【行业标准】水工建筑物荷载设计规范DL5077-1997

合集下载

水工建筑物抗震设计规范标准

水工建筑物抗震设计规范标准

中华人民国行业标准SL203-97水工建筑物抗震设计规Specificatins for seismic design of hydraulic structures1997-08-04发布1997-10-01实施中华人民国水利部发布中华人民国行业标准主编单位:中国水利水电科学研究院批准部门:中华人民国水利部施行日期:1997年10月1日中华人民国水利部关于发布《水工建筑物抗震设计规》SL203-97的通知水科技[1997]439号根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释.本标准文本由中国水利水电出版发行.一九九七年八月四日前言本规是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规》进行修订而成.本规在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿.本规为强制性行业标准,替代SDJ10-78.本规共分11章和1个标准的附录.这次修订的主要容有:进一步明确了规适用的烈度围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了容.希望有关单位在执行本规的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑.本规由原能源部,水利部水利水电规划设计总院提出修订.本规由水利部水利水电规划设计管理局归口.本规解释单位:水利部水利水电规划设计管理局本规修订主编单位:中国水利水电科学研究院本规修订协编单位:电力工业部勘测设计研究院,电力工业部西北勘测设计研究院,上海市水利工程设计研究院,理工大学,河海大学.本规主要起草人:厚群,侯顺载,郭锡荣,苏克忠,王钟宁,佳梅,卫明,林皋, 方大凤,黄家森, 瓒,梁爱虎,武清玺,王锡忠,师接劳目次1 总则2 术语,符号2.1 术语2.2 基本符号3 场地和地基3.1 场地3.2 地基4 地震作用和抗震计算4.1 地震动分量及其组合4.2 地震作用的类别4.3 设计地震加速度和设计反应谱4.4 地震作用和其它作用的组合4.5 结构计算模式和计算方法4.6 水工混凝土材料动态性能4.7 承载能力分项系数极限状态抗震设计4.8 附属结构的抗震计算4.9 地震动土压力5 土石坝5.1 抗震计算5.2 抗震措施6 重力坝6.1 抗震计算6.2 抗震措施7 拱坝7.1 抗震计算7.2 抗震措施8 水闸8.1 抗震计算8.2 抗震措施9 水工地下结构9.1 抗震计算9.2 抗震措施10 进水塔10.1 抗震计算10.2 抗震措施11 水电站压力钢管和地面厂房11.1 压力钢管11.2 地面厂房附录A 土石坝的抗震计算1 总则1.0.1为做好水工建筑物的抗震设计,减轻地震破坏及防止次生灾害,特制定本规.1.0.2适用围:1 主要适用于设计烈度为6,7,8,9度的1,2,3级的碾压式土石坝,混凝土重力坝,混凝土拱坝,平原地区水闸,溢洪道,地下结构,进水塔,水电站压力钢管和地面厂房等水工建筑物的抗震设计.2 设计烈度为6度时,可不进行抗震计算,但对1级水工建筑物仍应按本规采取适当的抗震措施.3 设计烈度高于9度的水工建筑物或高度大于250m的壅水建筑物,其抗震安全性应进行专门研究论证后,报主管部门审查,批准.1.0.3按本规进行抗震设计的水工建筑物能抗御设计烈度地震;如有局部损坏,经一般处理后仍可正常运行.1.0.4水工建筑物工程场地地震烈度或基岩峰值加速度,应根据工程规模和区域地震地质条件按下列规定确定:1 一般情况下,应采用《中国地震烈度区划图(1990)》确定的基本烈度.2 基本烈度为6度及6度以上地区的坝高超过200m或库容大于100亿m3的大型工程,以及基本烈度为7度及7度以上地区坝高超过150m的大(1)型工程,应根据专门的地震危险性分析提供的基岩峰值加速度超越概率成果,按本规1.0.6的规定取值.1.0.5水工建筑物的工程抗震设防类别应根据其重要性和工程场地基本烈度按表1.0.5的规定确定.表1.0.5 工程抗震设防类别1.0.6各类水工建筑物抗震设计的设计烈度或设计地震加速度代表值应按下列规定确定:1 一般采用基本烈度作为设计烈度.2 工程抗震设防类别为甲类的水工建筑物,可根据其遭受强震影响的危害性,在基本烈度基础上提高1度作为设计烈度.3 凡按本规1.0.4作专门的地震危险性分析的工程,其设计地震加速度代表值的概率水准,对壅水建筑物应取基准期100年超越概率P100为0.02,对非壅水建筑物应取基准期50年超越概率P50为0.05.4 其它特殊情况需要采用高于基本烈度的设计烈度时,应经主管部门批准.5 施工期的短暂状况,可不与地震作用组合;空库时,如需要考虑地震作用时,可将设计地震加速度代表值减半进行抗震设计.坝高大于100m,库容大于5亿m3的水库,如有可能发生高于6度的水库诱发地震时,应在水库蓄水前就进行地震前期监测.1.0.8水工建筑物的抗震设计宜符合下列基本要求:1 结合抗震要求选择有利的工程地段和场地.2 避免地基和邻近建筑物的岸坡失稳.3 选择安全经济合理的抗震结构方案和抗震措施.4 在设计中从抗震角度提出对施工质量的要求和措施.5 便于震后对遭受震害的建筑物进行检修.重要水库宜设置泄水建筑物,隧洞等,保证必要时能适当地降低库水位.1.0.9设计烈度为8,9度时,工程抗震设防类别为甲类的水工建筑物,应进行动力试验验证,并提出强震观测设计,必要时,在施工期宜设场地效应台阵,以监测可能发生的强震;工程抗震设防类别为乙类的水工建筑物,宜满足类似要求.1.0.10引用标准下列标准所包含的条文,通过在本标准中应用而构成本标准的条文.在标准出版时,所示版本均为有效.所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性. GBJ11-89 建筑抗震设计规GB50199-94 水利水电工程结构可靠度设计统一标准SL/T191-96 水工混凝土结构设计规SDJ12-78 水利水电枢纽工程等级划分及设计标准(山区,丘陵区部分)SDJ21-78 混凝土重力坝设计规SD133-84 水闸设计规SD134-84 水工隧洞设计规SD144-85 水电站压力钢管设计规SD145-85 混凝土拱坝设计规SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原,海滨部分)SDJ218-84 碾压式土石坝设计规SD303-88 水电站进水口设计规SD335-89 水电站厂房设计规按本规进行水工建筑物抗震设计时,尚应符合有关标准,规的要求.同级行业标准规中,有关水工建筑物抗震方面的规定不符合本规的,应以本规为准.2 术语,符号2.1 术语2.1.1抗震设计:地震区的工程结构所进行的一种专项设计.一般包括抗震计算和抗震措施两个方面.2.1.2基本烈度:50年期限,一般场地条件下,可能遭遇超越概率P50为0.10的地震烈度.一般为《中国地震烈度区划图(1990)》上所标示的地震烈度值,对重大工程应通过专门的场地地震危险性分析工作确定.设计烈度:在基本烈度基础上确定的作为工程设防依据的地震烈度.2.1.4水库诱发地震:由于水库蓄水或大量泄水而引起库区及附近发生的地震.2.1.5地震动:由地震引起的岩土运动.2.1.6地震作用:地震动施加于结构上的动态作用.2.1.7地震动峰值加速度:地震动过程中,地表质点运动加速度的最大绝对值.2.1.8设计地震加速度:由专门的地震危险性分析按规定的设防概率水准所确定的,或一般情况下与设计烈度相对应的地震动峰值加速度.2.1.9地震作用效应:地震作用引起的结构力,变形,裂缝开展等动态效应.2.1.10地震液化:地震动引起的饱和砂土,粉土和少粘性土颗粒趋于紧密,孔隙水压力增大,有效应力趋近于零的现象.2.1.11设计反应谱:抗震设计中所采用的一定阻尼比的单质点体系,在地震作用下的最大加速度反应随体系自振周期变化的曲线,一般以其与地震动最大峰值加速度的比值表示.2.1.12动力法:按结构动力学理论求解结构地震作用效应的方法.2.1.13时程分析法:由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程结构地震作用效应的方法.2.1.14振型分解法:先求解结构对应其各阶振型的地震作用效应后,再组合成结构总地震作用效应的方法.各阶振型效应用时程分析法求得后直接叠加的称振型分解时程分析法,用反应谱法求得后再组合的称振型分解反应谱法.2.1.15平方和方根(SRSS)法:取各阶振型地震作用效应的平方总和的方根作为总地震作用效应的振型组合方法.2.1.16完全二次型方根(CQC)法:取各阶振型地震作用效应的平方项和不同振型耦联项的总和的方根作为总地震作用效应的振型组合方法.2.1.17地震动水压力:地震作用引起的水体对结构产生的动态压力.2.1.18地震动土压力:地震作用引起的土体对结构产生的动态压力.2.1.19拟静力法:将重力作用,设计地震加速度与重力加速度比值,给定的动态分布系数三者乘积作为设计地震力的静力分析方法.2.1.20地震作用的效应折减系数:由于地震作用效应计算方法的简化而引入的对地震作用效应进行折减的系数.2.1.21自振周期:结构按某一振型完成一次自由振动所需的时间.对应于第-振型的自振周期称基本自振周期.2.2 基本符号2.2.1作用和作用效应:ah---水平向设计地震加速度代表值;a v---竖向设计地震加速度代表值;g---重力加速度;Pw(h)---水深h处的地震动水压力代表值;F 0---建筑物单位宽度迎水面的总地震动水压力代表值;Fi---作用在质点i的水平向地震惯性力的代表值;F E---地震主动动土压力代表值;G E---产生地震惯性力的建筑物总重力作用的标准值;T i---质点i的动态分布系数;β---设计反应谱;ζ---地震作用的效应折减系数.2.2.2材料性能和几何参数:a k---几何参数的标准值;f k---材料性能的标准值;N63.5---标准贯入锤击数;N cr---临界锤击数;ρw---水体质量密度的标准值.2.2.3分项系数极限状态设计:E k---地震作用的代表值;G k---永久作用的标准值;Q k---可变作用的标准值;R---结构的抗力;S---结构的作用效应;γ0---结构重要性系数;γρ---承载能力极限状态的结构系数;γm---材料性能的分项系数;γG ---永久作用的分项系数;γQ---可变作用的分项系数;ψ---设计状况系数.2.2.4其他:T---结构自振周期;T g---特征周期;λf ---附属结构和主体结构的基本频率比值;λm---附属结构和主体结构质量比值.3 场地和地基3.1 场地3.1.1水工建筑物的场地选择,应在工程地质勘察和专门工程地质研究的基础上,按构造活动性,边坡稳定性和场地地基条件等进行综合评价.可按表3.1.1划分为有利,不利和危险地段.宜选择对建筑物抗震相对有利地段,避开不利地段,未经充分论证不得在危险地段进行建设. 表3.1.1 各类地段的划分水工建筑物开挖后的场地土类型,宜根据土层剪切波速,按表3.1.2划分.3.1.3场地类别应根据场地土类型和场地覆盖层厚度划分为四类,并宜符合表3.1.3的规定.s sm厚度的各土层剪切波速,按土层厚度加权的平均值.表3.1.3 场地类别的划分3.1.4在水工建筑物场地围,岩体结构复杂,有软弱结构面或夹泥层不利组合,边坡稳定条件较差时,应查明在设计烈度的地震作用下不稳定边坡的分布,估计可能的危害程度,提出处理措施.3.2 地基3.2.1水工建筑物地基的抗震设计,应综合考虑上部建筑物的型式,荷载,水力,运行条件,以及地基和岸坡的工程地质,水文地质条件.对于坝,闸等壅水建筑物的地基和岸坡,应要求在设计烈度的地震作用下不发生失稳破坏和渗透破坏,避免产生影响建筑物使用的有害变形.3.2.2水工建筑物的地基和岸坡中的断裂,破碎带及层间错动等软弱结构面,特别是缓倾角夹泥层和可能发生泥化的岩层,应根据其产状,埋藏深度,边界条件,渗流情况,物理力学性质以及建筑物的设计烈度,论证其在设计烈度的地震作用下不致发生失隐和超过允许的变形,必要时应采取抗震措施.3.2.3地基中液化土层的判别,可按《水利水电工程地质勘察规》中的有关规定进行评价.3.2.4地基中的可液化土层,可根据工程的类型和具体情况,选择采用以下抗震措施:1 挖除可液化土层并用非液化土置换;2 振冲加密,重夯击实等人工加密的方法;3 填土压重;4 桩体穿过可液化土层进入非液化土层的桩基;5 混凝土连续墙或其它方法围封可液化地基.3.2.5重要工程地基中的软弱粘土层,应进行专门的抗震试验研究和分析.一般情况下,地基中的软弱粘土层的评价可采用以下标准:1 液性指数I L≥0.75;2 无侧限抗压强度q u≤50kPa;3 标准贯入锤击数N63.5≤4;4 灵敏度S t≥4.3.2.6地基中的软弱粘土层,可根据建筑物的类型和具体情况,选择采用以下抗震措施:1 挖除或置换地基中的软弱粘土;2 预压加固;3 压重和砂井排水;4 桩基或复合地基.3.2.7水工建筑物地基和岸坡的防渗结构及其连接部位以及排水反滤结构等,应采取措施防止地震时产生危害性裂缝引起渗流量增大,或发生管涌,流土等险情.3.2.8岩土性质,厚度等在水平方向变化很大的不均匀地基,应采取措施防止地震时产生较大的不均匀沉陷,滑移和集中渗漏,并采取提高上部建筑物适应地基不均匀沉陷能力的措施.4 地震作用和抗震计算4.1 地震动分量及其组合4.1.1一般情况下,水工建筑物可只考虑水平向地震作用.4.1.2设计烈度为8,9度的1,2级下列水工建筑物:土石坝,重力坝等壅水建筑物,长悬臂,大跨度或高耸的水工混凝土结构,应同时计入水平向和竖向地震作用.4.1.3严重不对称,空腹等特殊型式的拱坝,以及设计烈度为8,9度的1,2级双曲拱坝,宜对其竖向地震作用效应作专门研究.4.1.4一般情况下土石坝,混凝土重力坝,在抗震设计中可只计入顺河流方向的水平向地震作用. 两岸陡坡上的重力坝段,宜计入垂直河流方向的水平向地震作用.4.1.5重要的土石坝,宜专门研究垂直河流方向的水平向地震作用.4.1.6混凝土拱坝应同时考虑顺河流方向和垂直河流方向的水平向地震作用.4.1.7闸墩,进水塔,闸顶机架和其它两个主轴方向刚度接近的水工混凝土结构,应考虑结构的两个主轴方向的水平向地震作用.4.1.8当同时计算互相正交方向地震的作用效应时,总的地震作用效应可取各方向地震作用效应平方总和的方根值;当同时计算水平向和竖向地震作用效应时,总的地震作用效应也可将竖向地震作用效应乘以0.5的遇合系数后与水平向地震作用效应直接相加.4.2 地震作用的类别4.2.1一般情况下,水工建筑物抗震计算应考虑的地震作用为:建筑物自重和其上的荷重所产生的地震惯性力,地震动土压力,水平向地震作用的动水压力.4.2.2除面板堆石坝外,土石坝的地震动水压力可以不计.4.2.3地震浪压力和地震对渗透压力,浮托力的影响可以不计.4.2.4地震对淤沙压力的影响,一般可以不计,此时计算地震动水压力的建筑物前水深应包括淤沙深度;当高坝的淤沙厚度特别大时,地震对淤沙压力的影响应作专门研究.4.3 设计地震加速度和设计反应谱4.3.1除按1.0.6规定的概率水准由专门的地震危险性分析确定水平向设计地震加速度代表值a h外,其余应根据设计烈度按表4.3.1的规定取值.表4.3.1 水平向设计地震加速度代表值a h设计烈度7 8 9a h0.1g 0.2g 0.4g注:g=9.81m/s4.3.2竖向设计地震加速度的代表值a v应取水平向设计地震加速度代表值的2/3.4.3.3设计反应谱应根据场地类别和结构自振周期T按图4.3.3采用.4.3.4各类水工建筑物的设计反应谱最大值的代表值βmax应按表4.3.4的规定取值.图4.3.3 设计反应谱max建筑物类型重力坝拱坝水闸,进水塔及其他混凝土建筑物βmax 2.00 2.50 2.254.3.5设计反应谱下限值的代表值βmin应不小于设计反应谱最大值的代表值的20%.4.3.6不同类别场地的特征周期T g应按表4.3.6的规定取值.表4.3.6 特征周期T g场地类别ⅠⅡⅢⅣT g (s) 0.20 0.30 0.40 0.654.3.7设计烈度不大于8度且基本自振周期大于1.0s的结构,特征周期宜延长0.05s.4.4 地震作用和其他作用的组合4.4.1一般情况下,作抗震计算时的上游水位可采用正常蓄水位;多年调节水库经论证后可采用低于正常蓄水位的上游水位.4.4.2土石坝的上游坝坡抗震稳定计算,应根据运用条件选用对坝坡抗震稳定最不利的常遇水位进行抗震计算.4.4.3土石坝的上游坝坡抗震稳定计算,需要时,应将地震作用和常遇的水位降落幅值组合. 4.4.4重要的拱坝及水闸的抗震强度计算,宜补充地震作用和常遇低水位组合的验算.4.5 结构计算模式和计算方法4.5.1各类水工建筑物抗震计算中,地震作用效应的计算模式应与相应设计规规定的计算模式相同. 4.5.2除了窄河谷中的土石坝和横缝经过灌浆的重力坝外,重力坝,水闸,土石坝均可取单位宽度或单个坝(闸)段进行抗震计算. 4.5.3各类工程抗震设防类别的水工建筑物,除土石坝,水闸应分别按第5,8章规定外,地震作用效应计算方法应按表4.5.3的规定采用.其中工程抗震设防类别为乙,丙类的水工建筑物,其地震作用效应的计算方法,应按本规各类水工建筑物章节中的有关条文规定采用. 4.5.4采用动力法计算地震作用效应时,应考虑结构和地基的动力相互作用,与水体接触的建筑物,还应考虑结构和水体的动力相互作用,但可不计库水可压缩性及地震动输入的不均匀性. 表4.5.5作为线弹性结构的混凝土建筑物,可采用振型分解反应谱法或振型分解时程分析法,此时,拱坝的阻尼比可在3%~5%围选取,重力坝的阻尼比可在5%~10%围选取,其他建筑物可取5%. 4.5.6采用振型分解反应谱法计算地震作用效应时,可由各阶振型的地震作用效应按平方和方根法组合.当两个振型的频率差的绝对值与其中一个较小的频率之比小于0.1时,地震作用效应宜采用完全二次型方根法组合:∑∑=mjjim iE SS S ρ (4.5.6-1)()()()()222222/341418ωωωωωωγζζγγζζγγζγζζζρj i j ij i j i ij ++++-+=(4.5.6-2)式中:S E ---地震作用效应;S i ,S j ---分别为第i 阶,第j 阶振型的地震作用效应; m---计算采用的振型数;ρij ---第i 阶和第j 阶的振型相关系数;ζi ,ζj ---分别为第i 阶,第j 阶振型的阻尼比; γω---圆频率比, γω=ωj /ωi ;ωi , ωj ---分别为第i 阶,第j 阶振型的圆频率. 4.5.7地震作用效应影响不超过5%的高阶振型可略去不计.采用集中质量模型时,集中质量的个数不宜少于地震作用效应计算中采用的振型数的4倍. 4.5.8采用时程分析法计算地震作用效应时,宜符合下列规定:1 应至少选择类似场地地震地质条件的2条实测加速度记录和1条以设计反应谱为目标谱的人工生成模拟地震加速度时程;2 设计地震加速度时程的峰值应按4.3.1或1.0.6的规定采用;3 不同地震加速度时程计算的结果应进行综合分析,以确定设计验算采用的地震作用效应. 4.5.9当采用拟静力法计算地震作用效应时,沿建筑物高度作用于质点i 的水平向地震惯性力代表值应按下式计算:F i =a h ζG Ei a i /g (4.5.9)式中 F i ---作用在质点i 的水平向地震惯性力代表值; a---地震作用的效应折减系数,除另有规定外,取0.25; G Ei ---集中在质点i 的重力作用标准值;T i ---质点i 的动态分布系数,应按本规各类水工建筑物章节中的有关条文规定采用; g---重力加速度.4.6 水工混凝土材料动态性能 4.6.1除水工钢筋混凝土结构外的混凝土水工建筑物的抗震强度计算中,混凝土动态强度和动态弹性模量的标准值可较其静态标准值提高30%;混凝土动态抗拉强度的标准值可取为动态抗压强度标准值的8%. 4.6.2在混凝土水工建筑物的抗震稳定计算中,动态抗剪强度参数的标准值可取静态标准值,当采用拟静力法计算地震作用效应时,应取静态均值. 4.6.3各类极限状态下的材料动态性能的分项系数可取静态作用下的值. 4.7 承载能力分项系数极限状态抗震设计 4.7.1各类水工建筑物的抗震强度和稳定应满足下列承载能力极限状态设计式()⎪⎪⎭⎫⎝⎛≤k m k d k k E k Q k G a f R a E Q G S ,1,,,,0γγγγγψγ (4.7.1)式中:γ0---结构重要性系数,应按GB50199-94的规定取值; j---设计状况系数,可取0.85; S(·)---结构的作用效应函数; γG ---永久作用的分项系数; G k ---永久作用的标准值; γQ ---可变作用的分项系数; Q k ---可变作用的标准值;γE ---地震作用的分项系数,取1.0; E k ---地震作用的代表值; a k ---几何参数的标准值;γd---承载能力极限状态的结构系数; R(·)---结构的抗力函数; f k---材料性能的标准值; γm ---材料性能的分项系数. 4.7.2各类水工建筑物在地震作用下应验算的极限状态及其相应的结构系数,均应按本规相应建筑物章节中的有关规定采用.。

水工建筑物上的荷载及

水工建筑物上的荷载及
水工建筑物上的荷载及
2020/11/22
水工建筑物上的荷载及
第一节 水工建筑物上的荷载及计算
— 一、建筑物及永久设备自重
1.建筑物自重
— 各种建筑物的自重标准值,等于体积与材料的重度的乘积, 方向垂直向下。 即:
— W=Vγc
(2-1)
— 式中:W—建筑物自重(KN)

V—建筑物的体积(m3)

(2-12)
式中: Fak—主动土压力标准值(KN/m)
作用点、方向见图2-7(b);
Ka—主动土压力系数,可按土力学及有关规范 计算。
水工建筑物上的荷载及
图2-7
水工建筑物上的荷载及
• 2.淤沙压力
水库、水闸多年运行后,库区泥沙淤积。其合力标 准值可按下式计算:
(2-14)
式中:Psk—淤沙压力标准值 (KN/m) γsb—淤沙的浮重度 (KN/m3) Hs —挡水建筑物前泥沙的淤积高度 (m) φs—淤沙的内摩擦角(°) 淤沙高度,根据河流水文泥沙特性计算确定 淤沙压力的作用分项系数应采用1.2。
4 严重滴水 沿软弱结构面 冲刷充填物质,加速岩体风化, 0.4~
有小量涌水
使其膨胀崩解,产生机械管涌。 有渗透压力。
0.8
5 严重股状流水断层有大 冲刷充填物质,分离岩体,能鼓 0.65~
量涌水
开一定厚度的断层等软弱带,能 1.0
导致围岩塌方
水工建筑物上的荷载及
2.动水压力
— 水体在流动时,对建筑物表面产生动水压力
下轮廓线的布置、地基K等分析确定。 一般情况下,渗透压力可采用直线比例法、改进阻力系数法
和流网法计算,(详见第七章水闸)。浮托力按下游水位至 底板底面的高度计算。 (3)两岸墩墙扬压力 1)当墙后土 K小于地基K值时,可近似地采用底板上 渗透压 力分布图形; 2)当墙后土 K大于地基时,应按侧向渗流计算确定。 水闸扬压力分项系数,浮托力采用1.0,

水工建筑物荷载设计规范[DL5077-1997]条文说明

水工建筑物荷载设计规范[DL5077-1997]条文说明

>中华人民共和国电力行业标准水工建筑物荷载设计规范条文说明目次总则作用分类和作用效应组合作用分类及作用代表值作用效应组合建筑物自重及永久设备自重建筑物自重静水压力一般规定枢纽建筑物的静水压力水工闸门的静水压力管道及地下结构的外水压力扬压力一般规定混凝土坝的扬压力水闸的扬压力水电站厂房和泵站厂房的扬压力一般规定渐变流时均压力反弧段水流离心力水流对尾槛的冲击力脉动压力水锤压力地应力及围岩压力一般规定围岩岩力土压力和淤沙压力挡土建筑物的土压力上埋式埋管的土压力淤沙压力风荷载和雪荷载风荷载雪荷载冰压力和冻胀力静冰压力动冰压力冻胀力浪压力一般规定直墙式挡水建筑物上的浪压力斜坡式挡水建筑物上的浪压力楼面及平台活荷载水电站主厂房楼面活荷载水电站副厂房楼面活荷载其他要求及作用分项系数桥机和门机荷载桥机荷载门机荷载温度作用一般规定边界温度温度作用标准值地震作用一般规定设计地震动加速度及设计反应谱地震作用的水库计算水位灌浆压力总则长期以来按照本规范第章基本上陈述了该标准中第章及第结构上的作用也可称为两类作用不加区分均称为荷载为使规范名称简化和照顾习惯用语起见本规范不可能对所有的作用进行全面行具体分析作用分类和作用效应组合作用分类及作用代表值本本规范在确定各种永久作至于水工结构设计中的两项主要偶然作用校核洪水位时的静水压力及地震作用的代表值作用效应组合态可划分为承载能力极限状态和正常使用极限状态作用对结构所产生的内力挠度和裂缝等统称为作用效应结构设计状况可分为下列三种一般与结构设计基准期为同一数量级的设计状况因此由其它仅考虑永久作用与可变作用的效应组合因此在偶然应于和用以考虑结构在不同的设计状况下应有不同的可靠度水平对应于持久和但不反映由施加于结构上材料性能分项系数结构系数和由本规范针对各种作用分别给出其余在偶然组合中但考虑到某些可变作用与偶然作用同时出现的概率较小作出了可对其标准值作适当折减本规范规定其计算风速采用多年平均年最大风速根据可变作用在结构上总持续期的长短短期效应组合中的可变作用可直接采的长期组合系数中给组合设计作用和可变作用的作用分项系数均可采用建筑物自重及永久设备自重建筑物自重附录表系参照材料重度根据通过试验确定混凝土的重度时异系数为只之规定其重度可按其概率分布的附录表中土的分类遵循了测的水层等约个测点的厚度和部分重度进行统计个样本进行统计结果表明自重均值与标准值的比值为在土石坝的稳定分析中土体或堆石部位不同因此规定其分项系数采用静水压力一般规定结构设计时应根据在结构在施工和运用过程中的具体情况分别考况下的静水压力属可变作用为使条文简明起见枢纽建筑物和闸门结构在不同设计状况下静水压力代表值的计算水位一般为水库的特征影响坝内中确定的原则和方法并规定其作用分项系数采用枢纽建筑物的静水压力可采用定义形式规定其标准值枢纽建筑物的静位鉴于坝下游防护对象的防洪标准一般都在年一遇的洪水范围以内洪作用的水库校核洪水出现的概率很低属稀遇事件水库设计洪水位系指水库遇到大坝的设计洪水时在坝前达到的最高水位它介于正常蓄水位确定泄水建筑物的泄洪在坝后式和岸边式水电站厂房承受的静水压力作用用由有关设计标准规定的厂房防洪设计洪水位和校核洪水位水工闸门的静水压力根据国内工程资料本条所列水工建筑物在其上游或下游侧一般设有检修闸门除河床式水电站有可能安排在汛期检修外一般安排在枯水期进行应根据设计预定的该建代表值的计算水位可参照规定的有关洪水标准结合设计预定的挡水水位管道及地下结构的外水压力本条系参照目前工程设计中折减系数值多采用对于靠近水库的地段对于内水压力较大的引水隧洞本条沿用故本规范对附录云峰水电站阀鉴于国内水电工程的实践经验采用适当的加劲措施即可满足排水洞的排水降压效果与其如花木桥水电站在下水平段顶部以上而美国巴斯康蒂抽处开挖了条头由结合工程地质条件倍水头折减系数采用地下水含有析离的矿物质时可能导致排水管堵塞扬压力一般规定计算截面上扬压力的作用面积系数为日本的有关设计规范中关于基面上的扬压力均作用于计算截面全部截面积上坝等坝基面上的扬压力分布图形是不同的同一种坝型在不同的地基地质条件及防渗排水措施的在扬压力分布图形中混凝土坝的扬压力种情况式中分别统计分析主排水孔处的扬压力强度系数和副排水孔处的残余扬压力强度系数并定义为式中副排水孔处的实测水头统计分析排水孔处的渗透压力强度系数本规范编制时收集到多座混凝土坝的坝基面实测扬压力观测资料及残余扬压力强度系数分别进行了概率统计分析结果表明在最终确定扬压力分布图形中的渗透压力强度系数和扬压力强度系数时作了如下考虑和同扬压力强度系数和测资料表明采用比河床坝段大可不区分坝型也不区分下游是否设帷幕一律采用例如丹江口坝右岸个坝段的坝基为弱透水的云母钙质片岩其渗透压力强度系数值可按照既设中在拱坝拱座稳定分析中岸坡拱座侧面排水孔处的渗透压力强度系数一般可按其靠上游一侧在所调查的现为即采用数采用当扬压力按浮托力和渗透压力分别计算时浮托力主要取决于相应设计状况下的下游计算渗及残余扬压力强度系数的变异性而它们均可采用随机变量概率模型来多座混凝土坝坝基扬压力的观测资料分类进行统计分析的结果表明分位值与现行规范同时取其概率分布的最后按这两种情况计算渗从而确定其作用分项系数为渗透压力除实体重力坝采用压力和主排水孔后的残余扬压力分别采用和混凝土坝坝前淤积泥沙对坝基的防渗效果可以从刘家峡坝该坝段处从年月至年月连续观测资料反映扬压力强度系数为年又在与年月已有年连续观测的资料该孔扬压力强度系数亦为表盐锅峡大坝防渗帷幕前实测渗透压力强度系数坝坝踵的实测扬压力强度系数均在前苏联高本条系根据葛洲坝二江泄水闸闸底面及消力池护坦底板年连续年的扬压水闸的扬压力为了研究软基上水闸扬压力的统计特征曾经调查了江苏省沿海和内陆个软基上的水根据不同的工程规模和地基地形条件每个剖面布置根测压管观测资料的整理方法与岩基上混凝土坝上采用方法相同以三河闸从江苏省虽然改进阻力系数法计算成果与电拟试验成果比较接近天然地基在土层分布上很少是均尽管理论计算在目前难以通过观测资料的统计分析或其他更好的方法确定水闸扬压力代表值之前本规范仍沿用现行表本条文系基于下述理由侧向渗透速率较慢用相应部位闸底扬压力的计算值偏于安全故理应按侧向绕流计算确定水电站厂房和泵站厂房的扬压力由于接缝处排水沟或本条与动水压力一般规定其力学本质是由水流的紊当水流脉动对结构物的安全有影响或会引起结构振动时恒定流建筑渐变流时均压力对于恒定流渐变流的动水压强接近于静水压强分布规律考虑到在某些情况下受到图反弧底面压强分布反弧段水流离心力的范围内对反弧半径等条件下进行的组试验所得压强分布如图中反弧底面测点处的压约为计算的离心力平均压强比模型试验的平均压强平均小弧段水流的曲率半径简化为等同于反弧半径图边墙压强分布试验表明在靠近底部倍水深的范围内墙各点距底面水深压强与底部压强按规定的线性分布假定所求得的荷载值比试验值大确定其作用分项系数采用水流对尾槛的冲击力影响水流对尾槛冲击力的因素较多流态流态关于流态的水流阻力系数流态是从流态于关于流态其阻力系数较流态小按拉贾拉南公式的计算结果为力池内形成了水跃且脉动压力涉及脉动压强和面本规范根据国研究成果和由日本新成羽工程原型观测得出的时间空间函数按指数型衰减的规律导出面值为当结构块顺流向长度届国际大坝会议上发表的关于但目前此项研究尚不够充分对重要工程宜通过适当的其统计特征包括脉时间空间相关特征及频谱按照水力学定义压力系数定义脉动压强系数为式中计算断面的平均流速本规范取前者属紊流边界层型后者属强分离流紊流边界层内壁上脉动压强系数的理论值约为急流区平顺边界层的脉动力幅值不大关于溢流式厂房顶的脉动压强系数池潭为新安江为类比于平溢流厂房此外尚可参考两项工程的模型试验资料二滩为三峡主厂房为模式口陡槽槽身为反弧段中部为乌江渡左岸滑雪道反弧最低点为溢流面为乌江渡号溢流孔反弧最低点为平桥试验陡槽槽身处小于由于故取流脉动压力和沿水跃长度方向距离的不的影响仅区分大于和小于为时达到最大值考虑到一其较低的水锤压力对于中小型工程附录修正系数本条系参照按公式计算的对于设置调压室的压力水道而当调压室水位升高到最高时用特征线法可以计算出涌波与水锤压力各自通常只能根据调压室的型式考虑二者的相遇效应式或差动式调压室涌波水位的相互影响通过部分水电站的验算表明值一般在地应力及围岩压力一般规定实践证明围岩具有很好的自稳能岩其力学性质表现为正交各向异性的连续介质体的崩落和滑移外对于这类岩体的围由这类岩这具有大量夹泥且块状呈棱面接触的岩体通常称之围岩岩围岩的变形和破坏机理有其特殊性或仅对其取值原则作出对此两项作用的作用分项系数采用大于初始地一般情况下当工程所在地区或附近具备少量实测地应力资料时可建立区域地应力场的有限元计算模型进行模拟计算使各已知点的计算地应力与实测地应力达到最佳的拟合某些情况下也可根据少数实测变形资料进行反演分析综合分析确定岩体初始地应力的数据后经统计分析得出这一结论与弹由重力和构造应力场叠加而成的岩体初始地应力场极为复杂根据国内造应力影响系数值在以上的占以下的仅占的占考虑到值为确定值采用般在二滩水电站是国内地下洞室个测点的水平测压力系数为根据国内外统计资料本规范推荐采用时力状态围岩大多不稳定当围岩强度比系数小于时由于地应力状态受各种复杂因素的影响仅以应力的量级评价地应力状态不一定完全可围岩压力一般都根据围岩的松脱若监测结果表明施工加固措施已使围岩达到稳定或基本稳定时由于开挖后形成的临空面使岩体失去了形成了作用于支护结构或衬砌上的压力由统计资料和工程实践表同时考虑到规范的连续性计算公参照普氏理论方法本规范对水平压力的计有人认为埋深大致为人认为土压力和淤沙压力挡土建筑物的土压力根表产生主动和被动压力所需的墙顶位移当挡土建筑物有背向填土的位移并达到一定量且墙后填土达成到极限平衡状态时作用于建挡土墙静止不动时填土作用于墙背面的土压一般认为极限土压力的发生表由表中数值可见压力来设计挡土墙如关于被动土压力由于水利工程中很少遇到挡土建筑物向填土方向位移的情形且被动土压力由于库仑方法能考虑较多的影响因素并对于粘聚力以前常用等代内摩擦角加以考虑导出可考虑土的粘经实际工程统计分析其变异系数多小于也可作为定值因此主动土压力系数的规定可采用其概率分布的较不利的某个分位值作为其标准概率分布的主动土压力系数是墙后填土内摩擦角垂面的夹角数具有较大的变异性对于的分位值大致对应于的分位值由此可确定土压力参数的及墙体高度方法求得取值的因素较多中所列计算式和表中参数为低于其概率分布土压力计算参数给出了不同土类的取值范围规范中的土类是按照需要指出的是附录和表第二破裂面填土将沿第二破裂面而不是沿墙背滑动此时应考虑按第二破裂面计算作用于墙背的当墙后填土表面作用无均布荷载时可将该荷的计算方法常用的有两种使用弹性理论需要知道填土的泊松比公式可以很方便地计算本规范将这两种方法一并列入其标准值按静止土压力系数的分位值试验统计资料不充分取值表其静止土压究对主动土压力和静止土压力均采用上埋式埋管的土压力对其应用条件作如下说明要求埋管上填土的压实度应不低于对于未能压实的疏对于在地基中挖沟埋设的沟埋式管实际上管侧填土并未达到主动极限平衡根据管道的结构受力情况分按照土压力的计算理论压力及管水平直径下部倒拱的减载作用对埋深淤沙压力在计算坝前淤积高程时根据已建工程的实计算库区淤积分布的设计沙量邻近泄水排沙建筑物的坝段当排沙效果可靠时若设计基准期内坝当电站坝段或临近坝段设置排沙底孔淤沙的浮重度也与淤沙的级配及形状对于同一淤积深度的泥沙设计淤沙压力的变异性取决于计算参数及数的因素错综复杂及的实测值分别比原计算取值增大和仅增加风荷载和雪荷载风荷载关于风荷载标准值的计算本规范沿用了时规范修订组根据全国年到年或年到次定时记年一遇的年最大风速换算为基本风压总则范规定的风雪荷载也应作为设计的取值依据因此本规范基本风压引用了其本规范规定的系数和年和水工建筑物大都建在山区其风压值不能直接在有条件的情况下测和调查得出山区与附近台站的相关关系在大气边界层内对风速沿高度的分布式中与地面粗糙度有关的系数相当于和水工建筑物的风荷载体型系数除可按照及基本风压是根据年的最大风在水工结构中须考虑风振的结构不多风振系数的计算方法较为复杂及当采用作用分项系数年设计基准期内风荷载概率分布的雪荷载基本雪压是从建站起到在统计中当缺乏平行观测的积雪密度时东北及新疆北部地区取华北及西北地区取因此一在无实测资料的情况下可考虑将基本雪压增大服从极值当采用作用分项系数年设计基准期内雪荷载概率分布的冰压力和冻胀力静冰压力自调查其中黑龙江省胜利水库具有连续在此基础上根据东北和华北地区根据公式计算与实测静冰压力值比较其误差在故作用分项系数采用动冰压力也可能只有撞击而不破本条采用了前苏联规范的计算方法融解温度下的小冰块取前苏联建筑法规冰初期可采用国内齐齐哈尔铁路局冰压力试验研究组的现本条中的值是综合国内关于形状系数本条前苏联规范中采用一个结构物前沿宽度与冰厚的比值部河流冰的抗挤压强度在流冰期不大于有关的可见由上述各种方法得参考前苏联确定动冰压力的作用分项系数采用冻胀力例如加拿大如黑龙江省低温建筑物科研所的结果和为本规范规定的单位切向冻胀力年原型观测结果以及大量的实际工程调查资料参设计冻深及有效冻深系数本条给出的单位表给出的单位水平冻胀力中墙体变形影响系数及边坡修正系数冻胀力资料表中的单位竖向冻胀对于的不利影响故取其作用分项系数为浪压力一般规定海堤的风浪压力主要河堤的浪压力同时受波浪实测短期分布的某一累积频率波高的年最大值系列进行频率分析然后按某一重现期确定设计但对岸距离小于速和对岸距离计算同一重现期的波浪要素河川水利枢纽工程几乎难以行水工建筑物设计规范基本上遵循了这一原则但对于设计波浪的标准包括两个方面当按风速资料间接确定不同重现期的设计波浪时设计波浪的重现期问题即计算风速的重现现行水工建筑物设计规范采用风速加成法均最大风速的倍约相当于年重与偶然作用同时出现的可变作用可根据观测因此本规范规定当浪压力参与作用基本组合参与偶然组合时关于设计波浪的波列累积频率均在鉴于本规范不适用于海堤工建筑物级别的差异可在结构重要性系数设计波浪的波列累积频率一律采用莆田试验站公式是由南京水利科学研究院从田海浪试验站进行年的波浪观测现行采用了前者的波长计算公式和后者的波高计算公式而我故本规范通过对由年最大风速系列推算的某一累积频率波高进行概率统计分析和浪压力的分项系年重现期年最大风速计算的波高波高概率分布的计波高计算的波浪总压力与由标准波高计算的波浪总压力之间的比值对直墙式挡水建筑物为左右对斜坡式挡水建筑物为为简便起见规定浪压力的作用分项系数采用直墙式挡水建筑物上的浪压力立波的波状运动系世纪年代由森弗罗的研究得出的斜坡式挡水建筑物上的浪压力关于斜坡式建筑物上的浪压力计算前苏联国家建设委员会年颁布的建筑法规累积频率为要大得多因此可以认为研究结果尚表明累积频率为波浪反压力的分布图形沿用了前苏联法规的规定同时参照计算有效波浪反压力然后乘以的系数转换为累积频率为楼面及平台活荷载水电站主厂房楼面活荷载各层楼面的荷载情况均本规范编制时广泛收集了国内近容量分为大于表主厂房楼面设计荷载统计参数汇总参考已建工因此其取值在一定程度上包含了考虑到统计分析时按单机容量划分的区间较大比照列出表水电站副厂房楼面活荷载副厂房各房间按其使用功能的不同表中所列副厂房的楼面活荷载标准值系根据对国内近座已建水电站设计荷载资料的统其他要求及作用分项系数实际上在整应按楼面参照国际标准确定折减系数采用按照实际情况考虑故规定在一般情况下的作用分项系数采用用桥机和门机荷载桥机荷载均为软钩体的硬钩只有在机组安装或大修时才在额定负荷工况下运其运行速度缓慢以内大车运行速度控制在该荷载由两部分式中单台桥机总质量大车行走时的加可参照表规定道上所有制动轮最大轮压之和的采用年代全苏起重运输机械制造科学研究所的建系数采用况且当时苏联的有关资料表速时间由于水电站桥机运行速度低对五强溪等值均在轮的最大轮压之和的采用制动轮数目等于全部车轮数目的动轮最大轮压之和的该荷载由两部分组另一部式中尽管受力可能不均匀对五强溪等考虑到受力的不均匀取其比值为动力系数采用考虑到桥机吊重物时停放位置的偏差桥机竖向荷载和水平荷载的作用分项系数均采用门机荷载门机一般都在露天工且均为此类门机的运行速度缓慢主钩升降速度一般控制在根据以上特点故此类门机运行机构的量引起的惯性力以及悬挂吊物摆动产生的水平分力由于实际工程门机纵向水平荷载主要由两部分组成一部分为门机自身惯性力另一部分为悬挂在吊索但轮最大轮压的比值均在考虑到制动轮轮压的不均匀性和风压力作用的影响轮压之和的第二部分是当悬挂该风压物及吊具重力之和的比值均在风压力作用的影响温度作用一般规定则取决于结构所出现温度变化包括温升和温降温度作用系指可能出现且对结构产生作用效应的根据混凝土结构的特点其温度作用的发展过程可分为三个阶段早期自混凝土浇筑开始中期自水泥水化热作用基本结束起晚期混凝土完全冷却以后的运行期但早期水施工期的温因此本章只规定温度作用的计不同对前无论考虑温度的年周期变化及月变幅的影响杆件结构通常按结构力学方法计构的温度作用非线性温差虽然是引对于坝体混凝土浇筑块与其他形状复杂的结构则必须按连接介质热传导理论根据其边值条件计算结构的温度场。

建造师一级水利水电讲义之水工建筑物分类

建造师一级水利水电讲义之水工建筑物分类

建造师一级水利水电讲义之水工建筑物分类建造师一级水利水电讲义之水工建筑物分类水工建筑物一般按它的作用和使用时期等来进行分类。

(一)水工建筑物按作用分类水工建筑物按其作用可分为挡水建筑物、泄水建筑物、输水建筑物、取(进)水建筑物、整治建筑物以及专门为灌溉、发电、过坝需要而兴建的建筑物。

1.挡水建筑物。

是用来拦截江河,形成水库或壅高水位的建筑物,如各种坝和水闸,或用以抗御洪水,如沿江河海岸修建的堤防、海塘等。

2.泄水建筑物。

是用于宣泄多余洪水量、排放泥沙和冰凌,以及为了人防、检修而放空水库、渠道等,以保证大坝和其他建筑物安全的建筑物。

如各种溢流坝、坝身泄水孔、岸边溢洪道和泄水隧洞等。

3.输水建筑物。

是为了发电、灌溉和供水的需要,从上游向下游输水用的建筑物,如引水隧洞、引水涵管、渠道、渡槽、倒虹吸等。

4.取(进)水建筑物。

是输水建筑物的首部建筑物,如引水隧洞的进水口段、灌溉渠首和供水用的进水闸、扬水站等。

5.整治建筑物。

是用以改善河流的水流条仵,调整河流水流对河床及河岸的作用以及为防护水库、湖泊中的波浪和水流对岸坡冲刷的建筑物,如丁坝、顺坝、导流堤、护底和护岸等。

6.专门为灌溉、发电、过坝需要而兴建的建筑物。

(1)水电站建筑物:如水电站用的压力管道、压力前池、调压室、电站厂房。

(2)灌溉、排水建筑物:如灌溉渠道上的节制闸、分水闸和渠道上的建筑物(渡槽、倒虹吸、跌水等)。

(3)水运建筑物:保证河流通航及浮运木材而修建的建筑物,如升船机、船闸、筏道、码头等。

(4)给水、下水建筑物:如自来水厂的抽水站、滤水池和水塔,以及排除污水的下水道等。

(5)渔业建筑物:为了使河流中鱼类通过闸坝而修建的鱼道、升鱼机等。

有些水工建筑物在枢纽中所起的作用并不是单一的。

例如溢流坝既起挡水作用,又起泄水作用;水闸既可挡水,又能泄水,还可作为灌溉渠首或供水工程的取水建筑物等。

在水利枢纽布置时,应尽量使一个建筑物起到多种作用。

(二)水工建筑物按使用时期分类水工建筑物按使用时期分为永久性建筑物和临时性建筑物。

顶管结构计算

顶管结构计算

附件一顶管结构计算1.设计依据及基本资料1.1 设计依据①《水工建筑物荷载设计规范》(DL 5077-1997);②《水工钢筋混凝土设计规范》(SDJ20-78)。

1.2 基本资料工程等级:顶管设计按2级建筑物考虑地震烈度:工程区域内地震基本烈度为6度,按不设防考虑。

岩土物理力学参数:参考值见表1-1。

表1-1 岩土物理力学参数表外水头按6m考虑,运行期内水头为1.378m。

砼强度等级:预制顶管砼为C50。

钢筋级别:受力钢筋采用II级钢筋(20MnSi),分布钢筋采用I 级钢筋(AJ3或A3)。

钢筋保护层:按2cm进行计算。

2.结构计算2.1 设计准则衬砌设计按限裂考虑,最大裂缝宽度不超过0.2mm 。

2.2 计算荷载及荷载组合荷载:基本荷载包括围岩压力、衬砌自重、内水压力、稳定渗流场静水压力;特殊荷载包括施工荷载、灌浆压力、温度荷载、地震荷载等。

鉴于顶管所处洞段土质很差,计算可不考虑弹性抗力。

荷载组合:见下表2-1。

表2-1 荷载组合表2.3 荷载计算及计算工况2.3.1 荷载计算内水压力:按设计水深加一定超高考虑,取1.7m。

外水压力:按有一定外水考虑,取6m。

自重:按设计厚度计算自重荷载,钢筋混凝土容重取2.5T/m3;施工推进力:按顶管最大推进长度对应的推进力考虑;温度荷载:考虑到衬砌分缝等结构措施,可不计;地震荷载:可不考虑;围岩压力:可按松动介质平衡理论和弹塑性理论估算围岩压力,采用普氏理论、太沙基、铁路公式、弹塑性理论公式分别计算,经综合分析后,确定不同的围岩压力分布作为计算组次。

各种公式类比计算结果见表2-2。

表2-2 山岩压力荷载计算及选取值2.3.2 计算工况工况一(完建期):山岩压力+自重+外水;工况二(运行期):山岩压力+自重+内水+外水工况三(施工期):山岩压力+自重+顶进力+外水;工况四(检修期):山岩压力+自重+外水。

工况一、二为基本荷载组合,工况三、四为特殊荷载组合。

悬臂式挡土墙计算

悬臂式挡土墙计算

悬臂式挡土墙计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本资料:1.依据规范及参考书目:《水工挡土墙设计规范》(SL379-2007),以下简称《规范》《水工混凝土结构设计规范》(SL 191-2008),以下简称《砼规》《水工建筑物荷载设计规范》(DL 5077-1997)《水工挡土墙设计》(中国水利水电出版社)2.断面尺寸参数:墙顶宽度B1 = 0.50m,墙面上部高度H = 3.40m前趾宽度B2 = 1.00m,后踵宽度B3 = 2.00m前趾端部高度H2 = 0.30m,前趾根部高度H4 = 0.60m后踵端部高度H1 = 0.30m,后踵根部高度H3 = 0.60m墙背坡比= 1 : 0.200,墙面坡比= 1 : 0.000挡土墙底板前趾高程=0.00 m,底板底部坡比=0.000 : 1墙前填土顶面高程▽前地=0.80 m,墙前淤沙顶面高程▽沙=0.00 m 3.设计参数:挡土墙的建筑物级别为4级。

抗震类型:非抗震区挡土墙。

水上回填土内摩擦角φ=21.00度,水下回填土内摩擦角φ' =21.00度回填土凝聚力C =10.30kN/m2采用等代内摩擦角法计算粘性填土土压力。

地基土质为:中等坚实挡土墙基底面与岩石地基之间的抗剪断摩擦系数f' =0.60挡土墙基底面与岩石地基之间的抗剪断粘结力c' =1.40 kPa 4.回填土坡面参数:回填土表面折线段数为:0段折线起点距墙顶高差=0.00 m填土面与水平面夹角β=0.00度5.材料参数:回填土湿容重γs=18.90kN/m3,回填土浮容重γf=10.00kN/m3混凝土强度等级:C20钢筋强度等级:二级,保护层厚度as = 0.300 m地基允许承载力[σo] = 100.00 kPa6.荷载计算参数:冰层厚度T b=0.30 m,静冰压力系数=0.870计算浪压力时采用的位置类型:丘陵、平原地区风区长度D =0.000 m,墙前河(库)底坡度i =1 : 0.00重现期为50年的年最大风速v o=0.000 m/s多年平均的最大风速v o' =0.000 m/s冻胀墙体变形系数m o=0.700,冻胀量Δhd=30.00 mm地震动态分布系数为梯形分布,最大值αm=2.00三、计算参数:3.计算公式:郎肯土压力计算公式如下:E =0.5×γ×H2×K aE x=E×cos(β)E y=E×sin(β)K a=cosβ×[cosβ-(cos2β-cos2φ)1/2]/[cosβ+(cos2β-cos2φ)1/2] (《规范》式式中:E为作用于墙背的土压力,作用点为距墙底1/3高处,方向与水平面成β夹角K a为主动土压力系数当墙后填土为黏性土,粘聚力C=10.30kN时:采用等值内摩擦角法计算主动土压力。

挡土墙计算方法

挡土墙计算方法

挡土墙计算方法挡土墙的形式多种多样,按结构特点可分为:重力式、衡重式、轻型式、半重力式、钢悬臂式、扶壁式、柱板式、锚杆式、锚定板式及垛式等类型。

当墙高<5时,采用重力式挡土墙,可以发挥其形式简单,施工方便的优势。

所以这里只介绍应用最为广泛的重力式挡土墙的设计计算方法。

一:基础资料1. 填料内摩擦角。

当缺乏试验数据时,填料的内摩擦角可参照表一选用。

表一:填料内摩擦角ψ3. 墙背摩擦角δ(外摩擦角)填土与墙背间的摩擦角δ应根据墙背的粗糙程度及排水条件确定。

对于浆砌片石墙体、排水条件良好,均可采用δ=ψ/2。

1)按DL5077-1997〈水工建筑物荷载设计规范〉及SL265-2001〈水闸设计规范〉⎪⎪⎩⎪⎪⎨⎧-=-=-=-=ϕδϕδϕδϕδ)(时:墙背与填土不可能滑动)(时:墙背很粗糙,排水良好)(:墙背粗糙,排水良好时)(:墙背平滑,排水不良时0.167.067.05.05.033.033.00 从经济合理的角度考虑,对于浆砌石挡土墙,应要求施工时尽量保持墙后粗糙,可采用δ值等于或略小于ϕ值。

ξ:填土表面倾斜角;θ:挡土墙墙背倾斜角;ϕ:填土的内摩擦角。

` 4. 基底摩擦系数基底摩擦系数μ应依据基底粗糙程度、排水条件和土质确定。

5. 地基容许承载力地基容许承载力可按照《公路设计手册·路基》及有关设计规范规定选取。

6. 建筑材料的容重根据有关设计规范规定选取。

7. 砌体的容许应力和设计强度 根据有关设计规范规定选取。

8. 砼的容许应力和设计强度 根据有关设计规范规定选取。

二:计算挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。

土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。

计算土压力的理论和方法很多。

由于库伦理论概念清析,计算简单,适用范围较广,可适用不同墙背坡度和粗糙度、不同墙后填土表面形状和荷载作用情况下的主动土压力计算,且一般情况下计算结果均能满足工程要求,因此库伦理论和公式是目前应用最广的土压力计算方法。

水闸、泵站、挡墙结构计算书

水闸、泵站、挡墙结构计算书

水闸、泵站、挡墙结构计算书-CAL-FENGHAI.-(YICAI)-Company One1目录1 水闸配筋及裂缝计算 (1)1.1 基本情况 (1)1.1.1 主要计算依据规范 (1)1.1.2 计算方法 (1)1.1.3 主要参数的选取 (5)1.1.4 计算软件 (7)1.1.5 基本概况 (7)1.2 闸室段荷载及内力计算 (7)1.2.1 完建无水期 (7)1.2.2 检修期 (12)1.3 闸室段配筋计算及裂缝宽度验算 (17)1.3.1 底板底层 (17)1.3.2 底板面层 (20)1.3.3 边墩 (23)1.3.4 中墩 (27)1.4 箱涵段荷载及内力计算 (27)1.4.1 完建无水期 (27)1.4.2检修期 (32)1.5 箱涵段配筋计算及裂缝宽度验算 (32)1.5.1 底板底层 (32)1.5.2 底板面层 (35)1.5.3 顶板面层 (39)1.5.4 顶板底层 (42)1.5.5 边墩外侧 (46)2 箱涵配筋及裂缝计算 (50)2.1 基本情况 (50)2.1.1 主要计算依据规范 (50)2.1.2 计算方法及计算软件 (50)2.1.3 主要参数的选取 (50)2.1.4基本概况 (52)2.2 荷载及内力计算 (52)2.2.1 完建无水期 (53)2.2.2 校核洪水期 (58)2.3 配筋计算及裂缝宽度验算 (64)2.3.1底板 (64)2.3.2 箱涵边墩 (69)2.3.3 箱涵中墩 (72)2.3.4 箱涵顶板 (72)3 移动泵房配筋及裂缝计算 (79)3.1 基本情况 (79)3.1.1 主要计算依据规范 (79)3.1.2 计算方法及计算软件 (79)3.1.3 主要参数的选取 (79)3.1.4基本概况 (81)3.2 荷载及内力计算 (81)3.2.1 荷载计算 (82)3.2.2 内力计算 (82)3.3 配筋计算及抗裂验算 (85)3.3.1 边墩 (85)3.3.2 底板底层 (87)3.3.3 底板面层 (90)4 水闸扶壁式挡墙配筋及裂缝计算 (93)4.1 基本情况 (93)4.1.1 主要计算依据规范 (93)4.1.2 计算方法及计算软件 (93)4.1.3 主要参数的选取 (93)4.1.4基本概况 (95)4.2 内力计算 (96)4.2.1 内河扶壁挡墙 (96)4.2.2 外河扶壁挡墙 (99)4.3 配筋计算及裂缝宽度验算 (103)4.3.1 内河扶壁挡墙 (103)4.3.2 外河扶壁挡墙 (115)2.2.3 渗流稳定计算 (150)1 水闸配筋及裂缝计算1.1 基本情况1.1.1 主要计算依据规范(1)《水工混凝土结构设计规范》(SL 191-2008);(2)《水工建筑物荷载设计规范》(DL 5077-1997);(3)其他相关规程规范。

水工建筑物的荷载计算

水工建筑物的荷载计算

水工建筑物的荷载计算水工建筑物上的作用有:重力、水作用、渗透作用力、风及波浪作用、冰及冰冻作用、温度、土及泥沙作用、地震作用等。

一、自重W=V γ一般素砼取23.5~24kN/m 3,钢筋砼取24.5~25kN/m 3,浆砌石取21.5~23kN/m 3,对土石坝的材料重度应根据具体性能及不同部位,分别取湿重度、干重度、饱和重度、浮重度等几种情况计算。

水工建筑物上永久固定设备,如闸门、启闭机等,其自重标准值采用设备标牌重量 作用分项系数:大体积混凝土、土石坝取1.0;对普通水工混凝土、金属结构(设备)取1.05,当自重对结构有利时取0.95。

地下工程的混凝土衬砌取1.1,其对结构有利时取0.9。

二、水压力水体对各种水工结构均发生作用,作用结果是对结构产生水压力,其可分为静水压力和动水压力。

1.静水压力水体静止状态下对某结构表面的作用力称为静水压力(1)作用在坝、闸等结构面上的水压力P H =221H w γ P V =w w V γ(2)管道及地下结构上的水压力计算。

内水压力:作用在管道内壁上的静水压力; 外水压力:作用于管道或衬砌外侧的水压力。

对内水压力,为计算方便,常将其分解成均匀内水压力和非均匀内水压力两部分。

h p w wr γ=')cos 1(''θγ-=i w wr r p对有压隧洞的砼衬砌的外水压强标准值可按式(2-6)计算。

e e ek H p ωγβ= (2-6)式中:ek p ——作用于衬砌上的外水压强标准值(KN/m 2);e β——外水压力折减系数,可按表2-1采用;e H ——作用水头(m),按设计采用的地下水位线与隧洞中心线的高差确定。

同内水压力一样,外水压力也可分解成均匀外水压力和非均匀外水压力。

非均匀外水压力的合力方向垂直向上,合力的大小应等于单位洞长排开水体的重量。

2.动水压力(1)渐变流时的时均压强:θρcos gh p w tr =式中:tr p ——过流面上计算点的时均压强代表值(N/m 2);w ρ——水的密度(kg/m 3); g ——重力加速度(m/s 2);h ——计算点A 的水深(m);θ——结构物底面与平面的夹角。

11水工建筑物荷载设计规范

11水工建筑物荷载设计规范

中华人民共和国行业标准水工建筑物荷载设计规范前言本规范是根据1990年原能源部、水利部水利水电规划设计总院“(90)水规字11号”文件的安排组织制订的。

其目的在于统一水利水电工程结构设计的作用(荷载)取值标准,以利于按照GB50199—94水利水电工程可靠度设计统一标准》的原则和方法进行水工结构设计。

本规范必须与按照GB50199—94 水利水电工程结构可靠度设计统一标准》制订的其他水工结构设计规范配套使用。

本规范中所列全部附录都是标准的附录。

本规范由电力工业部水电水利规划设计总院提出、归口并负责解释。

本规范的主编单位:电力工业部中南勘测设计研究院。

参编单位有:电力工业部北京勘测设计研究院、西北勘测设计研究院、成都勘测设计研究院、华东勘测设计研究院,水利部上海勘测设计研究院、东北勘测设计研究院,中国水利水电科学研究院,南京水利科学研究院。

本规范的主要起草人:梁文治、家常春、苗琴生、张学易段乐斋、周芙、黄东军、范明桥、刘文灏、陈厚群、席与光卢兴良、薛瑞宝、赵在望、岳耀真、吕祖伤、潘王华、刘蕴供吴孝仁、侯顺载、据常忻、王鉴义、汤书明、聂广明、徐伯孟潘玉喜、唐政生、郦能惠、李启雄、黄淑萍。

1 范围本规范适用于各类水工建筑物的结构设计。

12 引用标准下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB50199—94 水利水电工程结构可靠度设计统一标准GBJg—87 建筑物结构荷载规范GBJ145—90 土的分类标准DL5073—1997 水工建筑物抗震设计规范DL/T5058—1996 水电站调压室设计规范DL/T5082一1998 水工建筑物抗冰冻设计规范23 总则3.0.1 为了统一水工结构设计的作用取值标准,使设计符合安全适用、经济合理、技术先进的要求,特制订本规范。

3.0.2 本规范是根据GB50199—94 水利水电i程结构可靠度设计统一标准》规定的原则制定的。

水工建筑物荷载设计规范DL_5077-1997

水工建筑物荷载设计规范DL_5077-1997

前言1 范围2 引用标准3 总则4 主要符号5 作用分类和作用效应组合6 建筑物自重及永久设备自重7 静水压力8 扬压力9 动水压力10 地应力及围岩压力11 土压力和淤沙压力12 风荷载和雪荷载13 冰压力和冻胀力14 浪压力15 楼面及平台活荷载16 桥机和门机荷载17 温度作用18 地震作用19 灌浆压力附录 A(标准的附录)水工结构主要作用按随时间变异的分类附录 B(标准的附录)水工建筑物的材料重度附录 C(标准的附录)混凝土衬砌有压隧洞的外水压力折减系数附录 D(标准的附录)改进阻力系数法附录 E(标准的附录)简单管路水锤压力计算公式附录 F(标准的附录)主动土压力系数Ka和静止土压力系数K0的计算附录 G(标准的附录)波浪要素和爬高计算附录 H(标准的附录)水库坝前水温计算附录 J(标准的附录)拱坝运行期温度作用的标准值附录 K(标准的附录) 本规范用词说明条文说明打印刷新水工建筑物荷载设计规范Specifications for load design ofhydraulic structureDL5077—1997主编单位:电力工业部中南勘测设计研究院批准部门:中华人民共和国电力工业部批准文号:电综[1997]567号施行日期:1998年2月1日前言本规范是根据1990年原能源部、水利部水利水电规划设计总院“(90)水规字11号”文件的安排组织制订的。

其目的在于统一水利水电工程结构设计的作用(荷载)取值标准,以利于按照GB50199—94《水利水电工程可靠度设计统一标准》的原则和方法进行水工结构设计。

本规范必须与按照GB50199—94《水利水电工程结构可靠度设计统一标准》制订的其他水工结构设计规范配套使用。

本规范中所列全部附录都是标准的附录。

本规范由电力工业部水电水利规划设计总院提出、归口并负责解释。

本规范的主编单位:电力工业部中南勘测设计研究院。

参编单位有:电力工业部北京勘测设计研究院、西北勘测设计研究院、成都勘测设计研究院、华东勘测设计研究院,水利部上海勘测设计研究院、东北勘测设计研究院,中国水利水电科学研究院,南京水利科学研究院。

关于水库风浪高度计算公式的几个问题

关于水库风浪高度计算公式的几个问题

关于水库风浪高度计算公式的几个问题1 关于鹤地水库波高计算公式现行规范《水工建筑物荷载设计规范》(SL744-2016),《水工建筑物荷载设计规范》(DL5077-1997),推荐的波浪要素计算方法分别是莆田试验站公式、鹤地水库公式及官厅水库公式。

莆田试验站公式如下。

式中-平均波高,m;-平均波周期,s;-计算风速,m/s;D-风区长度,m;-水域平均水深,m;g-重力加速度,取9.81m/s2。

注意。

在SL744-2016与DL5077-1997中,平均波长计算公式中的水深符号与平均波高计算公式中的水深符号不同,但没有相应说明内容。

在《碾压式土石坝设计规范》(SL274-2001)、《碾压式土石坝设计规范》(DLT5395-2007)及《小型水利水电工程碾压式土石坝设计规范》(SL189-2013)中,平均波长计算公式中水深采用坝迎水面前水深。

在《碾压式土石坝设计规范》(SDJ218-84,作废)、《堤防工程设计规范》(GB50286-2013)、《滩涂治理工程技术规范》(SL389-2008)、《海堤工程设计规范》(SL435-2008)中及《广东省海堤工程设计导则(试行)》(DB44/T182-2004),平均波长计算公式中水深采用水域平均水深。

《小型水利水电工程碾压式土石坝设计导则》(SL189-1996,作废)第6.1.7条,波高可采用莆田试验站公式或官厅-鹤地公式等算出。

官厅-鹤地公式是指波高按官厅水库公式计算、波长按鹤地公式计算。

新版SL189-2013仅推荐采用莆田试验站公式计算波浪要素,但没有说明原因。

在SDJ218-84附录一中,推荐的波浪要素计算公式有莆田试验站公式、安德烈扬诺夫公式及官厅-鹤地公式。

安德烈扬诺夫公式如下。

,并在注中说明,原公式作者未规定计算波高的累积频率,经比较,当时,可取为,当时,可取为。

官厅水库波高、波长计算公式如下。

并说明,经比较,官厅水库波高公式的波高累积概率当时,可取为,当时,可取为,现规范中为。

进水口排架结构安全复核

进水口排架结构安全复核

启闭机荷载通过次梁→主梁→立柱→地基,次、主梁以及与立柱均为刚性连接。

由于各结点钢筋布置情况不清楚,因而次梁、主梁均按简支梁计算,立柱按大偏心受压构件计算,以策安全。

6.2.2.3 进水口结构计算结构计算依据以下规范进行:《水工建筑物荷载设计规范》(DL5077-1997) 《建筑结构荷载规范》(GB50009-2001) 《水工混凝土结构设计规范》(DL/T5057-1996) 《水利水电工程钢闸门设计规范》(SL74-95) 1、启闭机基座梁(次梁)承载力 经简化,次梁所受到荷载为:梁自重 标准值kN/m 5.1253.02.0bh g k =⨯⨯==γ 设计值m kN g g k G /575.15.105.1=⨯==γ 板自重 标准值kN/m 8.2253259.021.0bh g k =⨯⨯==γ 设计值m kN g g k G /94.28.205.1=⨯==γ 启闭机及基座重 标准值5kN .8G k =设计值kN G k G 93.85.805.1G =⨯==γ 次梁所受均布荷载设计值0.8)2/(93.8(⨯+=)启Q q 人群荷载 标准值m kN q k /40.19325.05.1=⨯=设计值m kN q q k Q /68.14.12.1=⨯==γ次梁荷载如下图所示:图6.2-1 次梁荷载简图⑴抗弯承载力该梁纵筋选用124Φ,则受拉筋截面积2s 226mm A =配筋率%15.0%297.0380)200/(226bh /A min 0s =>=⨯==ρρ544.0092.038020010226310bh f A f b 0c s y =<=⨯⨯⨯==ξξ96.34380092.0h x 0=⨯==ξ0878.0)092.05.01(092.0)5.01(s =⨯-=-=ξξαm 36kN .253802000878.010bh f M 220s c u ⋅=⨯⨯⨯==α即次梁所能承受最大弯矩为25.36kN ∙m 。

水工建筑物抗震设计规范

水工建筑物抗震设计规范

中华人民共和国行业标准SL203—97水工建筑物抗震设计规范Specificatins for seismic design of hydraulic structures1997-08-04发布1997—10-01实施中华人民共和国水利部发布中华人民共和国行业标准主编单位:中国水利水电科学研究院批准部门:中华人民共和国水利部施行日期:1997年10月1日中华人民共和国水利部关于发布《水工建筑物抗震设计规范》SL203—97的通知水科技[1997]439号根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布。

标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10—78同时废止.本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释.本标准文本由中国水利水电出版社出版发行。

一九九七年八月四日前言本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10—78《水工建筑物抗震设计规范》进行修订而成。

本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿。

本规范为强制性行业标准,替代SDJ10-78。

本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改”,并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容。

5077水工建筑物荷载设计规范..

5077水工建筑物荷载设计规范..

水工建筑物荷载设计规范Specification for load design of hydraulic structures中华人民共和国电力行业标准水工建筑物荷载设计规范DL5077-1997主编单位:电力工业部中南勘测设计研究院批准部门:中华人民共和国电力工业部批准文号:电综[1997]567号前言本规范是根据1990年原能源部、水利部水利水电规划设计总院“(90)水规字11号”文件的安排组织制订的。

其目的在于统一水利水电工程结构设计的作用(荷载)取值标准,以利于按照GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和方法进行水工结构设计。

本规范必须与按照GB50199-94《水利水电工程结构可靠度设计统一标准》制订的其他水工结构设计规范配套使用。

本规范中所列全部附录都是标准的附录。

本规范由电力工业部水电水利规划设计总院提出、归口并负责解释。

本规范的主编单位:电力工业部中南勘测设计研究院。

参编单位有:电力工业部北京勘测设计研究院、西北勘测设计研究院、成都勘测设计研究院、华东勘测设计研究院,水利部上海勘测设计研究院、东北勘测设计研究院,中国水利水电科学研究院,南京水利科学研究院。

本规范的主要起草人:梁文浩宋常春苗琴生张学易段乐斋周芸黄东军范明桥刘文灏陈厚群席与光卢兴良薜瑞宝赵在望岳耀真吕祖珩潘玉华刘蕴琪吴孝仁侯顺载谯常忻王鉴义汤书明聂广明徐伯孟潘玉喜唐政生郦能惠李启雄黄淑萍目次前言1范围2引用标准3总则4主要符号5作用分类和作用效应组合5.1作用分类及作用代表值5.2作用效应组合6建筑物自重及永久设备自重6.1建筑物自重6.2永久设备自重7静水压力7.1一般规定7.2枢纽建筑物的静水压力7.3水工闸门的静水压力7.4管道及地下结构的外水压力8扬压力8.1一般规定8.2混凝土坝的扬压力8.3水闸的扬压力8.4水电站厂房和泵站厂房的扬压力9动水压力9.1一般规定9.2渐变流时均压力9.3反弧段水流离心力9.4水流对尾槛的冲击力9.5脉动压力9.6水锤压力10地应力及围岩压力10.1一般规定10.2岩体初始地应力(场)10.3围岩压力11土压力和淤沙压力11.1挡土建筑物的土压力11.2上埋式埋管的土压力11.3淤沙压力12风荷载和雪荷载12.1风荷载12.2雪荷载13冰压力和冻胀力13.1静冰压力13.2动冰压力13.3冻胀力14浪压力14.1一般规定14.2直墙式挡水建筑物上的浪压力14.3斜坡式挡水建筑物上的浪压力15楼面及平台活荷载15.1水电站主厂房楼面活荷载15.2水电站副厂房楼面活荷载15.3工作平台活荷载15.4其他要求及作用分项系数16桥机和门机荷载16.1桥机荷载16.2门机荷载17温度作用17.1一般规定17.2边界温度17.3温度作用标准值18地震作用18.1一般规定18.2设计地震加速度及设计反应谱18.3地震作用的水库计算水位19灌浆压力附录A(标准的附录)水工结构主要作用按随时间变异的分类附录B(标准的附录)水工建筑物的材料重度附录C(标准的附录)混凝土衬砌有压隧洞的外水压力折减系数附录D(标准的附录)改进阻力系数法附录E(标准的附录)简单管路水锤压力计算公式附录F(标准的附录)主动土压力系数Ka和静止土压力系数K0的计算附录G(标准的附录)波浪要素和爬高计算附录H(标准的附录)水库坝前水温计算附录J(标准的附录)拱坝运行期温度作用的标准值附录K(标准的附录)本规范用词说明1范围本规范适用于各类水工建筑物的结构设计。

《水工建筑物荷载设计规范》编制简析

《水工建筑物荷载设计规范》编制简析

《水工建筑物荷载设计规范》编制简析苏加林;陈立秋;金萍【摘要】文章叙述了SL 744-2016《水工建筑物荷载设计规范》的编制背景和编制过程,介绍了规范的主要内容以及所开展的专题研究工作成果,并对水工建筑物结构设计的原则进行了说明.【期刊名称】《水利技术监督》【年(卷),期】2018(000)006【总页数】3页(P1-3)【关键词】水利水电工程;水工建筑物;荷载组合;永久荷载;可变荷载;偶然荷载【作者】苏加林;陈立秋;金萍【作者单位】中水东北勘测设计研究有限责任公司,吉林长春130021;中水东北勘测设计研究有限责任公司,吉林长春130021;长春市标准研究院,吉林长春130011【正文语种】中文【中图分类】TV222.51 规范编制背景水利水电行业对水工建筑物结构设计的荷载取值一般均由各类水工结构设计标准分别作出规定,缺乏统一的取值标准和方法。

为了规范、统一水利水电工程水工建筑物的荷载确定原则、计算方法以及取值依据等问题,制定了《水工建筑物荷载设计规范》,对水工建筑物设计的荷载取值作了统一规定。

《水工建筑物荷载设计规范》是水工建筑物设计的基本规范,适用于水利水电工程中各类水工建筑物结构设计的荷载取值,是水利水电勘察设计行业工程设计的基本依据,也是施工、监理、运行管理单位、建设单位及政府相关职能部门在实际工作中解决有关问题时需要遵循的规范,同时还是高校、科研院所在教学、科研中需要遵守的基本规范。

2 规范的编制过程在规范编制过程中,编制组进行了广泛的调查研究,总结了近年来的工程实践经验,参考了国内外相关规范的有关内容,开展了多项专题研究,结合我国实际和水利水电工程规划设计需要,既反映了我国近年来成熟的研究成果和经验,又借鉴并吸取国外的先进经验和新理论、新技术,并广泛征求了建设、设计、科研及教学单位的意见,经反复讨论、修改,最终经审查定稿。

2.1 征求意见稿阶段2014年,中水东北勘测设计研究有限责任公司启动了《水工建筑物荷载设计规范》的编制工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档