以|FP 1|+|FP 3|=x 1+x 2+p ,2|FP 2|=2x 2+p , 又x 1+x 3=2x 2,所以2|FP 2|=|FP 1|+|FP 3|. 13.直线AB 的方程为30233--+=x y ,即3x -y -3=0, 102)33()20(||22=--+-=AB ,因为点P 在x 2=y 上,所以设P (x ,x 2),所以点P 到直线AB 的距离10|43)23(|91|33|22+-=+--=x x x d , 因为x ∈R ,所以当23=x 时,1043min =d , 故当)49,23(P 时,△PAB 面积有最小值43104310221=⨯⨯=S . 14.(1)由抛物线定义,知抛物线的方程为x y 42=;(2)设C 上的动点M 的坐标为(x 0,y 0),∴2020*******)0()(||y m mx x y m x BM ++-=-+-=, ∵20y =4x 0, ∴44)]2([42||2002020-+--=++-=m m x x m mx x BM .∵x 0≥0,∴当m -2<0时,|BM |min =|m |; 当m -2≥0时,44||min -=m BM ;综上,对于C 上的动点M ,|BM |的最小值⎩⎨⎧≥-<=)2(,12)2(|,|)(m m m m m f . 测试十 圆锥曲线综合练习(选学)Ⅰ 学习目标1.能熟练地解决直线和圆锥曲线的位置关系问题.2.能应用数形结合思想、方程思想等数学思想解决圆锥曲线综合问题.Ⅱ 基础性训练一、选择题1.过点P (2,4)作直线l ,使l 与抛物线y 2=8x 只有一个公共点,这样的直线l 有( )(A)1条(B)2条(C)3条(D)4条2.一个正三角形的顶点都在抛物线y 2=4x 上,其中一个顶点在坐标原点,则这个三角形的面积是( )(A)348(B)324(C)3916(D)3463.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB |=4,则这样的直线有( )(A)1条(B)2条(C)3条(D)4条4.已知椭圆)0(12222>>=+b a by a x 上总存在点P ,使021=⋅PF PF ,其中F 1,F 2是椭圆的焦点,那么该椭圆的离心率的取值范围是( ) (A)]21,12[-(B))12,0(- (C)]22,21[ (D))1,22[5.已知双曲线)0,0(12222>>=-b a by a x 的左焦点F 1,左、右顶点分别为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( ) (A)相切 (B)相交(C)相离(D)以上情况都有可能二、填空题6.直线y =x +1与抛物线y 2=4x 的公共点坐标为____________.7.若直线y =kx +1与椭圆1522=+my x 恒有公共点,则m 的取值范围是___________. 8.设P 是等轴双曲线x 2-y 2=a 2(a >0)右支上一点,F 1、F 2是左右焦点,若=⋅212F F PF 0,|PF 1|=6,则该双曲线的方程是_____________________.9.过椭圆192522=+y x 的焦点,倾斜角为45°的弦AB 的长是_______________.10.若过双曲线)0,0(12222>>=-b a b y a x 的右焦点F ,作渐近线x ab y =的垂线与双曲线左、右两支都相交,则此双曲线的离心率e 的取值范围是_______________. 三、解答题11.中心在原点,一个焦点为)50,0(F 的椭圆C ,被直线y =3x -2截得的弦的中点的横坐标为0.5,求椭圆C 的方程.12.已知双曲线C :3x 2-y 2=1,过点M (0,-1)的直线l 与双曲线C 交于A 、B 两点.(1)若10||=AB ,求直线l 的方程;(2)若点A 、B 在y 轴的同一侧,求直线l 的斜率的取值范围.13.正方形ABCD 在坐标平面内,已知其一边AB 在直线y =x +4上,另外两点C 、D 在抛物线y 2=x 上,求正方形ABCD 的面积.Ⅲ 拓展性训练14.设点M 在x 轴上,若对过椭圆)0(1:2222>>=+b a by a x C 左焦点F 的任一条与两坐标轴都不垂直的弦AB ,都有MF 为△AMB 的一条内角平分线,则称点M 为该椭圆的“左特征点”. (1)判断椭圆的“左特征点”是否存在,若存在,求出该点坐标;若不存在,请说明理由;(2)参考椭圆的“左特征点”定义,给出双曲线)0,0(12222>>=-b a by a x 的“左特征点”定义,并指出该点坐标.测试十 圆锥曲线综合练习(选学)1.B 2.A 3.C 4.D 5.A6.(1,2) 7.m ≥1且m ≠5 8.x 2-y 2=4 9.179010.2>e 11.由题意,设椭圆150:2222=-+a x ay C , 把直线y =3x -2代入椭圆方程150222=-+a x ay , 得(a 2-50)(3x -2)2+a 2x 2=a 2(a 2-50),整理得(10a 2-450)x 2-12(a 2-50)x -a 4+54a 2-200=0, 设直线与椭圆的两个交点A (x 1,y 1),B (x 2,y 2),则有45010)50(122221--=-a a x x ,?=144(a 2-50)2-4(10a 2-450)(-a 4+54a 2-200)>0, 由题意,得2145010)50(622221=--=+a a x x ,解得a 2=75, 所以椭圆方程为1257522=+x y . 12.(1)设直线l :y =kx -1或x =0(舍去),A (x 1,y 1)、B (x 2,y 2),联立⎩⎨⎧-==-.1,1322kx y y x消去y ,得(3-k 2)x 2+2kx -2=0.由题意,得3-k 2≠0,?=(2k )2-4·(3-k 2)·(-2)=24-4k 2>0, 且32,32221221-=-=+⋅k x x k kx x , ∴||1)()(||212221221x x k y y x x AB -+=-+-=⋅2122124)(1x x x x k -++=⋅.∴10324)32(12222=-⨯--+⋅k k k k, 解得k =±1,或733±=k .验证知3-k 2≠0且?>0,∴直线l 的方程为:y =±x -1,或1733-±=x y ;(2)由A 、B 在y 轴的同一侧,得⎪⎪⎩⎪⎪⎨⎧>-=∆>-==/-0424032.0322212k k x x k ,解得:)3,6(--∈k ∪)6,3(.13.因为AB //CD ,所以设直线CD 方程为y =x +t ,把y =x +t 代入y 2=x ,消去y ,得x 2+(2t -1)x +t 2=0, 设C (x 1,y 1)、D (x 2,y 2),所以x 1+x 2=1-2t , x 1·x 2=t 2,?=(2t -1)2-4t 2>0, 所以)41(2]4)21[(2)()(||22221221t t t y y x x CD -=--=-+-=,又AB 与CD 间的距离为2|4|||-=t AD , 由正方形ABCD ,得|AD |=|CD |,即2|4|)41(2-=-t t , 解得t =-2,或t =-6, 从而,边长|AD|=23或25,所以正方形面积为18)23(21==S 或50)25(22==S . 14.(1)判断:椭圆的“左特征点”存在,具体证明如下.方法1:设x 轴上点M (x 0,0)是椭圆的“左特征点”,F (-c ,0), 其中c 2=a 2-b 2(c >0).设过F 与两坐标轴都不垂直的直线AB : y =k (x +c )(k ≠0),A (x 1,y 1)、B (x 2,y 2).联立方程⎪⎩⎪⎨⎧+==+)(12222c x k y b y a x ,消去y ,得:(b 2+a 2k 2)x 2+2a 2k 2cx +a 2k 2c 2-a 2b 2=0,∴22222212ka b c k a x x +-=+, 2222222221.k a b b a c k a x x +-=, ?))((4)2(22222222222b ac k a k a b c k a -+-=>0. 又∵直线AM 的斜率为:011011)(0x x c x k x x y k AM -+=--=,直线BM 的斜率为:022022)(0x x c x k x x y k BM -+=--=.∴))(())(())(()()(0201012021022011x x x x x x c x k x x c x k x x c x k x x c x k k k BM AM ---++-+=-++-+=+,上式中的分子:k (x 1+c )(x 2-x 0)+k (x 2+c )(x 1-x 0) =k [2x 1·x 2+c (x 1+x 2)-x 0(x 1+x 2)-2cx 0]∵M (x 0,0)是椭圆的“左特征点”,∴∠AMF =∠BMF . ∴k AM =-k BM ,即k AM +k BM =0, ∴分子0222220222222222222222222[cx ka b ck a x k a b c k a c ab b ac k a k k-+-⨯-+-⨯++-⨯=0,∵上式要对任意非零实数k 都成立, ∴02222202222202222222222222=-+-⨯-+-⨯++-⨯cx ka b c k a x k a b c k a c ab b ac k a k∴2a 2k 2c 2-2a 2b 2-2a 2k 2c 2+2a 2k 2cx 0-2b 2cx 0-2a 2k 2cx 0=0,∴0220222=--cx b b a ∴ca x 20-=.故对过F 与两坐标轴都不垂直的任意弦AB ,点)0,(2c a M -都能使MF 为△AMB 的一条内角平分线,所以,椭圆的“左特征点”存在,即为点)0,(2c a M -.方法2:先用特殊值法(可用一条特殊直线AB ,如斜率为1的直线)找出符合“左特征点”性质的一个点M (具体找的过程略,可找到点)0,(2c a M -,即为椭圆的左准线与x 轴的交点),再验证对任意一条与两坐标轴都不垂直的弦AB,∠AMF=∠BMF 都成立.(证明过程可类似方法1,或用下面方法证明)如图,椭圆的左准线与x 轴的交点为M ,过A 作AP 垂直左准线于P ,过B 作BQ 垂直左准线于Q , 由椭圆第二定义,得e AP AF BQ BF ==|||||||| (其中e 为椭圆离心率) ∴||||||||BF AF BQ AP =.又∵AP //BQ //x 轴, ∴||||||||BF AF MQ MP =,∴||||||||BQ AP MQ MP =.∵∠APM =∠BQM =90°, ∴△APM ∽△BQM . ∴∠PAM =∠QBM ,∵∠PAM =∠AMF ,∠QBM =∠BMF , ∴∠AMF =∠BMF .。
北京西城学探诊八下数学答案
参考答案第十七章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x … -4 -3-2 -1 1 234… y…134 24-4-2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1. 19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0). 18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D . 6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x xy ; (2)图象略; (3)长cm.320.测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50;(2)20天第十七章 反比例函数全章测试1.m =1. 2.k <-1;k ≠0. 3..22 4.⋅-=xy 1. 5.⋅=x y 66.).4,49()4,49(21--Q Q 7.C . 8.C . 9.A . 10.D . 11.D . 12.C . 13.B . 14.B . 15.B .16.(1)y =-6; (2)4<x <6; (3)y <-4或y >6. 17.(1)第三象限;m >5; (2)A (2,4);⋅=xy 8 18.(1);8xy -= (2)S △AOC =12. 19.(1,0) 20.(1),8xy -= y =-x -2; (2)C (-2,0),S △AOB =6; (3)x =-4或x =2; (4)-4<x <0或x >2. 21.(1);6,32xy x y ==(2)0<x <3; (3)∵S △OAC =S △BOM =3,S 四边形OADM =6, ∴S 矩形OCDB =12; ∵OC =3, ∴CD =4: 即n =4,⋅=∴23m 即M 为BD 的中点,BM =DM . 22.k =12第十八章 勾股定理测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2. 3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..31014.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)第十八章 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6, CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B 13..2172提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为.m 380 第十九章 四边形测试1 平行四边形的性质(一)1.平行,□ABCD . 2.平行,相等;相等;互补;互相平分;底边上的高. 3.110°,70°. 4.16cm ,11cm . 5.互相垂直. 6.25°. 7.25°. 8.21cm 2. 9.D . 10.C . 11.C .12.提示:可由△ADE ≌△CBF 推出. 13.提示:可由△ADF ≌△CBE 推出. 14.(1)提示:可证△AED ≌△CFB ;(2)提示:可由△GEB ≌△DEA 推出, 15.提示:可先证△ABE ≌△CDF .(三)16.B (5,0) C (4,3)D (-1,3). 17.方案(1)画法1:(1)过F作FH∥AB交AD于点H(2)在DC上任取一点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形;画法2:(1)过F作FH∥AB交AD于点H(2)过E作EG∥AD交DC于点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形画法3:(1)在AD上取一点H,使DH=CF(2)在CD上任取一点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形方案(2)画法:(1)过M点作MP∥AB交AD于点P,(2)在AB上取一点Q,连接PQ,(3)过M作MN∥PQ交DC于点N,连接QM,PN则四边形QMNP就是所要画的四边形测试2 平行四边形的性质(二)1.60°、120°、60°、120°.2.1<AB<7.3.20.4.6,5,3,30°.5.20cm,10cm.6.18.提示:AC=2AO.7.53cm,5cm.8.120cm2.9.D;10.B.11.C.12.C.13.B.14.AB =2.6cm ,BC =1.7cm .提示:由已知可推出AD =BD =BC .设BC =x cm ,AB =y cm ,则⎩⎨⎧=+=+.6.8)(2,62y x y x 解得⎩⎨⎧==,6.2,7.1y x15.∠1=60°,∠3=30°.16.(1)有4对全等三角形.分别为△AOM ≌△CON ,△AOE ≌△COF ,△AME ≌△CNF ,△ABC ≌△CDA .(2)证明:∵OA =OC ,∠1=∠2,OE =OF ,∴△OAE ≌△OCF .∴∠EAO =∠FCO .又∵在□ABCD 中,AB ∥CD ,∴∠BAO =∠DCO .∴∠EAM =∠NCF .17.9.测试3 平行四边形的判定(一)1.①分别平行; ②分别相等; ③平行且相等; ④互相平分; ⑤分别相等;不一定; 2.不一定是.3.平行四边形.提示:由已知可得(a -c )2+(b -d )2=0,从而⎩⎨⎧==.,d b c a4.6,4; 5.AD ,BC . 6.D . 7.C . 8.D .9.提示:先证四边形BFDE 是平行四边形,再由EM NF 得证. 10.提示:先证四边形AFCE 、四边形BFDE 是平行四边形,再由GE ∥FH ,GF ∥EH 得证. 11.提示:先证四边形EBFD 是平行四边形,再由EPQF 得证.12.提示:先证四边形EBFD 是平行四边形,再证△REA ≌△SFC ,既而得到RE SF .13.提示:连结BF ,DE ,证四边形BEDF 是平行四边形. 14.提示:证四边形AFCE 是平行四边形.15.提示:(1)DF 与AE 互相平分;(2)连结DE ,AF .证明四边形ADEF 是平行四边形. 16.可拼成6个不同的四边形,其中有三个是平行四边形.拼成的四边形分别如下:测试4 平行四边形的判定(二)1.平行四边形. 2.18. 3.2. 4.3. 5.平行四边形. 6.C . 7.D . 8.D . 9.C . 10.A . 11.B . 12.(1)BF (或DF ); (2)BF =DE (或BE =DF );(3)提示:连结DF (或BF ),证四边形DEBF 是平行四边形. 13.提示:D 是BC 的中点. 14.DE +DF =1015.提示:(1)∵△ABC 为等边三角形,∴AC =CB ,∠ACD =∠CBF =60°.又∵CD =BF ,∴△ACD ≌△CBF .(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD =∠BCF .∵△AED 为等边三角形,∴∠ADE =60°,且AD =DE .∴FC =DE . ∵∠EDB +60°=∠BDA =∠CAD +∠ACD =∠BCF +60°, ∴∠EDB =∠BCF .∴ED ∥FC . ∵EDFC ,∴四边形CDEF 为平行四边形.16.(1)x y 1=;(2))2,21(--A ; (3)P 1(-1.5,-2),P 2(-2.5,-2)或P 3 (2.5,2). 17.(1)m =3,k =12;(2)232+-=x y 或.232--=x y 测试5 平行四边形的性质与判定1.60°,120°,60°,120°. 2.45°,135°,45°,135°. 3.90°. 4.10cm <x <22cm . 5..33+6.72.提示:作DE ∥AM 交BC 延长线于E ,作DF ⊥BE 于F ,可得△BDE 是直角三角形,⋅=536DF 7.315 提示:作CE ⊥BD 于E ,设OE =x ,则BE 2+CE 2=BC 2,得(x +5)2+27)3(=x .解出23=x .S □=2S △BCD =BD ×CE =.315 8.7. 9.=.提示:连结BM ,DN .10.(1)提示:先证∠E =∠F ; (2)EC +FC =2a +2b .11.提示:过E 点作EM ∥BC ,交DC 于M ,证△AEB ≌△AEM . 12.提示:先证DC =AF .13.提示:连接DE ,先证△ADE 是等边三角形,进而证明∠ADB =90°,∠ABD =30°. 14.(1)设正比例函数解析式为y =kx ,将点M (-2,-1)坐标代入得21=k ,所以正比例函数解析式为x y 21=,同样可得,反比例函数解析式为xy 2=; (2)当点Q 在直线MO 上运动时,设点Q 的坐标为)21,(m m Q ,于是S △OBQ =21|OB ·BQ |=21·21m ·m =41m 2而S OAP =21|(-1)(-2)|=1,所以有,1412=m ,解得m =±2所以点Q 的坐标为Q 1(2,1)和Q 2(-2,-1);(3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标Q (n ,n2), 由勾股定理可得OQ 2=n 2+24n =(n -n 2)2+4,所以当(n -n 2)2=0即n -n2=0时,OQ 2有最小值4, 又因为OQ 为正值,所以OQ 与OQ 2同时取得最小值,所以OQ 有最小值2.由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.测试6 三角形的中位线1.(1)中点的线段;(2)平行于三角形的,第三边的一半. 2.16,64×(21)n -1. 3.18. 4.提示:可连结BD (或AC ). 5.略. 6.连结BE ,CEAB ⇒□ABEC ⇒BF =FC .□ABCD ⇒AO =OC ,∴AB =2OF .7.提示:取BE 的中点P ,证明四边形EFPC 是平行四边形.8.提示:连结AC ,取AC 的中点M ,再分别连结ME 、MF ,可得EM =FM . 9.ED =1,提示:延长BE ,交AC 于F 点.10.提示:AP =AQ ,取BC 的中点H ,连接MH ,NH .证明△MHN 是等腰三角形,进而证明∠APQ =∠AQP .测试7 矩形1.(1)有一个角是直角;(2)都是直角,相等,经过对边中点的直线; (3)平行四边形;对角线相等;三个角. 2.5,53. 3.⋅2344.60°. 5.⋅6136.C . 7.B . 8.B . 9.D .10.(1)提示:先证OA =OB ,推出AC =BD ;(2)提示:证△BOE ≌△COF . 11.(1)略;(2)四边形ADCF 是矩形. 12.7.5.13.提示:证明△BFE ≌△CED ,从而BE =DC =AB ,∴∠BAE =45°,可得AE 平分∠BAD . 14.提示:(1)取DC 的中点E ,连接AE ,BE ,通过计算可得AE =AB ,进而得到EB 平分 ∠AEC .(2)①通过计算可得∠BEF =∠BFE =30°,又∵BE =AB =2 ∴AB =BE =BF : ②旋转角度为120°.测试8 菱 形1.一组邻边相等.2.所有性质,都相等;互相垂直,平分一组对角;底乘以高的一半或两条对角线之积的一半;对角线所在的直线.3.平行四边形;相等,互相垂直. 4..310 5.20,24. 6.C . 7.C . 8.B . 9.D . 10.C . 11.120°;(2)83. 12.2.13.(1)略;(2)四边形BFDE 是菱形,证明略. 14.(1)略;(2)△ABC 是Rt △.15.(1)略;(2)略;(3)当旋转角是45°时,四边形BEDF 是菱形,证明略. 16.(1)略;(2)△BEF 是等边三角形,证明略.(3)提示:∵3≤△BEF 的边长<222)2(43)3(43<≤∴S .3343<≤∴S 17.略. 18..)23(1-n 测试9 正方形1.相等、直角、矩形、菱形.2.是直角;相等、对边平行,邻边垂直;相等、垂直平分、一组,四. 3.(1)有一组邻边相等,并且有一个角是直角; (2)有一组邻边相等. (3)有一个角是直角.4.互相垂直、平分且相等. 5.2a ,2∶1. 6.112.5°,82cm 2;7.5cm . 8.B . 9.B .10.55°. 提示:过D 点作DF ∥NM ,交BC 于F .11.提示:连结AF .12.提示:连结CH ,DH =3. 13.提示:连结BP . 14.(1)证明:△ADQ ≌△ABQ ;(2)以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21AD ×QE =61S 正方形ABCD =38 ∴QE =34∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为)34,34( ∴过点D (0,4),)34,34(Q 两点的函数关系式为:y =-2x +4,当y =0时,x =2,即P 运动到AB 中点时,△ADQ 的面积是正方形ABCD 面积的61; (3)若△ADQ 是等腰三角形,则有QD =QA 或DA =DQ 或AQ =AD①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知 QD =QA 此时△ADQ 是等腰三角形;②当点P 与点C 重合时,点Q 与点C 也重合,此时DA =DQ ,△ADQ 是等腰三角形; ③如图,设点P 在BC 边上运动到CP =x 时,有AD =AQ∵AD ∥BC ∴∠ADQ =∠CPQ . 又∵∠AQD =∠CQP ,∠ADQ =∠AQD , ∴∠CQP =∠CPQ . ∴CQ =CP =x .∵AC =24,AQ =AD =4. ∴x =CQ =AC -AQ =24-4.即当CP =24-4时,△ADQ 是等腰三角形.测试10 梯形(一)1.不平行,长短,梯形的腰,距离,直角梯形,相等. 2.同一底边上,相等,相等,经过上、下底中点的直线. 3.两腰相等,相等.4.45. 5.7cm . 6..3 7.C . 8.B . 9.A .10.提示:证△AEB ≌△CAD . 11.(1)略;(2)CD =10. 12..3 13.(1)提示:证EN =FN =FM =EM ;(2)提示:连结MN ,证它是梯形的高.结论是.21BC MN = 14.(1)①α=30°,AD =1; ②α=60°,23=AD ;(2)略. 测试11 梯形(二)1.(1)作一腰的平行线; (2)作另一底边的垂线; (3)作对角线的平行线; (4)交于一点; (5)对称中心; (6)对称轴. 2.60°. 3.3; 4.12. 5.A . 6.A . 7.B .8.60°.提示:过D 点作DE ∥AC ,交BC 延长线于E 点. 9..348+ 10..22311..10 12.方法1:取)(21b a BM +=.连接AM ,AM 将梯形ABCD 分成面积相等的两部分.方法2:(1)取DC 的中点G ,过G 作EF ∥AB ,交BC 于点F ,交AD 的延长线于点E . (2)连接AF ,BE 相交于点O .(3)过O 任作直线MN 与AD ,BC 相交于点M ,N ,沿MN 剪一刀即把梯形ABCD 分成面积相等的两部分.13.(1)证明:分别过点C ,D 作CG ⊥AB ,DH ⊥AB .垂足为G ,H ,如图1,则∠CGA =∠DHB =90°.图1∴CG ∥DH∵△ABC 与△ABD 的面积相等 ∴CG =DH∴四边形CGHD 为平行四边形 ∴AB ∥CD .(2)①证明:连结MF ,如图2,NE 设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2), ∵点M ,N 在反比例函数)0(>=k xky 的图象上,图2∴x 1y 1=k ,x 2y 2=k . ∵ME ⊥y 轴,NF ⊥x 轴, ∴OE =y 1,OF =x 2. ∴S △EFM =21x 1y 1=21k . ∴S △EFN =21x 2y 2=21k . ∴S △EFM =S △EEN .由(1)中的结论可知:MN ∥EF . ②如图3所示,MN ∥EF .图3第十九章 四边形全章测试1.D . 2.B . 3.D . 4.B . 5.C . 6.45. 7..13 8.).2,22(+9..13 10.⋅n2511.略. 12.BF =AE ;证明提示:△BAE ≌△CFB . 13.(1)略;(2)菱形. 14.提示:连结EH ,HG ,GF ,FE15.(1)90°;(2)提示:延长AE 与BC 延长线交于点G ,证明△AFG 是等腰三角形; 16.(1)菱形;(2)菱形,提示:连结CB ,AD ;证明CB =AD ;(3)如图,正方形,提示:连结CB 、AD ,证明△APD ≌△CPB ,从而得出AD =CB , ∠DAP =∠BCP ,进而得到CB ⊥AD .第二十章 数据的分析测试1 平均数(一)1.9.2. 2.8;2. 3.9.70. 4.B . 5.C . 6.(1)略;(2)178,178;(3)甲队,理由略. 7.小明8.900. 9.1.625. 10.80.4;体育技能测试. 11.A . 12.D . 13.够用;∵30×10×1.7=510<600. 14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二)1.4. 2.82. 3.165. 4.B . 5.C .6.88.715070805272=--⨯(分).7.10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克),估计总产量是5×600=3000(千克).8.1. 9.4. 10.B . 11.D . 12.B . 13.(1)80; (2)4000.14.(1)6;(2)158.8. 15.(1)45; (2)220;(3)略.测试3 中位数和众数(一)1.9;9. 2.11. 3.2. 4.C . 5.C . 6.C .7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数. 8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元;中位数和众数都是4元.9.1.75;1.70;1.69. 10.30;42. 11.A . 12.A . 13.(1)88;(2)86;(3)不能.因为83小于中位数. 14.(1)平均身高为16010162162160158162167151154166=++++++++(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队. 15.B .16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数. 2.2.5或3.5. 3.D . 4.A .5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分. 6.(1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元); (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平. 7.⋅++++8322;2;dc b a c b c 8.m -a ;n -a . 9.A . 10.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性; (2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜. 11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度); (3)解析式为y =54x (x 是正整数).12.(1)21; (2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4. 2.2. 3.12;3. 4.B . 5.B .6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小. 7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修. 8.甲. 9.改变;不变. 10.B . 11.B . 12.C . 13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)甲x =2,乙x =2,2甲s =1,2乙s =1.8,甲组更稳定.测试6 极差和方差(二)1.B . 2.B. 3.4. 4.8. 5.8. 6.18. 7.>,乙. 8.(1)(2)①平均数;②不能;方差太大.9.(1)A 型:平均数 14;方差4.3(约);B 型:中位数 15. (2)略.第二十章 数据的分析全章测试1.⋅++++pn m px nx mx 321 2.4. 3.乙. 4.81. 5.16. 6.D . 7.C . 8.B . 9.C . 10.A . 11.7920元. 12.41,40~42,40~42. 13.平均数分别为26.2,25.8,25.4,班长应当选, 14.(1)(2)略.15.(1)甲种电子钟走时误差的平均数是:0)2112224431(101=+--+-++--乙种电子钟走时误差的平均数是:0)1222122134(101=+-+-+-+--∴两种电子钟走时误差的平均数都是0秒.(2)=⨯=-++--+-=60101])02()03()01[(1012222 甲s 6秒2 8.46101])01()03()04[(1012222=⨯=-++--+-=乙s 秒2 ∴甲乙两种电子钟走时误差的方差分别是6秒2和4.8秒2.(3)我会买乙种电子钟,因为平均数相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.16.(1)①25,90°; ②7,7; (2)10,15.第二十一章 二次根式测试1 二次根式1..3,32>≥x a . 2.x >0,x =1. 3.(1)7;(2)7;(3)7;(4)7;(5)0.7;(6)49. 4.D . 5.B .6.D . 7.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≥-7. 8.(1)18; (2)6;(3)15;(4)6.9.x ≤0. 10.x ≥0且⋅=/21x 11.0. 12.1. 13.C . 14.D . 15.(1)0.52;(2)-9;(3)23;(4)36. 16.2,3,4. 17.0测试2 二次根式的乘除(一)1.x ≥0且y ≥0. 2.(1)6;(2)24;(3)16.3.(1)42;(2)0.45;(3).3122a 4.B . 5.A . 6.B . 7.B8.(1)32; (2)6; (3)24; (4)x 32; (5)3b ; (6)ab 2; (7)49; (8)12; (9).263y xy 9..cm 6210.102 11.>,>,<. 12.D . 13.D . 14.(1)45xy 2 (2)2a 2bb ;(3)34; (4)9. 15.6a -3;56 16.(1)a -- (2)y --117.a =-1,b =1,0.测试3 二次根式的乘除(二)1.(1)32; (2)23; (3)53; (4)x 34; (5)36; (6)223; (7)ab b a 2; (8)⋅630 2.(1)3; (2)2; (3)a 3; (4)a 2; (5).6 3.C . 4.C . 5.C . 6.(1);54 (2);35 (3);22 (4);23 (5);63 (6);2 (7);322 (8)4. 7.(1);77 (2);42 (3)-⋅339 8.(1);55 (2);82 (3);66 (4)⋅y yx 55 9.0.577;5.196. 10.B . 11.C . 12.(1)55-;(2);33x (3).b a +13..332 14.(1)722-;(2)1011-;(3).1n n -+测试4 二次根式的加减(一)1..454,125;12,27;18,82,32 2..36)2(;33)1(-3.B . 4.A . 5.C . 6..33 7..632+ 8..216 9..23+10..23- 11.⋅-42341112.错误. 13.D 14..57329- 15..23- 16.⋅617a 17.0. 18.原式=y x 32+,代入得2. 19..33102235+ 20.(1)都打“√”;(2)1122-=-+n n n n n n (n ≥2,且n 是整数); (3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n nn n n n n 测试5 二次根式的加减(二)1.6. 2.3,72. 3.(1)22; (2)ax 3-.4.B . 5.D . 6.B. 7.⋅66 8..763- 9.⋅3619 10.⋅417 11..215 12..62484- 13..67- 14.B . 15.D . 16.⋅-41 17..103- 18.ab 4 (可以按整式乘法,也可以按因式分解法).19.9.20.⋅335 第二十一章 二次根式全章测试1.>-2. 2..ab b -- 3..27,31,12 4.1. 5.4. 6.B . 7.C . 8.C . 9.A . 10.68-.11..562- 12..12- 13..2ab - 14..293ab b a -15..245x -. 16.周长为.625+ 17.两种:(1)拼成6×1,对角线(cm)0.733712721222≈=+;(2)拼成2×3,对角线)cm (3.431312362422≈=+.第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法1.1,最高,ax 2+bx +c =0(a ≠0).2.2x 2-6x -1=0,2,-6,-1. 3.k ≠-4.4.x 2-12x =0,1,-12,0. 5.-2. 6..32±=y7.A . 8.C . 9.C . 10.C .11.y 1=2,y 2=-2. 12..32,3221--=-=x x13.x 1=9,x 2=-11. 14.⋅-==21,2321x x15..12,03)12(22+=-++x x16.(2-n )x 2+nx +1-3n =0,2-n ,n ,1-3n .17.m ≠±3,m =3. 18.C . 19.A . 20.C .21.⋅±=3322,1x 22..14,5421-=-=x x 23.x 1=1,x 2=7.24..,21m n x m n x +-=+=25.a +b +c =0,a -b +c =0. 26.C .27.m =1不合题意,舍去,m =-1. 28.2009.测试2 配方法解一元二次方程1.16,4. 2.⋅23,493.⋅43,169 4.⋅31,915.2,42pp 6.⋅a ba b 2,422 7.C . 8.D . 9.C . 10.C .11..21±=x 12..33±=y 13.D . 14.D . 15.C .16.A .17.⋅-=+=3102,310221x x18..2,2321-==x x19.x 2-4x +5=(x -2)2+1≥0,当x =2时有最小值为1.测试3 公式法解一元二次方程1.).04(2422≥--±-=ac b a acb b x2.2,8,-2. 3.C . 4.B . 5.B . 6.B .7..72,7221--=+-=x x 8.⋅-=+=3104,310421x x 9.m =1,-3. 10.B . 11.⋅--=+-=231,23121x x 12..32,3221-=+=x x 13.mx -=121,x 2=1.14.x 1=a +1,x 2=3a -1. 测试4 一元二次方程根的判别式1.>,=,<. 2.>-1. 3.≥0. 4.m =2或m =-1.5.B . 6.C . 7.B . 8.D .9.①k <1且k ≠0;②k =1;③k >1. 10.⋅-≥49k 11.∆=m 2+1>0,则方程有两个不相等的实数根.12.C . 13.D . 14.C . 15.B . 16.C .17.m =4,2121-==x x . 18.证明∆=-4(k 2+2)2<0.19.∵b =c =4 ∴△ABC 是等腰三角形.20.(1) ∆=[2(k -1)]2-4(k 2-1)=4k 2-8k +4-4k 2+4=-8k +8.∵原方程有两个不相等的实数根,∴-8k +8>0,解得k <1,即实数k 的取值范围是k <1.(2)假设0是方程的一个根,则代入得02+2(k -1)·0+k 2-1=0,解得k =-1或k =1(舍去).即当k =-1时,0就为原方程的一个根.此时,原方程变为x 2-4x =0,解得x 1=0,x 2=4,所以它的另一个根是4.测试5 因式分解法解一元二次方程1.x =0,x 2=3. 2.271=x ,x 2=-2. 3.x 1=0,⋅=322x 4.x 1=x 2=-3. 5.x 1=0,.62=x 6.x 1=0,.3222-=x 7.x =1,x 2=3. 8.x 1=x 2=2. 9.A . 10.D .11.x 1=2,⋅=322x 12.x 1=0,x 2=1. 13.x 1=7,x 2=-4. 14.x 1=4,x 2=2.15.x 1=0,x 2=2. 16.x 1=x 2=3.17.x 1=0,.322=x 18..3,321-==x x19.x 1=-1,x 2=-7. 20.C . 21.D . 22.D .23.x 1=-m +n ,x 2=-m -n . 24..2,221b a x b a x -=+=25.x 1=2b ,x 2=-b .26.15. 27.当k =1时,x =1;当k ≠1时,x 1=1,⋅-+-=112k k x 测试6 一元二次方程解法综合训练1.⋅-=+=331,33121x x 2.x 1=1,x 2=-1. 3..1,3221==x x 4..102,10221-=+=x x 5.B . 6.B . 7.B . 8.D . 9.⋅-==21,3221x x 10..32,3221-==x x 11.x 1=m +n ,x 2=m -n . 12.⋅==a x a x 2,2121 13.8. 14.x 1=-a -b ,x 2=-a +b .15.B . 16.B .17.⋅==22,221x x 18.⋅-==227,22721x x 19.x 1=k -2,x 2=k -3. 20..33,2221==x x21.当x =-4 y 时,原式35=;当x =y 时,原式=0. 22.略.23.3(x -1)(x +3).24.).21)(21(+---x x测试7 实际问题与一元二次方程(一)1.(1)工作时间工作总量;(2)速度×时间.2.1.1a , 1.21a , 3.31a . 3.a 81100元. 4.D . 5.D . 6.7,9,11或-11,-9,-7. 7.,226,226+-2. 8.50%. 9.3000(1+x )2=5000. 10.10% 11.(50+2x )(30+2x )=1800. 12.D .13.分析:2007年经营总收入为600÷40%=1500(万元).设年平均增长率为x .1500(1+x )2=2160.1+x =±1.2.∵1+x >1,∴1+x =1.2,∴1500(1+x )=1500×1.2=1800(万元).14.分析:设每件衬衫应降价x 元,则盈利(40-x )元,依题意(40-x )(20+2x )=1200.即x 2-30x +200=0.解出x 1=10,x 2=20.由 于尽量减少库存,应取x =20.15.分析:(1)y =240x 2+180x +45;(2)y =195时,45,2121-==x x (舍去). ∴这面镜子长为1m ,宽为.m 21 16.分析:设x 秒后△PCQ 的面积为△ACB 的面积的一半. 依题意,12,2.216821)6)(8(2121==⨯⨯⨯=--x x x x (舍). 即2秒后△PCQ 的面积为Rt △ACB 的面积的一半.17.分析:设P ,Q 两点开始出发到x 秒时,P ,Q 距离为10cm .(16-3x -2x )2=102-62.⋅==524,5821x x ∴出发58秒或524秒时,点P ,Q 距离为10cm . 第二十二章 一元二次方程全章测试1.3x 2-5x -2=0. 2.5. 3.(1)5; (2)-5.4.4. 5.-2. 6.3.7.C . 8.B . 9.C . 10.B . 11.C .12.(1)x 1=0,x 2=2; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=3,x 2=-7; (5).15,2121=-=x x (6)x 1=a ,x 2=a -b . 13.m =1,另一根为-3.14.∆=4m 2+8m +16=4(m +1)2+12>0.15.(1)设2006年底至2008年底手机用户的数量年平均增长率为x ,50(1+x )2=72,∴1+x =±1.2,∴x 1=0.2,x 2=-2.2(不合题意,舍去),∴2006年底至2008年底手机用户的数量年平均增长率为20%.(2)设每年新增手机用户的数量为y 万部,依题意得:[72(1-5%)+y ](1-5%)+y ≥103.98,即(68.4+y )×0.95+y ≥103.98,68.4×0.95+0.95y +y ≥103.9864.98+1.95y ≥103.98,1.95y ≥39,∴y ≥20(万部).∴每年新增手机用户的数量至少要20万部.16.分析:仓库的宽为x cm .(1)若不用旧墙.S =x (50-x )=600.x 1=30,x 2=20.即长为30cm ,宽为20cm 符合要求.(2)若利用旧墙x (100-2x )=600..13525+=x ∴利用旧墙,取宽为m )13525(+,长为m )131050(-也符合要求.有帮助吗?我还有好多答案,要的找我!。
西城区学习探究诊断_第十九章__四边形
第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长³______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )3(A)2 (B)5(C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来; (2)求证:∠MAE =∠NCF .17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC 中,AB =AC =10,D 是BC 边上的任意一点,分别作DF ∥AB 交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考 16.若一次函数y =2x -1和反比例函数xky 2的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xky =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD 中,BC =2AB ,若E 为BC 的中点,则∠AED =______.4.在□ABCD 中,如果一边长为8cm ,一条对角线为6cm ,则另一条对角线x 的取值范围是______.5.□ABCD 中,对角线AC 、BD 交于O ,且AB =AC =2cm ,若∠ABC =60°,则△OAB 的周长为______cm .6.如图,在□ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是______.7.□ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =120°AD =7,BD =10,则□ABCD 的面积为______.8.如图,在□ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,AF =5,24=BG ,则△CEF 的周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
西城区学习探究诊断_第27章__相似
第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dcb a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________. 5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________.反之亦真.即⇔=dcb a ______(a ,b ,c ,d 不为零). 7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若,571=+x x 则x =______. 9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题14.已知:如图,梯形ABCD 与梯形A ′B ′C ′D ′相似,AD ∥BC ,A ′D ′∥B ′C ′,∠A =∠A ′.AD =4,A ′D ′=6,AB =6,B ′C ′=12.求:(1)梯形ABCD 与梯形A ′B ′C ′D ′的相似比k ; (2)A ′B ′和BC 的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边.2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF∽△ABC表示△DEF与△ABC______,其中D点与______对应,E点与______对应,F点与______对应;∠E=______;DE∶AB=______∶BC,AC∶DF=AB∶______.2.△DEF∽△ABC,若相似比k=1,则△DEF______△ABC;若相似比k=2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______.4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BC AB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEAC AB = (2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:P A ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF;(2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似. 2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相 似. 4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC 和△A ′B ′C ′中,如果∠A =56°,∠B =28°,∠A ′=56°,∠C ′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC 和△A 'B ′C ′中,如果∠A =48°,∠C =102°,∠A ′=48°,∠B ′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC 和△A 'B ′C ′中,如果∠A =34°,AC =5cm ,AB =4cm ,∠A ′=34°,A 'C ′=2cm ,A ′B ′=1.6cm ,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC 和△DEF 中,如果AB =4,BC =3,AC =6;DE =2.4,EF =1.2,FD =1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC 的高AD ,BE 交于点F ,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD 中,G 是BC 延长线上的一点,AG 与BD 交于点E ,与DC 交于点F ,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC ∽△DAC 的条件是( )A .∠B =∠DAC B .∠BAC =∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D 是BC 边延长线上的一点,BC =3CD ,DF 交AC 边于E 点,且AE =2EC .试求AF 与FB 的比.21.已知:如图,在△ABC 中,∠BAC =90°,AH ⊥BC 于H ,以AB 和AC 为边在Rt △ABC 外作等边△ABD 和△ACE ,试判断△BDH 与△AEH 是否相似,并说明理由.22.已知:如图,在△ABC 中,∠C =90°,P 是AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB 交AC于E ,点E 不与点C 重合,若AB =10,AC =8,设AP =x ,四边形PECB 的周长为y ,求y 与x 的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79 D .m 23 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A.1.5m B.1.6m C.1.86m D.2.16m4.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( )第4题图A.3.85m B.4.00m C.4.40m D.4.50m二、填空题5.如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.第5题图6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC 的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______. 4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______. 8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______. 11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若2=AB ,则此三角形移动的距离AA '是( )A .12-B .22 C .1D .21三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21相交于F 点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC=2∶3,求S△AOB∶S△.COD22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc . 7.3∶2. 8.⋅259.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15.⋅==750,730AE AD 16.相似. 17.25=x 时,S 的最大值为⋅225 测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCDBC BD BA BC 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:P A ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等. 5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等. 7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等. 8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对.11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE . 则:,AE BDAH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH . 22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE 则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10..31AB B A ='' 11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4.9..2:1,2:1 10..4:3,2:3 11..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22 (2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶922.BP =2,或,311或9. 当BP =2时,S △ABP ∶S △PCD =1∶9; 当311=BP 时,S △ABP ∶S △DCP =1∶4; 当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ;(2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G '; (3)连结BF ',延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形. 方法2:利用代数解析法作图(图17)图17(1)作AH (h )⊥BC (a );(2)求h +a ,a ,h 的比例第四项x ; (3)在AH 上取KH =x ;(4)过K 作GF ∥BC ,交两边于G ,F ,从G ,F 各作BC 的垂线GD ,FE ,那么DEFG 就是所求的内接正方形. 6.提示:正方形EFGH 即为所求.第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32 B .41 C .31 D .21 2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图 A .△AED ∽△ACB B .△AEB ∽△ACD C .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______. 三、解答题13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似?(3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?答案与提示第二十七章 相似全章测试1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5.14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x 当∠ADE 为底角时:⋅=21AE 19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y (2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S(3)当x =3时,S 最大值33 .。
四边形的认识_教学设计
黑板的表面是长方形,箱子一侧的表面是长方形。
当然了,有的同学还从自行车上找到了三角形,而这个橙子的表面是圆。
3.小结看来,用数学的眼光去观察生活,真的能够带给我们不一样的收获。
接下来,就让我们一起走进图形的世界,去探究图形的奥秘。
5 分30 秒分类比较概括特征1.提出问题观察屏幕中的这组图形,你能试着把其中的四边形圈出来吗?别着急,先想一想你心目中的四边形应该是什么样子,再动手圈一圈。
2.分类比较,辨认四边形(1)呈现学生作品(2)提出问题:比较一下,你有什么发现?(3)学生交流生1:“我发现大家都没有圈1号,3号,4号和9号图形。
这些图形一看就不是四边形。
”评价:确实是这样。
1号图形是由5条边围成的,它是五边形;3号图形是我们熟悉的三角形,它有3条边;4号图形是由一条曲线围成的,是圆;而9号图形是一个立体图形,它的名字叫长方体。
生2:“我觉得9号图形虽然是长方体,我们却可以从它的身上找到四边形。
你们看,它的六个面都是长方形,也都是四边形。
我还知道生活中有很多像四边形一样的平面图形都藏在立体图形上。
”没错,大家说的都非常有道理。
看来同学们对于这几个图形能达成共识,认可它们都不是四边形。
那剩下的图形呢?好像大家的意见就不太一致了。
对于这些图形我们又应该如何来进行判断呢?生3:我认为7号图形不是四边形。
它的上下两条边是曲线,我觉得四边形的4条边都应该是直的,所以它不是四边形。
”生4:“我觉得11号图形也不是四边形,虽然看起来挺像,但是它的这个位置是弯弯的,不是角!这里应该尖尖的才行。
”3.寻找共性,概括四边形特征(1)提出问题那到底什么样的图形才是四边形呢?它们又有哪些共同的特征?(2)归纳概括剩下的这些图形虽然长得不太一样,但都是由4条直边围成的,且有4个角,所以都是四边形。
(3)评价小结同学们真的是太会思考了!不仅能够在辨析的过程中圈出四边形。
而且能够从边和角两个维度去观察,归纳出四边形的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE 是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□A B C D中,对角线A C和B D交于O,若A C=8,B D=6,则边A B长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2 (B)53 (C)35(D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n(B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来; (2)求证:∠MAE =∠NCF .17.已知:如图,在□ABCD 中,点E 在AC 上,AE =2EC ,点F 在AB 上,BF =2AF ,若△BEF 的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC 中,AB =AC =10,D 是BC 边上的任意一点,分别作DF ∥AB 交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考 16.若一次函数y =2x -1和反比例函数xky 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. 17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xky =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△D M C______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD =3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC 上的A1处,则∠EA1B=______°。