高二数学-高二下学期期中考试数学(理)试卷

合集下载

2021-2022学年甘肃省兰州市第一中学高二下学期期中考试理科数学试题(解析版)

2021-2022学年甘肃省兰州市第一中学高二下学期期中考试理科数学试题(解析版)

甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答案〗写在答题卡上.交卷时只交答题卡.一.选择题(共12小题,满分60分,每小题5分)1. 复数2iz=-(i为虚数单位)的共轭复数的虚部为()A. -1B. 1C. i-D. i〖答案〗B〖解析〗由题意知:2iz=+,则虚部为1.故选:B.2. 在用反证法证明“已知x,y∈R,且x y+<,则x,y中至多有一个大于0”时,假设应为()A. x,y都小于0 B. x,y至少有一个大于0C. x,y都大于0 D. x,y至少有一个小于0〖答案〗C〖解析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x,y都大于0”.故选:C.3. 函数y=x2cos 2x的导数为()A. y′=2x cos 2x-x2sin 2xB. y′=2x cos 2x-2x2sin 2xC. y′=x2cos 2x-2x sin 2xD. y′=2x cos 2x+2x2sin 2x〖答案〗B〖解析〗y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.故选:B.4. 函数21ln2y x x=-的单调递减区间为()A. ()1,1-B.()1,+∞C.()0,1D.()0,∞+〖答案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点,33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++,()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x=-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=-⎪⎝⎭. 22. 设函数()f x ()20x ax x aa e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20xax x af x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答 案〗写在答题卡上.交卷时只交答题卡. 一.选择题(共12小题,满分60分,每小题5分) 1. 复数2i z =-(i 为虚数单位)的共轭复数的虚部为( ) A. -1 B. 1C.i -D. i〖答 案〗B〖解 析〗由题意知:2i z=+,则虚部为1.故选:B.2. 在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为( ) A. x ,y 都小于0 B. x ,y 至少有一个大于0 C. x ,y 都大于0D. x ,y 至少有一个小于0〖答 案〗C〖解 析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.3. 函数y =x 2cos 2x 的导数为( ) A. y ′=2x cos 2x -x 2sin 2x B. y ′=2x cos 2x -2x 2sin 2x C. y ′=x 2cos 2x -2x sin 2xD. y ′=2x cos 2x +2x 2sin 2x〖答 案〗B〖解 析〗y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x . 故选:B.4. 函数21ln 2y x x =-的单调递减区间为( )A.()1,1- B.()1,+∞C.()0,1D.()0,∞+〖答 案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点, 33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++, ()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=. 又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭. 22. 设函数()f x ()20x ax x a a e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20x ax x a f x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.。

四川省绵阳南山中学2021-2022学年高二下学期期中考试 数学(理)试卷

四川省绵阳南山中学2021-2022学年高二下学期期中考试 数学(理)试卷

2022年5月绵阳南山中学2022年春季高2020级半期考试数学(理科)试题本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共6页.满分150分.第Ⅰ卷(选择题,共60分)注意事项:每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知x R ∈,命题“若20x >,则0x >”的逆命题,否命题和逆否命题中,真命题的个数是 (A )0 (B )1 (C )2 (D )3 2. 设复数11i aiz ++=(i 为虚数单位)为纯虚数,则实数a =(A )1 (B )1- (C )2(D )2-3. 已知,,,O A B C 为空间四点,且向量,,OA OB OC 不能构成空间的一个基底,则一定有 (A ),,OA OB OC 共线 (B ),,,O A B C 中至少有三点共线 (C )OA OB +与OC 共线 (D ),,,O A B C 四点共面4. 一个关于自然数n 的命题,已经验证知1n =时命题成立,并在假设(n k k =为正整数)时命题成立的基础上,证明了当2n k =+时命题成立,那么综上可知,该命题对于 (A )一切自然数成立 (B )一切正整数成立 (C )一切正奇数成立 (D )一切正偶数成立5. 4名运动员同时参与到三项比赛冠军的争夺,则最终获奖结果种数为(A )34A (B )34C (C )34 (D )436.如图,OABC 是四面体,G 是ABC ∆的重心,1G 是OG 上一点,且13OG OG =,则(A )1OG OA OB OC =++ (B )1111333OG OA OB OC =++(C )1111444OG OA OB OC =++ (D )1111999OG OA OB OC =++7.0a b <<是11a b b a+<+的 (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件8. 若函数()sin cos f x a x x =+在[,]34ππ-上为增函数,则实数a 的取值范围是(A )[1,)+∞(B )(,-∞(C )[(D )(,[1,)-∞+∞9.中国空间站的主体结构包括天和核心舱,问天实验舱和梦天实验舱.假设中国空间站要 安排甲乙丙等5名航天员开展实验,其中天和核心舱安排3人,其余两个实验舱各安排1人,若甲乙两人不能同时在一个舱内做实验,则不同的安排方案有(A )8种 (B )14种 (C )20种(D )116种10.已知a ,b 是异面直线,,A B 是a 上的点,,C D 是b 上的点,2,1AB CD ==,且AC b ⊥, BD b ⊥,则a 与b 所成角为(A )30︒ (B )45︒ (C )60︒ (D )90︒11.已知t 和3t +是函数32()f x x ax bx c =+++的零点,且3t +也是函数()f x 的极小值点, 则()f x 的极大值为 (A )1 (B )4 (C )43 (D )4912. 设0.0110099,,a b e c ===则(A )a b c >> (B )a c b >> (C )b a c >> (D )c a b >>第Ⅱ卷(非选择题,共90分)注意事项:用钢笔将答案直接写在答题卷上.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接填在答题卷中的横线上.13.已知函数2()2'(2)3f x x f x =++,则'(2)f 的值为__________. 14.某单位拟从,,,,,A B C D E F 六名员工中选派三人外出学习,要求: (1),A C 二人中至少选一人; (2),B E 二人中至少选一人; (3),B C 二人中至多选一人; (4),A D 二人中至多选一人.由于E 因病无法外出,则该单位最终选派的三位员工为:__________.15.将,,,A B C D 四份不同的文件放入编号依次为15-的五个抽屉,每个抽屉只能放一份文件,要求文件,A B 必须放入相邻的抽屉,文件,C D 不能放入相邻的抽屉,则满足要求的放置方法共有__________种.16.双曲正弦函数sinh()2x x e e x --=和双曲余弦函数cosh()2x xe e x -+=在工程学中有广泛的应用,也具有许多迷人的数学性质.若直线x m =与双曲余弦函数1C 和双曲正弦函数2C 的图象分别相交于点,A B ,曲线1C 在A 处切线与曲线2C 在B 处切线相交于点P ,则如下命题中为真命题的有__________(填上所有真命题的序号).①(sinh())'cosh()x x =,(cosh())'sinh()x x =; ②22sinh ()cosh ()1x x +=; ③点P 必在曲线x y e =上;④PAB ∆的面积随m 的增大而减小.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)(1)请将下列真值表补充完整;(空格处填上“真”或“假”)(2) 给定命题:p 对任意实数x 都有210ax ax ++>成立;命题:q 关于x 的方程2x x a -+有实根.已知命题()p q ⌝∨和命题()p q ∨⌝都是真命题,求实数a 的取值范围.18.(本题满分12分)如图,在直三棱柱111ABC A B C -中,90,2,1,ABC CA CB M ∠=︒==是1CC 的中点, 且1AM BA ⊥.(1)求1AA 的长;(2)求直线1AC 与平面11ABB A 所成角的正弦值.19.(本题满分12分)某市环保局对该市某处的环境状况进行实地调研发现,该处的污染指数与附近污染源的 强度成正比,与到污染源的距离成反比,总比例常数为(0)k k >.现已知相距10km 的A ,B 两家化工厂(污染源),A 化工厂的污染强度未知,暂记为(0)a a >,B 化工厂的污染强度为4,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和, 设()AC x km =.(1)试将y 表示为关于,,x k a 的等式;(2)调研表明y 在2x =处取得最小值,据此请推断出A 化工厂的污染强度. 20.(本题满分12分)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,在“阳马”P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,棱PC 的中点为E ,3PF FB =,连接,,DE DF EF .(1) 若平面DEF 与平面ABCD 所成二面角的大小为3π,求CBCD的值. (2) 设棱PA 与平面DEF 相交于点G ,且PG PA λ=,求λ的值;21.(本题满分12分)已知函数2()ln (0)f x x ax a =->.(1)若()f x 恰有一个零点,求a 的值;(2)若0x 是()f x 的零点,且2y x =在点200(,)x x 处的切线恰与ln y x =相切,求a 的值.22.(本题满分12分)已知函数()ln 1()f x x ax a R =++∈,'()f x 为()f x 的导函数. (1)讨论()f x 的单调性;(2)若210x x >>,证明:对任意a R ∈,存在唯一的012(,)x x x ∈,使得12012()()'()f x f x f x x x -=-成立.绵阳南山中学2022年春季高2020级半期考试数学(理科)答案Ă.˞Պʚ123456789101112CBDCCDAABC BA12.由我们熟知的不等式e x ⩾x +1有e 0.02>1+0.02⇒e 0.01>√1.02,∴b >c又e −x >1−x,当x <1时,有1e x >1−x ⇒e x<11−x∴e 0.01<11−0.01=10099,∴a >bȕ.ฒ˭ʚ13.−414.A,B,F15.2416.1416.显然1正确;事实上,双曲函数满足cosh 2(x )−sin 2h (x )=1,这也是它名称的由来,2错误;C 1在A 处切线:y =cosh (m )(x −m )+sinh (m ),C 2在B 处切线:y =sinh (m )(x −m )+cosh (m ),由此求得两切线的公共点坐标为P (m +1,e m ),故P 在曲线y =e x −1上,3错误;|AB |=e −m ,由前面分析知P 到AB 距离为1,∴S △P AB =12e m,随m 增大而减小,4正确.Ɓ.̛٫ʚ17.(1)从上至下依次为“真”,“假”,“真”,“真”;(2)若命题p 为真命题,则a =0或a >0∆<0,解得a ∈[0,4),若命题q 为真命题,由∆⩾0,解得a ⩽14,要使(¬p )∨q 和p ∨(¬q )都是真命题,则需p,q 同真同假,若p,q 同真,则有a ∈[0,14],若p,q 同假,则有a ⩾4,综上可知,a 的取值范围为[0,14]∪[4,+∞).18.以B 为坐标原点,# »BC,# »BA,# »BB 1方向为x,y,z 轴正方向,建立空间直角坐标系B −xyz ,并设AA 1=h ,则相关各点坐标分别为:A (0,√3,0),A 1(0,√3,h ),B (0,0,0),B 1(0,0,h ),C (1,0,0),C 1(1,0,h ),M (1,0,h2)(1)∵# »AM =(1,−√3,h 2),# »BA 1=(0,√3,h ),且AM ⊥BA 1∴# »AM ·# »BA 1=0⇒h =√6,所以,AA 1=√6;(2)∵# »AC 1=(1,−√3,√6),而平面ABB 1A 1的法向量为#»n=(1,0,0),∴cos <# »AC 1,#»n >=1√10=√1010,所以,所求线面角的正弦值为√1010.19.(1)y =k (ax +410−x),x ∈(0,10);(2)y ′=k (4(10−x )2+a x 2)=k (4x 2−a (10−x )2(x (10−x ))2),由题意,y ′|x =2=0⇒16−64a =0⇒a =14,经检验知,当a =14时,y 在(0,2)上单减,在(2,10)上单增,满足题意.所以,A 化工厂的污染强度为14.20.以D 为坐标原点,# »DA,# »DB,# »DP 方向为x,y,z 轴正方向,建立空间直角坐标系D −xyz ,并设CD =2,CB =m ,则相关点坐标为:D (0,0,0),A (m,0,0),B (m,2,0),C (0,2,0),P (0,0,2),于是E (0,1,1),又3# »P F =# »F B ⇒# »DF =34# »DP +14# »DB ,所以# »DF =(m 4,12,32)由# »DF =(m 4,12,32)# »DE =(0,1,1)解得平面DEF 的法向量#»n 1=(−4,−m,m ),(1)易知平面ABCD 的法向量#»n 2=(0,0,1),∴cos <#»n 1,#»n 2>=m √2m 2+16由题意知,m √2m 2+16=12,由此解得m =2√2,∴CB CD =m 2=√2;(2)∵# »P G =λ# »P A,∴# »DG =# »DP +λ# »P A =(λm,0,2−2λ),由题意,∵G 是平面DEF 上一点,∴# »DG ⊥#»n 1⇒−4λm +m (2−2λ)=0由此解得:λ=13.21.(1)∵f ′(x )=2x −1x ,在(0,√22),f ′(x )<0,在(√22,+∞),f ′(x )>0,∴f (x )在(0,√22)单调递减,在(√22,+∞)单调递增,且当x →0时,f (x )→+∞,当x →+∞时,f (x )→+∞,∴由题意可知,x =√22是f (x )的唯一零点,由f (√22)=0,解得:a =√2e ;(2)y =x 2在(x 0,x 20)处切线l :y =2x 0(x −x 0)+x 20,整理得:l :y =2x 0x −x 20,设该切线与y =ln x 相切于(t,ln t ),则l :y =1t(x −t )+ln t,整理得:l :y =1t x +ln t −1,∴2x 0=1t x 20=1−ln t ⇒ln t =−ln 2x 0,∴x 20=1+ln 2x 0又由题知:x 20=ln ax 0,∴ln ax 0=1+ln 2x 0=ln 2ex 0∴a =2e 即为所求.22.(1)f ′(x )=1x+a (x >0)1当a ⩾0时,f ′(x )>0,∴f (x )在(0,+∞)单调递增;2当a <0时,在(0,−1a ),f ′(x )>0,在(−1a,+∞),f ′(x )<0∴f (x )在(0,−1a )单调递增,在(−1a,+∞)单调递减;(2)设F (x )=f ′(x )−f (x 1)−f (x 2)x 1−x 2=1x −f (x 1)−f (x 2)x 1−x 2,x ∈(x 1,x 2),显然F (x )在定义域内单调递减,F (x 1)=1x 1−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(1−x 2x 1−ln x 1x 2)令x 1x 2=t ∈(0,1),G (t )=(1−1t−ln t ),则F (x 1)=(x 1−x 2)G (t )∵G ′(t )=1−tt2,∴在(0,1),G ′(t )>0⇒G (t )在(0,1)单调递增,∴G (t )>G (1)=0,故F (x 1)=1x 1−x 2G (t )>0,同理:F (x 2)=1x 2−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(x 1x 2−1−ln x 1x 2)令x 1x 2=t ∈(0,1),H (t )=t −1−ln t,则F (x 2)=1x 1−x 2H (t )∵H ′(t )=1−1t,∴在(0,1),H ′(t )<0⇒H (t )在(0,1)单调递减,∴H (t )>H (1)=0,故F (x 2)=1x 1−x 2H (t )<0,综上可知,F (x )在(x 1,x 2)单调递减,且F (x 1)>0,F (x 2)<0,∴F (x )在(x 1,x 2)存在唯一零点x 0,使得f ′(x 0)=f (x 1)−f (x 2)x 1−x 2,命题得证.。

江苏省泰州二中高二数学下学期期中试题 理 苏教版

江苏省泰州二中高二数学下学期期中试题 理 苏教版

泰州二中2012-2013学年高二下学期期中考试数学(理)试题一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应的位置上.......... 1.写出命题“若a =0,则ab =0”的逆否命题: ▲ .2.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ▲ . 3.命题“对所有的正数x ,”的否定是 ▲ .4.命题“*N x ∈∃使x 为31的约数”是 ▲ 命题.(从“真”和“假”中选择一个填空)5. “三角函数是周期函数,y =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是三角函数,所以y =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是周期函数”.在以上演绎推理中,下列说法正确的是 ▲ . (1)推理完全正确;(2)大前提不正确;(3)小前提不正确;(4)推理形式不正确. 6.“a =b ”是“”的 ▲ 条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择一个填空)7.设)(x f '是函数)(x f 的导函数,已知)(x f 在R 上的图象(如图),若0)(>'x f ,则x 的取值范围是 ▲8. 已知函数3()12f x x ax =+-在区间[2,)+∞上单调递增,则实数a 的取值范围是 ▲ .9. 在平面上,若两个正三角形的边长的比为2:1,则它们的面积比为1:2,类似地,在空间,1:2,则它们的体积的比为 ▲10. 过曲线f (x )=-x 3+3x 的点A (2,-2)的切线方程 ▲11.观察下列等式:13+23=32,13+23+32=62,13+23+33+43=102,…,根据规律,第五个等式为 ▲12. 已知c bx x x f ++=2)(为偶函数,曲线)5,2()(过点x f y =,)()()(x f m x x g +=。

若曲线)(x g y =有斜率为0的切线,则实数m 的取值范围为 ▲13.已知函数()3231f x x ax ax =-++在区间()2,2-内,既有极大也有极小值,则实数a 的取值范围是 ▲ . 14.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2011∈[1]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a ,b 属于同一‘类’”的充要条件是“a-b ∈[0]”. 其中,正确结论的个数是___▲_____.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤. 15.(本题满分14分)(1)用反证法证明:在一个三角形中(2)已知0,n ≥试用分析法证明:211n n n n +-+<+- .16.(本题满分14分)已知c >0,设命题p :函数y =c x为减函数.命题q :当x ∈[12,2]时,函数f(x)=x +1x>1c恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围. 17.(本题满分14分)已知函数5)(23+++=bx ax x x f ,若32=x ,)(x f y =有极值,且曲线)(x f y =在点(1,)1(f )处的切线斜率为3. (1)求函数)(x f 的解析式;(2)求)(x f y =在[-4,1]上的最大值和最小值。

宁夏吴忠市吴忠中学2022-2023学年高二下学期期中考试数学(理)试题

宁夏吴忠市吴忠中学2022-2023学年高二下学期期中考试数学(理)试题

uuur ON
3
,求直线
l
的方程;
(3)已知直线 l 斜率存在,若 AB 是椭圆 C 经过原点 O 的弦,且 AB//l ,求证: AB 2 为定
MN
值.
试卷第 5 页,共 5 页
与设备改造有关;
(2)按照分层抽样的方法,从设备改造前的产品中取得了 5 件产品,其中有 3 件一等品和
2 件二等品.现从这 5 件产品中任选 3 件,记所选的一等品件数为 X,求 X 的分布列及
均值 E X ;
(3)根据市场调查,企业每生产一件一等品可获利 100 元,每生产一件二等品可获利 60 元,在设备改造后,用先前所取的 200 个样本的频率估计总体的概率,记生产 1000 件
,则常数项为_______.
16.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的下顶点为 A ,右焦点为 F
,直线
AF 交椭AF
uuur FB
,若
3
,则椭圆 C
的离心率的取值范围是______.
三、解答题
17.已知 mR ,命题 p : x 0, 2 , m x2 2x ,命题 q : x 0, ,使得方程
离为( )
A.1
B.2
C.4
D.8
4.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. 1 6
B. 1 4
C. 1 3
D. 1
2
5.执行如图所示的程序框图,则输出的 n ( )
A.4
B.5
C.6
D.7
6.设
x
R
,向量
ar
1,
r
2,b

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

青岛第二中学2023-2024学年高二下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D.2. 若关于的不等式成立的充分条件是,则实数的取值范围是( )A B. C. D.3. 下列有关一元线性回归分析的命题正确的是( )A. 若两个变量的线性相关程度越强,则样本相关系数就越接近于1B. 经验回归直线是经过散点图中样本数据点最多的那条直线C. 在经验回归方程中,若解释变量增加1个单位,则预测值平均减少0.5个单位D. 若甲、乙两个模型的决定系数分别为0.87和0.78,则模型乙的拟合效果更好4. 已知,则下列命题为真命题的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则5. 7名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排3名,乙场馆安排2名,丙场馆安排2名,则不同的安排方法共有( )A. 210种B. 420种C. 1260种D. 630种6. 已知一组样本数据的方差为9,且,则样本数据的方差为( )A. 9.2B. 8.2C. 9.8D. 97. 若不等式的解集为,则不等式解集为( )A B. ..{1,2,3,4,5},{1,3,5},{1,2,5}U T S ===()U S T = ð{2}{1,2}{2,4}{1,2,4}x |1|x a +<04x <<a 1a ≤-5a >1a <-5a ≥r ˆ20.5yx =-x ˆy 2R ,,R a b c ∈a b >ac bc>0a b >>0.40.4a b -->a b >1122a cb c++⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭0,0a b c >>>b b c a a c+>+125,,,x x x 1324x x x x +=+123451,1,1,1,x x x x x -+-+20ax bx c ++≥[]1,30ax ccx b+≥+(]4,3,3∞∞⎡⎫--⋃+⎪⎢⎣⎭(]4,3,3∞∞⎛⎫--⋃+⎪⎝⎭C. D. 8. 某人在次射击中击中目标的次数为,其中,击中偶数次为事件A ,则( )A. 若,则取最大值时B. 当时,取得最小值C. 当时,随着的增大而减小 D. 当的,随着的增大而减小二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在的展开式中,下列说法正确的是( )A. 各二项式系数的和为64 B. 常数项是第3项C. 有理项有3项D. 各项系数的绝对值的和为72910. 已知位于第一象限的点在曲线上,则( )A. B. C. D.11. 二次函数是常数,且的自变量与函数值的部分对应值如下表:…-1012……22…且当时,对应的函数值.下列说法正确的有( )A. B. C. 关于的方程一定有一正、一负两个实数根,且负实数根在和0之间D. 和在该二次函数的图象上,则当实数时,三、填空题:本题共3小题,每小题5分,共15分.12. 函数定义域是______.13. 已知集合,,若中恰有一个整数,的43,3⎡⎤-⎢⎥⎣⎦43,3⎡⎫-⎪⎢⎣⎭n ,~(,)X X B n p N*,01n p ∈<<10,0.8n p ==()P X k =9k =12p =()D X 112p <<()P A n 102p <<()P A n 61x ⎛- ⎝(,)a b 111x y+=(1)(1)1a b --=-228a b +≥23a b +≥+221223a b +≥2,(,y ax bx c a b c =++0)a ≠x y x ym n32x =0y <0abc >1009mn >x 20ax bx c ++=12-()112,P t y +()222,P t y -12t <12y y >()ln(21)f x x =+-{}2|60M x x x =+->{}2|230,0N x x ax a =-+≤>M N ⋂则的最小值为_________.14. 已知函数,若对于恒成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 2024年4月25日,神舟十八号载人飞船发射升空,并于北京时间2024年4月26日3时32分,成功对接于空间站天和核心舱径向端口,整个自主交会对接过程历时约6.5小时!奔赴星辰大海,中国人探索浪漫宇宙脚步驰而不息,逐梦太空的科学探索也不断向前。

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。

福建省福州第八中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

福建省福州第八中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

福州第八中学2023-2024学年高二下学期期中考试数学考试时间:120分钟试卷满分:150分一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知随机变量服从两点分布,,则其成功概率( )A. 0B. 1C. 0.3D. 2. 已知数列为等比数列,若,则的值为( )A. -4B. 4C. -2D. 23. 设随机变量,若,则等于()A. 0.2B. 0.7C. 0.8D. 0.94. 设是一个离散型随机变量,其分布列为则等于( )A. 1B. C.D. 5. 已知点P ,Q 分别为圆与上一点,则的最小值为()A. 4B. 5C. 7D. 106. 已知,则( )A. 64B. 32C. 63D. 317. 若,则( )A. B. C. D. 为X ()0.7E X =0.7{}n a 2580a a +=64a a ()24,X N σ~()0.8P X m >=()8P X m >-X X234P1212q-22q q 1121+22:1C x y +=22:(7)4D x y -+=||PQ ()01223344414729n n n n n n nn C C C C C -+-+⋅⋅⋅+-⋅⋅=123n n n n n C C C C +++⋅⋅⋅+=()221ln ln π,ln ,33ea b c ===-c a b <<b c a <<c b a<<b a c<<8. 已知双曲线的左顶点为是双曲线的右焦点,点在直线上,且的离心率是( )A. B. C.D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 连续抛掷一枚骰子2次,记事件A 表示“2次结果中正面向上的点数之和为奇数”,事件B 表示“2次结果中至少一次正面向上的点数为偶数”,则( )A. 事件A 与事件B 不互斥 B. 事件A 与事件B 相互独立C. D. 10. 已知直线经过抛物线的焦点,与交于A ,两点,与的准线交于点,则( )A. B. 若,则C. 若,则的取值范围是 D.若,,成等差数列,则11. 甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复次这样的操作,记甲口袋中黑球个数为,恰有1个黑球的概率为,恰有2个黑球的概率为,则下列结论正确的是( )A. ,B. 数列是等比数列C. 数列是等比数列D. 的数学期望三、填空题:本题共3小题,每小题5分,共15分.12. 已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.则抛物线C 的方程为________.2222:1(0,0)x y C a b a b -=>>()0,,A F c C P 2x c=tan APF ∠C 2+4+()34P AB =()2|3P A B =()1x my =-()2:20E x py p =>F E B E l C 2p =3AF FB =m =()0,1N -AN AF⎡⎣FA AC FB FC BF=()*Nn n ∈nXn p n q 21627p =2727q ={}21n n p q +-{}21n n p q +-n X ()()*11N 3nn E X n ⎛⎫=+∈ ⎪⎝⎭13. “畅通微循环,未来生活更舒适”.我国开展一刻钟便民生活圈建设,推进生活服务业“规范化、连锁化、便利化、品牌化、特色化、智能化”发展,以提质便民为核心,高质量建设国际消费中心城市,便民商业体系向高品质发展.某调研机构成立5个调研小组,就4个社区的便民生活圈的建设情况进行调研,每个调研小组选择其中1个社区,要求调研活动覆盖被调研的社区,共有派出方案种数为____________14. 设为的展开式的各项系数之和,,,表示不超过实数x 的最大整数,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求A 的大小;(2)若,BC 边上高的长.16. 已知是公差不为零的等差数列,,且成等比数列.(1)求数列通项公式;(2)若,求前1012项和.17. 已知函数,.(1)当时,求函数的极值;(2)若任意且,都有成立,求实数的取值范围.18. 为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124214215220225420430的的*n n N a ∈,()()2+3+1n nx x -=23c t -R t ∈1222=[]+[]++[]555n n n b na a a n )22()+(+)n n t b c -ABC V 2cos 2a B c +=3b =c ={}n a 11a =125,,a a a {}n a 114(1)n n n n nb a a ++=-⋅{}n b 1012T 21()ln(1)14f x a x x =-++211()()1e 2x g x f x x ⎛⎫=+-- ⎪⎝⎭1a =-()f x 12,(1,)x x ∈+∞12x x ≠()()21211g x g x x x -≥-a [0,210](210,400](400,)+∞(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电450度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,记取到第一阶梯电量的户数为,当时对应的概率为,求取得最大值时的值.19. 已知椭圆(常数),点,,为坐标原点.(1)求椭圆离心率的取值范围;(2)若是椭圆上任意一点,,求的取值范围;(3)设,是椭圆上的两个动点,满足,试探究的面积是否为定值,说明理由.的Y Yk =k P k P k 222:1x y aγ+=2a ≥(),1A a (),1B a -O P γOP mOA nOB =+m n +()11,M x y ()22,N x y γOM ON OA OB k k k k ⋅=⋅OMN V福州第八中学2023-2024学年高二下学期期中考试数学简要答案一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】AD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】y 2=8x 【13题答案】【答案】240【14题答案】【答案】##02四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值为,无极大值 (2)【18题答案】【答案】(1)259元 (2)分布列略,期望为 (3)4【19题答案】【答案】(1) (2) (3)的面积为定值,理由略.15π6A =3221n a n =-101220242025T =221,e ⎡⎫+∞⎪⎢⎣⎭65e ⎫∈⎪⎪⎭[]1,1m n +∈-OMN V 2a。

2022-2023学年陕西省咸阳市高二下学期期中数学(理)试题【含答案】

2022-2023学年陕西省咸阳市高二下学期期中数学(理)试题【含答案】

2022-2023学年陕西省咸阳市高二下学期期中数学(理)试题一、单选题1.根据偶函数定义可推得“函数2()f x x =在R 上是偶函数”的推理过程是A .归纳推理B .类比推理C .演绎推理D .非以上答案【答案】C【详解】分析:解决本题的关键是了解演绎推理的含义,演绎推理又称三段论推理,是由两个前提和一个结论组成,大前提是一般原理(规律),即抽象得出一般性、统一性的成果;小前提是指个别对象,这是从一般到个别的推理,从这个推理,然后得出结论.解答:解:根据偶函数定义可推得“函数f (x )=x 2是偶函数”的推理过程是:大前提:对于函数y=f (x ),若对定义域内的任意x ,都有f (-x )=f (x ),则函数f (x )是偶函数;小前提:函数f (x )=x 2满足对定义域R 内的任意x ,都有f (-x )=f (x );结论:函数f (x )=x 2是偶函数.它是由两个前提和一个结论组成,是三段论式的推理,故根据偶函数定义可推得“函数f (x )=x 2是偶函数”的推理过程是演绎推理.故选C .2.若211()f x x x =-,则()f x '=()A .2312x x--B .23112x x+C .23112x x-D .2312x x -+【答案】D【分析】根据基本初等函数的导数运算法则,准确计算,即可求解.【详解】由函数12211()f x x x x x--=-=-,根据导数的运算法则,可得232312()(2)f x x x x x --'=---⋅=-+.故选:D.3.已知复数1z i =-,则21z z =-A .2B .-2C .2iD .2i-【答案】A【详解】解:因为1z i =-,所以22(1)21z i z i-==--,故选A4.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x =-B .y x=-C .2y x=D .y x=【答案】D【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =,所以3()f x x x =+,2()31x f 'x =+,所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=,化简可得y x =,故选D.点睛:该题考查的是有关曲线()y f x =在某个点00(,())x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得'()f x ,借助于导数的几何意义,结合直线方程的点斜式求得结果.5.下列等式成立的是()A .1110d 2d x x x x-=⎰⎰B .1d 2ba x x =⎰C .0d ba xb a=-⎰D .(1)d d b b aax x x x+=⎰⎰【答案】A【分析】根据微积分基本定理一一计算可得.【详解】对于A :()10011111d d d d d x x x x x x x x x x---=+=+-⎰⎰⎰⎰⎰21200111||122x x -⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,1121000112d 2d 2|2122x x x x x ⎡⎤⎛⎫===⨯= ⎪⎢⎥⎝⎭⎣⎦⎰⎰,所以111d 2d x x x x -=⎰⎰,故A 正确;对于B :222111d |222b b a a x x x b a ⎛⎫==- ⎪⎝⎭⎰,故B 错误;对于C :0d 0bax =⎰,故C 错误;对于D :(1)d d d 1b b b aaax x x x x +=+⎰⎰⎰,其中d |1bb a ax x b a ==-⎰,所以(1)d d b baax x x x +≠⎰⎰,故D 错误;故选:A6.给出下面四个类比结论①实数a ,b ,若0ab =,则0a =或0b =;类比向量a ,b ,若0a b ⋅= ,则0a = 或0b = ②实数a ,b ,有222()2a b a ab b +=++;类比向量a ,b ,有222()2a b a a b b +=+⋅+③向量a ,有22a a =;类比复数z ,有22z z =④实数a ,b 有220a b +=,则0a b ==;类比复数1z ,2z 有22120z z +=,120z z ==,其中类比结论正确的命题个数为A .0B .1C .2D .3【答案】B【详解】①错误,因为若向量,a b互相垂直,则0a b ⋅= ;③错误,因为z 是复数的模是一个实数,而z 是个复数,比如若1i z =+,则()222211z =+2=,()22221i 1i 2i z =+=++2i =;④错误,若假设复数11z =,2i z =,则22120z z +=,但是10z ≠,20z ≠.②正确222()2cos ,a b a a b a b b +=+〈〉+222a a b b =+⋅+.故选B .7.用数学归纳法证明1111112234n n n +++>++ 时,由k 到k+1,不等式左边的变化是()A .增加()121k +项B .增加121k +和122k +两项C .增加121k +和122k +两项同时减少11k +项D .以上结论都不对【答案】C【详解】n k =时,左边11112k k k k=++⋯++++,1n k =+时,左边()()()()111111211k k k k =++⋯++++++++,由“n k =”变成“1n k =+”时,两式相减可得11121221k k k +-+++,故选C.点睛:本题主要考查了数学归纳法的应用,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值n 0并验证真假.(必不可少)②“假设n=k 时命题正确”并写出命题形式.③分析“n=k+1时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.8.定义运算:,,x x yx y y x y ≥⎧⊗=⎨<⎩,例如344,⊗=则下列等式不能成立的是().A .x y y x ⊗=⊗B .()()x y z x y z ⊗⊗=⊗⊗C .222()x y x y ⊗=⊗D .()()()c x y c x c y ⋅⊗=⋅⊗⋅(其中0c >)【答案】C【分析】根据定义逐项分析即得.【详解】因为,,x x yx y y x y≥⎧⊗=⎨<⎩,它表示的是x y ⊗的结果为x 和y 中的较大数,对A ,x y ⊗和y x ⊗都是x 和y 中的较大数,故x y y x ⊗=⊗,正确;对B ,()()x y z x y z ⊗⊗=⊗⊗是x ,y ,z 中的较大数,正确;对C ,2()x y ⊗表示x 和y 中的较大数的平方,而22x y ⊗表示2x 和2y 中的较大数,例如4,1x y =-=时,2()1x y ⊗=,2216x y ⊗=等式就不成立,故错误;对D ,()c x y ⋅⊗和()()c x c y ⋅⊗⋅都表示c 与x 和y 中的较大数的乘积,故正确.故选:C.9.曲线2e 1x y -=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为A .13B .12C .23D .1【答案】A 【详解】202|2xx y ey -==-⇒'=-',所以在点()0,2处的切线方程为22y x =-+,它与y x =的交点为22,33⎛⎫⎪⎝⎭,与0y =的交点为()1,0,所以三角形面积为1211233⨯⨯=故选:A 10.设1010101111112212221A =++++++- ,则下列结论正确的是()A .1A >B .1A <C .1A ≥D .1A ≤【答案】B【分析】利用放缩法可得出结论.【详解】1010101010111010101010211111111121221222122222A =++++<++++=⨯=++-个,故选:B.11.设函数()x f x xe =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .=1x -为()f x 的极大值点D .=1x -为()f x 的极小值点【答案】D【详解】试题分析:因为()x f x xe =,所以()()()=+=+1,=0,x=-1x x xf x e xe e x f x 令得''.又()()()()()>0:>-1;<0<-1,--1-1+f x x f x x f x 由得由得:所以在,,在,∞'∞',所以=1x -为()f x 的极小值点.【解析】利用导数研究函数的极值;导数的运算法则.点评:极值点的导数为0,但导数为0的点不一定是极值点.12.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x '<,且()02f =,则不等式()2xf x e >的解集为()A .(),0∞-B .()0,∞+C .(),2-∞D .()2,+∞【答案】B 【分析】令()()xf xg x =e ,利用导数说明函数的单调性,则不等式()2xf x e>,即()()0g x g >,根据单调性解得即可.【详解】令()()xf xg x =e ,则()()()()()2e e 0eex xxxf x f x f x f xg x ''--'==>,()g x ∴在R 上单调递增,()02f = ,()()002e f g ∴==则不等式()2xf x e>,即为()2g x >,即为()()0g x g >,0x ∴>,所以不等式()2x f x e>的解集为()0,∞+.故选:B二、填空题13.20122x dx ⎛⎫+= ⎪⎝⎭⎰____________.【答案】5【分析】找出被积函数的原函数,利用微积分基本定理可求出所求定积分的值.【详解】解:22200112522x dx x x ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭⎰,故答案为:514.已知函数()ln f x a x x =+在区间[]2,3上单调递增,则实数a 的取值范围是______.【答案】[2,)-+∞【分析】直接求导,分离参数得max ()2a x ≥-=-.【详解】()ln f x a x x =+ ,()1af x x'=+又∵()f x 在[]2,3上单调递增,∴10ax+≥在[]2,3x ∈上恒成立,∴max ()2a x ≥-=-,∴[2,)a ∈-+∞.故答案为:[2,)-+∞.15.在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式.如从指数函数中可抽象出()()()1212f x x f x f x +=⋅的性质;从对数函数中可抽象出()()()1212f x x f x f x ⋅=+的性质.那么从函数______(写出一个具体函数即可)可抽象出()()()1212f x x f x f x +=+的性质.【答案】()2f x x =(答案不唯一)【分析】本题属于开放性问题,只需找到符合题意的解析式即可,不妨令()2f x x =,即可判断.【详解】令()2f x x =,则()()12122f x x x x +=+,()112f x x =,()222f x x =,所以()()()1212f x x f x f x +=+,符合题意.故答案为:()2f x x =(答案不唯一)16.若点P 是曲线2y x =-上任意一点,则点P 到直线2y x =+的最小距离是______.【答案】728【分析】作直线2y x =+的平行线,使得与曲线2y x =-相切,设切点为00(,)P x y ,根据导数的几何意义求得切点为11(,)24P --,结合点到直线的距离公式,即可求解.【详解】作直线2y x =+的平行线,使得与曲线2y x =-相切,设切点为00(,)P x y ,因为函数2y x =-,可得2y x '=-,所以曲线在点00(,)P x y 处的导数为00|2x x y x ='=-,即切线的斜率为02k x =-令021x -=,解得012x =-,则014y =-,即切点为11(,)24P --,又由点到直线的距离公式,可得切线P 到直线的距离为22112722481(1)d -++==+-,即P 到直线2y x =+的最小距离为728.故答案为:728.三、解答题17.已知复数22(815)(918)z m m m m i =-++-+在复平面内表示的点为A ,实数m 取什么值时,(1)z 为实数?z 为纯虚数?(2)A 位于第三象限?【答案】(1)当m =3或m =6时,z 为实数;当m =5时,z 为纯虚数;(2)3<m <5【分析】(1)当复数的虚部等于0时,复数z 为实数;当复数的实部等于0,且虚部不等于0时,复数z 为纯虚数;(2)当复数的实部和虚部都小于0时,复数对应点在第三象限,解不等式组求出实数m 的取值范围即可.【详解】复数22(815)(918)z m m m m i=-++-+(1)当m 2﹣9m +18=0,解得m =3或m =6,故当m =3或m =6时,z 为实数.当2281509180m m m m ⎧-+=⎨-+≠⎩,解得m =5,故当m =5时,z 为纯虚数;(2)当2281509180m m m m ⎧-+<⎨-+<⎩即3536m m <<⎧⎨<<⎩,即3<m <5时,对应点在第三象限.【点睛】本题主要考查复数的基本概念,复数代数表示法及其几何意义,属于基础题.18.已知两曲线3()f x x ax =+和2()g x x bx c =++都经过点()1,2P ,且在点P 处有公切线,试求a 、b 、c 的值.【答案】1a =,2b =,1c =-【分析】根据点()1,2P 在曲线()3f x x ax =+上,求出a ,再求出两函数的导函数,根据函数在点P 处有公切线求出b ,再根据点()1,2P 在曲线()g x 上求出c .【详解】∵点()1,2P 在曲线()3f x x ax =+上,∴21a =+,∴1a =,函数()3f x x ax =+和()2g x x bx c =++的导数分别为()23f x x a '=+和()2g x x b '=+,且在点P 处有公切线,∴23121a b ⨯+=⨯+,解得2b =,又由点()1,2P 在曲线()2g x x bx c =++上可得22121c =+⨯+,解得1c =-.综上,1a =,2b =,1c =-.19.已知()133x f x =+,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【答案】详见解析.【详解】试题分析:将0,1,1,2,2,3x =--代入()133x f x =+,即可求得()()()()()()01,12,23f f f f f f +-+-+的值;观察()()()()()()01,12,23f f f f f f +-+-+,根据上一步的结果可以归纳出一般的结论:自变量的和为1,则函数值的和为33,根据结论的形式将()133x f x =+代入并化简求值即可完成证明.试题解析:由()133x f x =+,得()()011130133333f f +=+=++,()()121131233333f f --+=+=++,()()231132333333f f --+=+=++.归纳猜想一般性结论为()()313f x f x -++=证明如下:()()11113333x x f x f x -+-++=+=++()111313·313·313313·3333333313·3x x x xx xx x+++++=+==+++++【方法点睛】本题通过观察几组等式,归纳出一般规律来考查函数的解析式及归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.20.已知0a >,用分析法证明:221122a a a a+-≥+-【答案】证明见解析【分析】根据分析法证明的步骤,逐步分析,即可求解.【详解】要证明221122a a a a+-≥+-,只需证221122a a a a ++≥++,只需证222211(2)(2)a a a a++≥++,只需证2222221111442222a a a a a a a a ⎛⎫++++≥+++++ ⎪⎝⎭,即221122a a a a ⎛⎫+≥+ ⎪⎝⎭,只需证222211422a a a a ⎛⎫⎛⎫+≥++ ⎪ ⎪⎝⎭⎝⎭,即2212a a +≥,显然成立,故原不等式成立.21.设函数()()2ln 23f x x x=++(1)讨论()f x 的单调性;(2)求()f x 在区间31,44⎡⎤-⎢⎥⎣⎦的最大值和最小值.【答案】(1)函数()f x 在31,1,,22⎛⎫⎛⎫---+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增;在11,2⎛⎫-- ⎪⎝⎭上单调递减;(2)()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值为17ln 162+,最小值为1ln 24+.【分析】(1)先求函数的定义域,解不等式()0f x ¢>求出函数的单调递增区间,解不等式()0f x '<求出函数的单调递减区间;(2)根据函数的单调性求出函数的最值.【详解】(1)函数()()2ln 23f x x x =++的定义域为32⎛⎫-+∞ ⎪⎝⎭,,又()()141232223232x x f x x x x x ⎛⎫++ ⎪⎛⎫⎝⎭'=+=>- ⎪++⎝⎭.令()0f x ¢>,解得12x >-或312x -<<-;令()0f x '<,解得112x -<<-.所以函数()f x 在31,1,,22⎛⎫⎛⎫---+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增;在11,2⎛⎫-- ⎪⎝⎭上单调递减;(2)由(1)可得:函数()f x 在区间31,42⎡⎤--⎢⎥⎣⎦内单调递减,在11,24⎡⎤-⎢⎥⎣⎦内单调递增.所以当12x =-时,函数()f x 取得最小值11ln 224f ⎛⎫-=+ ⎪⎝⎭,又393ln 4162f ⎛⎫-=+ ⎪⎝⎭,117ln 4162f ⎛⎫=+ ⎪⎝⎭,而3193171311ln ln ln ln044162162272e f f ⎛⎫⎛⎫--=+--=+<+= ⎪ ⎪⎝⎭⎝⎭,所以当14x =时,函数()f x 取得最大值为:17ln 162+.即()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值为17ln 162+,最小值为1ln 24+.22.设函数()()32e 1x x ax f x =-+.(1)当13a =-时,求()f x 的单调区间;(2)若当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)增区间为()2,-+∞,减区间为(),2-∞-(2)[)1,-+∞【分析】(1)当13a =-时,求得()()()2e 1xf x x x '=+-,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分0x =、0x >两种情况讨论,在0x =时,直接验证即可;在0x >时,由()0f x ≥可得出()e 10x g x ax =+-≥,对实数a 的取值范围进行讨论,利用导数分析函数()g x 的单调性,验证()0g x ≥对任意的0x >能否恒成立,综合可得出实数a 的取值范围.【详解】(1)解:当13a =-时,函数()()231e 13xf x x x =--的定义域为R ,()()()()222e 22e 1x x f x x x x x x x '=+--=+-,当<2x -时,()0f x '<;当2x >-时,()0f x '≥,当且仅当0x =时,等号成立.因此,当13a =-时,函数()f x 的增区间为()2,-+∞,减区间为(),2-∞-.(2)解:因为当0x ≥时,()()00f x f ≥=恒成立.①当0x =时,不等式()0f x ≥显然成立,此时a ∈R ;②当0x >时,由()()23e 10x f x x ax =-+≥可得e 10x ax -+≥,令()e 1x g x ax =+-,其中0x >,则()e x g x a '=+,则函数()g x '在()0,∞+上单调递增,且()()01g x g a ''>=+.当10a +≥时,即当1a ≥-时,对任意的0x >时,()0g x '>,此时,函数()g x 在()0,∞+上单调递增,则()()00g x g >=,合乎题意;当10a +<时,即当1a <-时,令()0g x '=,可得()ln 0x a =->,当()0ln x a <<-时,()0g x '<,即函数()g x 在()()0,ln a -上单调递减,当()ln x a >-时,()0g x '>,即函数()g x 在()()ln ,a -+∞上单调递增,故当()()0,ln x a ∈-时,()()00g x g <=,不合乎题意.综上所述,实数a 的取值范围是[)1,-+∞.【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<.若能分离常数,即将问题转化为:()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;(2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<.。

昆十六中高二年级下学期期中考试数学试卷(理科)

昆十六中高二年级下学期期中考试数学试卷(理科)

昆十六中高二年级下学期期中考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一个是正确的,将正确答案的代号涂在答题卡上.1。

一个容量为32的样本,已知某组样本的频率为 0。

375,则该组样本的频数为( )A。

4 B.8 ﻩC。

12ﻩﻩD。

162、若,且是第二象限角,则的值为 ( C )A. B. C.ﻩD.3、某几何体的正视图和侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是(C)ﻩA。

B。

ﻩC. ﻩD.4.已知:函数f(x)= 错误!;则满足f(x)= 错误! 的x的值为(B )A 2 B 3 C 错误! D错误!5、现有男大学生6名,女大学生4名,其中男、女班长各1人。

从这10人中选派5人到某中学顶岗,班长中至少有一人参加,则不同有选派方法有()A。

169种ﻩB。

140种ﻩC。

126种ﻩD。

196种6.曲线y= ln x(x>0)的一条切线为y = 2x + m,则m的值为( D )ﻫA ln2-1B 1—ln2 C 1+ln2 D -1-ln27.已知:定义域为R的函数f(x)为奇函数,当x>0时,f(x)= x3+1;则x<0时,f(x)的解析式为( B)ﻫA f(x)= x3+1 B f(x)= x3 -1 C f(x)= —x3 +1D f(x)= -x3 -18.△ABC中,∠A =错误!,边BC = 错误!,错误!·错误!= 3,且边AB < AC,则边AB的长为(A)ﻫA 2 B 3 C 4 D 69.已知等差数列{an }的公差为2,若a1,a3,a4成等比数列.则a2的值为( C )ﻫA —4B 4C —6D 610.设分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线的离心率为( B )A. ﻩﻩB.ﻩC.ﻩﻩD.11、、是空间不同的直线,、是空间不同的平面,对于命题,命题,下面判断正确的是A. 为真命题ﻩB.为真命题为真命题ﻩD.为假命题12。

四川省德阳市中江县龙台中学2014-2021学年高二下学期期中考试数学(理)试卷 Word版含解析

四川省德阳市中江县龙台中学2014-2021学年高二下学期期中考试数学(理)试卷 Word版含解析

四川省德阳市中江县龙台中学2022-2021学年高二下学期期中数学试卷(理科)一、选择题(50分)1.若向量=(﹣1,0,1),向量=(2,0,k),且满足向量∥,则k等于( )A.1 B.﹣1 C.2 D.﹣2考点:向量的数量积推断向量的共线与垂直.专题:空间位置关系与距离.分析:利用向量平行的性质求解.解答:解:∵向量=(﹣1,0,1),向量=(2,0,k),且满足向量∥,∴,解得k=﹣2.故选:D.点评:本题考查实数值的求法,是基础题,解题时要认真审题,留意向量平行的性质的合理运用.2.在复平面内,复数3﹣4i,i(2+i)对应的点分别为A、B,则线段AB的中点C对应的复数为( ) A.﹣2+2i B.2﹣2i C.﹣1+i D.1﹣i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:由复数代数形式的乘法运算化简i(2+i),求出A,B的坐标,利用中点坐标公式求得C的坐标,则答案可求.解答:解:∵i(2+i)=﹣1+2i,∴复数3﹣4i,i(2+i)对应的点分别为A、B的坐标分别为:A(3,﹣4),B(﹣1,2).∴线段AB的中点C的坐标为(1,﹣1).则线段AB的中点C对应的复数为1﹣i.故选:D.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘法运算,是基础题.3.复数z=(1+i)2的实部是( )A.2 B.1 C.0 D.﹣1考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:直接利用复数的乘除运算法则化简求解即可.解答:解:z=(1+i)2=2i.所以复数z=(1+i)2的实部是0.故选:C.点评:本题考查复数的代数形式的混合运算,复数的基本概念,基本学问的考查.4.曲线y=x3﹣2x+1在点(1,0)处的切线方程为( )A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2考点:利用导数争辩曲线上某点切线方程.专题:常规题型;计算题.分析:欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.解答:解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选A.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数争辩曲线上某点切线方程等基础学问,考查运算求解力量.属于基础题.5.如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是( )A.12,4 B.16,5 C.20,5 D.24,6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序,依次写出每次循环得到的i,a的值,当a=20时,满足条件n整除a,退出循环,输出a的值为20,i的值为5.解答:解:模拟执行程序,可得m=4,n=10,i=1a=4,不满足条件n整除a,i=2,a=8不满足条件n整除a,i=3,a=12不满足条件n整除a,i=4,a=16不满足条件n整除a,i=5,a=20满足条件n整除a,退出循环,输出a的值为20,i的值为5.故选:C.点评:本题主要考查了程序框图和算法,依次写出每次循环得到的i,a的值是解题的关键,属于基本学问的考查.6.函数y=f(x)的图象如图所示,则导函数y=f′(x)的图象的大致外形是( )A .B .C .D .考点:函数的图象.专题:数形结合.分析:由原函数的单调性得到导函数的函数值的符号,由此逐一核对四个选项即可得到答案.解答:解:由于函数f(x)的图象先减后增然后为常数函数,所以对应的导函数的值先负后正,最终等于0,由此可得满足条件的图象是D.故选:D.点评:本题考查了函数的图象,考查了函数的单调性和导函数的函数值符号间的关系,是基础题.7.已知e为自然对数的底数,设函数f(x)=xe x,则( )A.1是f(x)的微小值点B.﹣1是f(x)的微小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:求出f′(x),然后解不等式f′(x)>0即可得到函数的单调增区间,解不等式f′(x)<0即可得到函数的单调减区间,进而得到函数的极值.解答:解:f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的微小值点.故选:B.点评:本题考查利用导数争辩函数单调性与极值问题,属基础题.8.曲线在点M (,0)处的切线的斜率为( )A .B .C .D .考点:利用导数争辩曲线上某点切线方程.专题:计算题;压轴题.分析:先求出导函数,然后依据导数的几何意义求出函数f(x)在x=处的导数,从而求出切线的斜率.解答:解:∵∴y'==y'|x==|x==故选B.点评:本题主要考查了导数的几何意义,以及导数的计算,同时考查了计算力量,属于基础题.9.函数f(x)的导数为f′(x),且满足关系式f(x)=x2+3xf′(2)+lnx,则f′(2)的值等于( ) A.﹣2 B.2 C .D .考点:导数的运算.专题:导数的概念及应用.分析:首先对等式两边求导得到关于f'(2)的等式解之.解答:解:由关系式f(x)=x2+3xf′(2)+lnx,两边求导得f'(x)=2x+3f'(2)+,令x=2得f'(2)=4+3f'(2)+,解得f'(2)=;故选C.点评:本题考查了求导公式的运用;关键是对已知等式两边求导,得到关于f'(x)的等式,对x取2求值.10.如图,在平行六面体ABCD﹣A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,则A1C的长为( )A .B .C .D .考点:棱柱的结构特征.专题:计算题;空间位置关系与距离;空间向量及应用.分析:用空间向量解答.解答:解:∵=+﹣;∴2=(+﹣)2;即2=•+•﹣•+•+•﹣•﹣(•+•﹣•)=1+0﹣3×1×cos60°+0+1﹣3×1×cos60°﹣(3×1×cos60°+3×1×cos60°﹣9);=1﹣+1﹣﹣+9=5,∴A1C=.故选A.点评:本题考查了空间向量的应用,属于基础题.二、填空题(25分)11.若A(m+1,n﹣1,3),B (2m,n,m﹣2n),C(m+3,n﹣3,9)三点共线,则m+n=0.考点:三点共线.专题:计算题.分析:依据点A,B,C的坐标,分别求出的坐标,利用三点共线,可建立方程组,从而可求m+n的值解答:解:由题意,∵A(m+1,n﹣1,3),B (2m,n,m﹣2n),C(m+3,n﹣3,9)∴∵A(m+1,n﹣1,3),B (2m,n,m﹣2n),C(m+3,n﹣3,9)三点共线,∴∴(m﹣1,1,m﹣2n﹣3)=λ(2,﹣2,6)∴∴∴m+n=0故答案为:0点评:本题以点为载体,考查三点共线,解题的关键是求向量的坐标,利用向量共线的条件.12.i+i2+i3+…+i2022=0.考点:虚数单位i及其性质.专题:计算题.分析:利用虚数单位的性质,把i+i2+i3+…+i2022等价转化为503×(i+i2+i3+i4),由此能够求出结果.解答:解:i+i2+i3+…+i2022=503×(i+i2+i3+i4)=503×(i﹣1﹣i+1)=503×0=0.故答案为:0.点评:本题考查虚数单位的性质及其应用,是基础题.解题时要认真审题,认真解答.13.若曲线y=xlnx上点P处的切线平行于直线x﹣y+1=0,则点P的坐标是(1,0).考点:利用导数争辩曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程即得.解答:解:∵切线与直线x﹣y+1=0平行,∴斜率为1,∵y=xlnx,y'=1×lnx+x•=1+lnx∴y'(x0)=1∴1+lnx0=1,∴x0=1,∴切点为(1,0).故答案为:(1,0).点评:此题主要考查导数的计算,以及利用导数争辩曲线上某点切线方程,属于基础题.14.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为6.考点:利用导数争辩函数的单调性.专题:函数的性质及应用.分析:由函数为单调增函数可得f′(x)≥0,故只需△≤0即可.解答:解:依据题意,得f′(x)=12x2+2mx+m﹣3,∵f(x)是R上的单调增函数,∴f′(x)≥0,∴△=(2m)2﹣4×12×(m﹣3)≤0 即4(m﹣6)2≤0,所以m=6,故答案为:6.点评:本题考查函数的单调性,利用二次函数根的判别式小于等于0是解决本题的关键,属中档题.15.函数f(x)的导函数为f′(x),若对于定义域内任意x1、x2(x1≠x2),有恒成立,则称f(x)为恒均变函数.给出下列函数:①f(x)=2x+3;②f(x)=x2﹣2x+3;③f(x)=;④f(x)=e x;⑤f(x)=lnx.其中为恒均变函数的序号是①②.(写出全部满足条件的函数的序号)考点:导数的运算;命题的真假推断与应用.专题:新定义;函数的性质及应用.分析:对于所给的每一个函数,分别计算和的值,检验二者是否相等,从而依据恒均变函数”的定义,做出推断.解答:解:对于①f(x)=2x+3,==2,=2,满足,为恒均变函数.对于②f(x)=x 2﹣2x+3,===x1+x2﹣2 =2•﹣2=x 1+x 2﹣2,故满足,为恒均变函数.对于③,==,=﹣=﹣,明显不满足,故不是恒均变函数.对于④f(x)=e x ,=,=,明显不满足,故不是恒均变函数.对于⑤f (x)=lnx,==,=,明显不满足,故不是恒均变函数.故答案为:①②.点评:本题主要考查函数的导数运算,“恒均变函数”的定义,推断命题的真假,属于基础题.三、解答题(75分)16.求函数y=(1+cos2x)3的导数.考点:简洁复合函数的导数.专题:计算题;导数的概念及应用.分析:利用复合函数的导数公式计算即可.解答:解:∵y=(1+cos2x)3,∴y′=3(1+cos2x)2•(cos2x)′=3(1+cos2x)2•(﹣sin2x)•(2x)′=﹣6sin2x•(1+cos2x)2=﹣6sin2x•(2cos2x)2=﹣6sin2x•4cos4x=﹣48sinxcos5x.点评:本题考查复合函数的导数,考查正弦函数与余弦函数的二倍角公式,考查分析与运算力量,属于中档题.17.m 取何实数时,复数.(1)是实数?(2)是虚数?(3)是纯虚数?考点:复数的基本概念.专题:计算题.分析:(1)由虚部等于0且实部分母不等于0列式求解m的值;(2)由虚部不等于0且实部分母不等于0列式求解m的值;(3)由实部等于0且虚部不等于0列式求解m的值.解答:解:(1)当,即,即m=5时,z的虚部等于0,实部有意义,∴m=5时,z是实数.(2)当,即时,z的虚部不等于0,实部有意义,∴当m≠5且m≠﹣3时,z是虚数.(3)当,即时,z为纯虚数,∴当m=3或m=﹣2时,z是纯虚数.点评:本题考查了复数的基本概念,考查了复数是实数、虚数、纯虚数的条件,关键是留意实部的分母不等于0,此题是基础的计算题.18.如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N.(Ⅰ)求证:SB∥平面ACM;(Ⅱ)求证:平面SAC⊥平面AMN;(Ⅲ)求二面角D﹣AC﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)连结BD交AC于E,连结ME,由△DSB的中位线定理,得ME∥SB,由此能证明SB∥平面ACM.(Ⅱ)法一:由DC⊥SA,DC⊥DA,得DC⊥平面SAD,从而AM⊥DC,由等腰三角形性质得AM⊥SD,从而AM⊥平面SDC,进而SC⊥AM,由SC⊥AN,能证明平面SAC⊥平面AMN.法二:以A为坐标原点,建立空间直角坐标系O﹣xyz,利用向量法能证明平面SAC⊥平面AMN.(Ⅲ)法一:取AD中点F,则MF∥SA.作FQ⊥AC于Q,连结MQ,由已知得∠FQM为二面角D﹣AC ﹣M的平面角,由此能求出二面角D﹣AC﹣M的余弦值.法二:分别求出平面ABCD的一个法向量和平面ACM的一个法向量,由此利用向量法能求出二面角D﹣AC ﹣M的余弦值.解答:(选修2一1第109页例4改编)(Ⅰ)证明:连结BD交AC于E,连结ME,∵ABCD是正方形,∴E是BD的中点.∵M是SD的中点,∴ME是△DSB的中位线.∴ME∥SB.…又ME⊂平面ACM,SB⊄平面ACM,∴SB∥平面ACM.…(Ⅱ)证法一:由条件有DC⊥SA,DC⊥DA,∴DC⊥平面SAD,且AM⊂平面SAD,∴AM⊥DC.又∵SA=AD,M是SD的中点,∴AM⊥SD.∴AM⊥平面SDC.SC⊂平面SDC,∴SC⊥AM.…由已知SC⊥AN,∴SC⊥平面AMN.又SC⊂平面SAC,∴平面SAC⊥平面AMN.…(Ⅱ)证法二:如图,以A为坐标原点,建立空间直角坐标系O﹣xyz,由SA=AB,可设AB=AD=AS=1,则.∵,,∴,∴,即有SC⊥AM…又SC⊥AN且AN∩AM=A.∴SC⊥平面AMN.又SC⊂平面SAC,∴平面SAC⊥平面AMN.…(Ⅲ)解法一:取AD中点F,则MF∥SA.作FQ⊥AC于Q,连结MQ.∵SA⊥底面ABCD,∴MF⊥底面ABCD.∴FQ为MQ在平面ABCD内的射影.∵FQ⊥AC,∴MQ⊥AC.∴∠FQM为二面角D﹣AC﹣M的平面角.…设SA=AB=a,在Rt△MFQ 中,,∴.∴二面角D﹣AC﹣M 的余弦值为.…(Ⅲ)解法二:∵SA⊥底面ABCD,∴是平面ABCD 的一个法向量,.设平面ACM 的法向量为,,则即,∴令x=﹣1,则.…,由作图可知二面角D﹣AC﹣M为锐二面角∴二面角D﹣AC﹣M 的余弦值为.…点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查二面角的余弦值的求法,涉及到线线、线面、面面平行与垂直的性质的应用,考查向量法的合理运用,考查空间思维力量的培育,是中档题.19.已知复数z1=+(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.考点:复数代数形式的混合运算;复数的基本概念;复数的代数表示法及其几何意义.专题:计算题.分析:(1)由题设条件,可先通过复数的运算求出的代数形式的表示,再由其几何意义得出实部与虚部的符号,转化出实数a所满足的不等式,解出其取值范围;(2)实系数一元二次方程x2﹣6x+m=0的两个根互为共轭复数,利用根与系数的关系求出a的值,从而求出m的值.解答:解:(1)由条件得,z1﹣z2=()+(a2﹣3a﹣4)i…由于z1﹣z2在复平面上对应点落在第一象限,故有…∴解得﹣2<a<﹣1…(2)由于虚数z1是实系数一元二次方程x2﹣6x+m=0的根所以z1+==6,即a=﹣1,…把a=﹣1代入,则z1=3﹣2i ,=3+2i,…所以m=z1•=13…点评:本题考查复数的代数形式及其几何意义,解题的关键是依据复数的代数形式的几何意义得出参数所满足的不等式,同时考查了运算求解的力量,属于基础题.20.已知函数f(x)=x3+ax2+(a+6)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;(2)若f(x)为R上的单调递增函数,求a的取值范围.考点:利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(1)由题意可得,解得即可.(2)由f(x)为R上的单调递增函数,可得f′(x)=3x2+2ax+a+6≥0在R上恒成立.可得△=4a2﹣12(a+6)≤0,解得即可解答:解:(1)由题意可得,解得.(2)∵f(x)为R上的单调递增函数,∴f′(x)=3x2+2ax+a+6≥0在R上恒成立.∴△=4a2﹣12(a+6)≤0,解得﹣3≤a≤6.∴a的取值范围是[﹣3,6].点评:娴熟把握利用导数争辩函数的单调性及其导数的几何意义是解题的关键.21.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)求出切点(1,1),求出,然后求解斜率k,即可求解曲线f(x)在点(1,1)处的切线方程.(Ⅱ)求出函数的定义域,函数的导函数,①a>﹣1时,②a≤﹣1时,分别求解函数的单调区间即可.(Ⅲ)转化已知条件为函数在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)问的结果,通过①a≥e﹣1时,②a≤0时,③0<a<e﹣1时,分别求解函数的最小值,推出所求a的范围.解答:解:(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),∴,∴k=f′(1)=1﹣2=﹣1,∴曲线f(x)在点(1,1)处的切线方程为:y﹣1=﹣(x﹣1),即x+y﹣2=0.(Ⅱ),定义域为(0,+∞),,①当a+1>0,即a>﹣1时,令h′(x)>0,∵x>0,∴x>1+a令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.当a≤﹣1时,h(x)在(0,+∞)上单调递增.(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)≤0,即函数在[1,e]上的最小值[h(x)]min≤0.由第(Ⅱ)问,①当a+1≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,∴,∴,∵,∴;②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,∴[h(x)]min=h(1)=1+1+a≤0,∴a≤﹣2,③当1<a+1<e,即0<a<e﹣1时,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a 的范围是:或a≤﹣2.点评:本题考查函数的导数的综合应用,曲线的切线方程函数的单调性以及函数的最值的应用,考查分析问题解决问题得到力量.。

四川省内江市第六中学2021-2022学年高二下学期期中理科数学试题

四川省内江市第六中学2021-2022学年高二下学期期中理科数学试题

14.若命题 "x R, x 2 x a 1 0" 是假命题,则实数 a 的取值范围为___________.
15.已知
1
a x
(2x
1 x
)5
的展开式中各项系数的和为
2,则该展开式中常数项为______.
16.已知两点 A3,0 和 B 3, 0 ,动点 P x, y 在直线 l:y=-x+5 上移动,椭圆 C 以 A,B
9.设双曲线
x a
2 2
y2 b2
1a
0, b
0 的两条渐近线与直线 x
a2 c
分别交于
A, B 两点, F
为该
双曲线的右焦点,若 60 AFB 90 ,则该双曲线离心率 e 的取值范围是
A. 1, 2
B.
2
3 3
,
C. 2,2
D.
2
3 3
,
2
10.关于曲线 C : x4 y2 1,给出下列四个命题:

A.
1 2
B.1
C. 2
D. 5
12.已知四面体 ABCD 的所有棱长均为 2 , M , N 分别为棱 AD, BC 的中点, F 为棱 AB 上
试卷第 2页,共 5页
异于 A, B 的动点.有下列结论: ①线段 MN 的长度为1;
②点 C 到面 MFN 的距离范围为 0,
2 2 ;
③ FMN 周长的最小值为 2 1;

A.若命题 p : n N , n2 2n ,则 p : n N , n2 2n B.“ a b ”是“ ln a ln b ”的必要不充分条件
C.若命题“ p q ”为真命题,则命题 p 与命题 q中至少有一个是真命题

(整理版)临川一中下学期期中考试高二试卷数学

(整理版)临川一中下学期期中考试高二试卷数学

省临川一中- 度下学期期中考试高二试卷数学〔理〕卷面总分值:150分 考试时间:120分钟一、选择题〔本大题共10小题,每题5分,共50分,每题所给的四个选项中,有且只有一个符合题意〕1.以下求导运算正确的选项是〔 〕A .211()x x x x '+=+B .21(log )ln 2x x '= C .3(3)3log x x e '= D .2(cos )2sin x x x x '=- 2.函数()ln f x x e x =+的单调递增区间为〔 〕A .(0,)+∞B .(,0)-∞C .(,0)-∞和(0,)+∞D .R3.假设(2)z ⋅=,那么复数z 对应的点在复平面内的〔 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为3213232s t t t =-+,那么速度为零的时刻是〔 〕A .0秒B .1秒末C .2秒末D .1秒末和2秒末5.设sin a xdx π=⎰,那么二项式6(展开式的常数项是〔 〕 A .160 B .20 C .20- D .160-6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,射击停止后尚余子弹的数目X 的期望值为〔 〕 A .2.44 B .3.376 C 7.设函数2()(0)f x ax b a =+≠,假设300()3()f x dx f x =⎰,那么0x =〔 〕A .1±BC .D .2 8.甲、乙、丙、丁、戊五人站在一排,要求甲、乙均不与丙相邻,不同排法有〔 〕 A .24种 B .36种 C .54种 D .72种9.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现目标被击中,那么它是被甲击中的概率为〔 〕A .0.45B .0.6 C10.设函数()y f x =的定义域为R +,假设对给定的正数k ,定义函数()()k kf x f x ⎧=⎨⎩()()f x k f x k ≤>那么当函数1(),1f x k x ==时,定积分214()k f x dx ⎰的值为〔 〕A .2ln 22+B .2ln 21-C .2ln 2D .2ln 21+二、填空题〔本大题共5小题,每题5分,共25分〕11.ξ~B (,)n p ,E ξ=3,D 〔2ξ+1〕=9,那么n 、p 的值分别是 . 12.在10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于 .13.函数32()(6)1f x x mx m x =++++既存在极大值又存在极小值,那么实数m 的取值范围是 .信封放2张,其中标号为1,2的卡片放入同一信封,那么不同的放法共 有 种.15.函数()f x 的导函数()f x '的图像如下图,给出以下结论: ①函数()f x 在(2,1)(1,2)--和是单调递增函数;②函数()f x 在(2,0)-上是单调递增函数,在(0,2)上是单调递减函数; ③函数()f x 在1x =-处取得极大值,在1x =处取得极小值; ④函数()f x 在0x =处取得极大值(0)f .三、解答题〔本大题共6小题,共75分解容许写出必要的文字说明、证明过程或演算步骤〕16.〔12分〕在n 的展开式中,第6项为常数项.〔1〕求n ; 〔2〕求含2x 的项的系数; 〔3〕求展开式中所有的有理项.17.〔12分〕设函数2()()(),f x x x a x R =--∈其中a R ∈.当0a ≠时,求函数()f x 的极大值和极小值.18.〔12分〕函数323()()2f x ax x b x R =-+∈. 〔1〕假设曲线()y f x =在点(2,(2))f 处的切线方程为68y x =-,求,a b 的值. 〔2〕假设0,2a b >=,当[1,1]x ∈-时,求()f x 的最小值.19.〔12分〕直线1:210l x y --=,直线2:10l ax by -+=,其中,{1,2,3,4,5,6}a b ∈. 〔1〕求直线12l l =∅的概率;〔2〕求直线1l 和2l 的交点位于第一象限的概率.20.〔13分〕一个袋中装有假设干个大小相同的黑球、白球和红球. 从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. 〔1〕假设袋中共有10个球;①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的均值E ξ.〔2〕求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710,并指出袋中哪种颜色的球个数最少.21.〔14分〕函数2()ln f x x a x =-在(1,2]上是增函数,()g x x =-(0,1)上是减函数.〔1〕求()f x 、()g x 的表达式;〔2〕求证:当0x >时,方程()()2f x g x =+有唯一解; 〔3〕当1b >-时,假设21()2(0,1]f x bx x x ≥-∈当时恒成立,求b 的取值范围.省临川一中- 度下学期期中考试高二试卷数学〔理〕答案二、填空题:每题4分,共16分 11.112,4n p ==12.-240 13.36m m <->或 14.18 15.②④ 三、解答题:16.〔1〕10n = 〔2〕454〔3〕22255882101010111(),(),()222C x C C x ---- 17.当a 〈0,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3ax =处取得极大值34(),()3327a a f a =-且.当a 〉0函数()f x 在x a =处取得极大值()f a ,且()0f a =;函数()f x 在3a x =处取得极小值34(),()3327a a f a =-且.18. (1)a=1,b=2(2) 函数()f x 的最小值为1(1)2f a -=-1(1)2f a -=-19.〔1〕112〔2〕1620.〔1〕①设袋中白球的个数为x ,那么2102107()19x C P A C -=-=,解得5x =.故白球有5个.②E ξ=32〔2〕设袋中有n 个球,其中有y 个黑球,由题意知25y n =.记“从袋中任意摸出2个球,至少有1个黑球〞为事件B.22()(1)23()11(1)551n y nC n y n y yP B C n n n ----∴=-=-=+-- 25y n =, 22155(1)y n n =+-- 又5()n k k N *=∈215(1)10n ∴≤-7()10P B≤所以白球的个数比黑球多,那么红球个数最少. 21.〔1〕2()2ln ,()f x x x g x x =-=- 〔2〕略〔3〕11b -<≤。

山东省德州市2023-2024学年高二下学期期中考试数学试题

山东省德州市2023-2024学年高二下学期期中考试数学试题

山东省德州市2023-2024学年高二下学期期中考试数学试题一、单选题1.设()f x 是可导函数,且()()333lim 33x f x f x∆→-∆-=∆,则()3f '=( )A .3-B .1-C .1D .32.记n S 为等差数列{}n a 的前n 项和,若4624a a +=,12216S =,则数列{}n a 的公差为( ) A .1B .2C .3D .43.设()f x 是定义在[]3,3-上的奇函数,其导函数为()'f x ,当03x ≤≤时,()f x 图象如图所示,且()f x 在1x =处取得极大值,则()()'0f x f x ⋅>的解集为( )A .()()3,10,1--UB .()()3,11,3--⋃C .()()1,00,1-UD .()()1,01,3-U4.等比数列{}n a 的各项均为正实数,其前n 项和为n S ,已知212S =,415S =,则3a =( )A .14B .12C .2D .45.已知定义在R 上的函数()f x 的导函数为()f x ',()01f =,且对任意的x 满足()()f x f x '<,则不等式()e xf x >的解集是( )A .(),1∞-B .(),0∞-C . 0,+∞D . 1,+∞6.已知等差数列 a n , b n 的前n 项和分别为n A ,n B ,且32n n A n B n +=+,则1010a b =( ) A .1312B .2221C .2322D .24237.如图,将一根直径为d 的圆木锯成截面为矩形ABCD 的梁,设BAC α∠=,且梁的抗弯强度()321sin cos 6W d ααα=,则当梁的抗弯强度()W α最大时,cos α的值为( )A .14B .13CD8.已知无穷数列{}n a 满足:如果m n a a =,那么11m n a a ++=,且151a a ==,37a =-,49a =,2a 是1a 与4a 的等比中项.若{}n a 的前n 项和n S 存在最大值S ,则S =( )A .2-B .0C .1D .2二、多选题9.下列结论正确的是( )A .若()2e f x =,则()0f x '=B .若()3f x a =,则()23f x a '=C .若()ln 2f x x =,则()1f x x'=D .若()()cos 23f x x =-,则()()3sin 32f x x '=--10.已知正项数列 a n 满足1,231nn n nn a a a a a +⎧⎪=⎨⎪-⎩当为偶数时,当为奇数时,则下列结论正确的是( )A .若13a =,则52a =B .若28a =,则13a =或116a =C .若110a =,则5n n a a +=D .若164a =,则前100项中,值为1和2的项数相同11.设函数()2,0e ln 2,0x x x f x x x x +⎧≤⎪=⎨⎪+>⎩,函数()()g x f x m =-有三个零点123,,x x x ,且满足123x x x <<,则下列结论正确的是( )A .1230x x x ⋅⋅≥恒成立B .实数m 的取值范围是12,e e ⎛⎫- ⎪⎝⎭C .函数()g x 的单调减区间11,e ⎛⎫- ⎪⎝⎭D .若20x >,则232ex x +>三、填空题12.已知2x =是3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为.13.等比数列{}n a 的公比为q ,其前n 项和记为n S ,202420262025S S S <<,则q 的取值范围为. 14.为提升同学们的科创意识,学校成立社团专门研究密码问题,社团活动室用一把密码锁,密码一周一换,密码均为7N的小数点后前6位数字,设定的规则为: ①周一至周日中最大的日期为x ,如周一为3月28日,周日为4月3日,则取周四的3月31日的31作为x ,即31x =;②若x 为偶数,则在正偶数数列中依次插入数值为3n 的项得到新数列{}n a ,即2,13,4,6,8,23,10,12,14,…;若x 为奇数,则在正奇数数列中依次插入数值为2n 的项得到新数列{}n a ,即1,12,3,22,5,7,32,9,11,13,…;③N 为数列{}n a 的前x 项和,如9x =,则9项分别为1,12,3,22,5,7,32,9,11,故50N =,因为507.14285717≈,所以密码为142857. 若周一为4月22日,则周一到周日的密码为.四、解答题15.已知函数21()ln (1)2f x a x x a x =+-+.(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 为定义域上的单调函数,求a 的值和此时在点()()1,1f 处的切线方程. 16.已知公差不为零的等差数列{}n a ,37a =,1a 和7a 的等比中项与2a 和4a 的等比中项相等. (1)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n T ; (2)若数列{}n c 满足11c =,()()113n n n n a c a c +-=+(*n ∈N ),求数列{}n c 的通项公式.17.某工厂生产某产品的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()31150150p x x x =+;当产量不小于60万箱时,()64002011860p x x x=+-,若每箱产品的售价为200元,通过市场分析,该厂生产的产品可以全部销售完.(1)求销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该厂在生产中所获得利润最大?18.已知函数()3213f x x x =+和数列{}n c ,函数()f x 在点()(),n n c f c 处的切线的斜率记为1n c +,且已知11c =.(1)若数列{}n b 满足:()2log 1n n b c =+,求数列{}n b 的通项公式; (2)在(1)的条件下,若数列{}n a 满足112a =,1212n n n a a b ++=+,是否存在正整数n ,使得1122nii a n ==-∑成立?若存在,求出所有n 的值;若不存在,请说明理由. 19.若函数()f x 在[],a b 上有定义,且对于任意不同的[]12,,x x a b ∈,都有()()1212f x f x x x λ-<-,则称()f x 为[],a b 上的“λ类函数”.(1)若()22x f x x =+,判断()f x 是否为 1,2 上的“2类函数”;(2)若()()21e ln 2xx f x a x x x =---,为 1,2 上的“2类函数”,求实数a 的取值范围.。

重庆市高二数学下学期期中试卷 理(含解析)-人教版高二全册数学试题

重庆市高二数学下学期期中试卷 理(含解析)-人教版高二全册数学试题

2016-2017学年某某市高二(下)期中数学试卷(理科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.将5封信投入3个邮筒,不同的投法有()A.53种 B.35种 C.3种D.15种3.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数4.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A.120 B.72 C.12 D.365.曲线f(x)=在点(1,f(1))处的切线的倾斜角为()A.B.C. D.6.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C. D.7.已知点集,则由U中的任意三点可组成()个不同的三角形.A.7 B.8 C.9 D.108.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A.B.C.D.9.若(x3+)n展开式中只有第6项系数最大,则展开式的常数项是()A.210 B.120 C.461 D.41610.从0,1,2,3,4,5这六个数字中任取四个数字,其中奇数偶数至少各一个,组成没有重复数字的四位数的个数为()A.1296 B.1080 C.360 D.30011.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值X围为()A.[﹣1,2] B.(﹣1,2)C.[﹣2,1] D.(﹣2,1)12.已知函数:,,设函数F(x)=f(x+3)•g(x﹣5),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为()A.8 B.9 C.10 D.11二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上相应位置. 13.若=1+i,i为虚数单位,则z的虚部为.14.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有种.15.曲线y=2x﹣x3在x=﹣1的处的切线方程为.16.函数f(x)=x2﹣2lnx的单调减区间是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值﹣2.求f(x)的单调区间和极大值.18.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.19.某某师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)(1)三名男生和三名女生各自排在一起;(2)男生甲不担任第一辩,女生乙不担任第六辩;(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.20.设函数f(x)=x3﹣x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1(1)求b,c的值;(2)若函数f(x)有且只有两个不同的零点,某某数a的值.21.在数列{a n}中,a1=6,且a n﹣a n﹣1=+n+1(n∈N*,n≥2),(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(Ⅰ)当a=1时,研究f(x)的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.2016-2017学年某某市大学城一中高二(下)期中数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则解答.【解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2.将5封信投入3个邮筒,不同的投法有()A.53种 B.35种 C.3种D.15种【考点】D9:排列、组合及简单计数问题.【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选B.3.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数【考点】F5:演绎推理的意义.【分析】根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.【解答】解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式;故选:B4.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A.120 B.72 C.12 D.36【考点】D3:计数原理的应用.【分析】先把除了2盆白玫瑰花以外的三盆花任意排,再从那三盆花形成的4个空中选出2个空插入这2盆白玫瑰,再根据分步计数原理求得结果.【解答】解:先把2盆白玫瑰挑出来,把剩下的三盆花任意排,方法有=6种,再从那三盆花形成的4个空中选出2个空插入这2盆白玫瑰,方法有=12种,再根据分步计数原理求得满足条件的不同摆放种数是6×12=72种,故选B.5.曲线f(x)=在点(1,f(1))处的切线的倾斜角为()A.B.C. D.【考点】6H:利用导数研究曲线上某点切线方程;I2:直线的倾斜角.【分析】求出函数的导数,利用导数的几何意义求切线的斜率,进而利用斜率和倾斜角之间的关系求切线的倾斜角.【解答】解:因为f(x)=,所以,所以函数在点(1,f(1))处的切线斜率k=f'(1)=﹣1,由k=tanα=﹣1,解得,即切线的倾斜角为.故选D.6.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C. D.【考点】3O:函数的图象.【分析】根据函数的单调性确定f'(x)的符号即可.【解答】解:由函数f(x)的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当x>0时,函数单调递增,所以导数f'(x)的符号是正,负,正,正.对应的图象为C.故选C.7.已知点集,则由U中的任意三点可组成()个不同的三角形.A.7 B.8 C.9 D.10【考点】D3:计数原理的应用.【分析】先求出点集U,在任选三点,当取(﹣1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,问题得以解决.【解答】解:点集,得到{(﹣1,﹣1),(0,0),(1,1),(2,8),(3,27)},从中选选3点,有C53=10种,当取(﹣1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,故则由U中的任意三点可组成10﹣1=9个不同的三角形.故选:C.8.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A.B.C.D.【考点】3O:函数的图象.【分析】由于f(x)=x2+cosx,得f′(x)=x﹣sinx,由奇函数的定义得函数f′(x)为奇函数,其图象关于原点对称,排除BD,取x=代入f′()=﹣sin=﹣1<0,排除C,只有A适合.【解答】解:由于f(x)=x2+cosx,∴f′(x)=x﹣sinx,∴f′(﹣x)=﹣f′(x),故f′(x)为奇函数,其图象关于原点对称,排除BD,又当x=时,f′()=﹣sin=﹣1<0,排除C,只有A适合,故选:A.9.若(x3+)n展开式中只有第6项系数最大,则展开式的常数项是()A.210 B.120 C.461 D.416【考点】DB:二项式系数的性质.【分析】(x3+)n展开式中只有第6项系数最大,可得n=10.再利用通项公式即可得出.【解答】解:(x3+)n展开式中只有第6项系数最大,∴n=10.∴的通项公式为:T r+1=(x3)10﹣r=x30﹣5r,令30﹣5r=0,解得r=6.∴展开式的常数项是=210.故选:A.10.从0,1,2,3,4,5这六个数字中任取四个数字,其中奇数偶数至少各一个,组成没有重复数字的四位数的个数为()A.1296 B.1080 C.360 D.300【考点】D3:计数原理的应用.【分析】①若这个四位数中有一个奇数三个偶数,利用分步计数原理求得满足条件的四位数的个数;②若这个四位数中有二个奇数二个偶数,分当偶数不包含0和当偶数中含0两种情况,分别求得满足条件的四位数的个数,可得此时满足条件的四位数的个数;③若这个四位数中有三个奇数一个偶数,分当偶数不包含0和当偶数中含0两种情况,分别求得满足条件的四位数的个数,可得此时满足条件的四位数的个数.再把以上求得的三个值相加,即得所求.【解答】解:①若这个四位数中有一个奇数三个偶数,则有•=3种;先排0,方法有3种,其余的任意排,有=6种方法,再根据分步计数原理求得这样的四位数的个数为 3×3×6=54个.②若这个四位数中有二个奇数二个偶数,当偶数不包含0时有C22C32A44=72,当偶数中含0时有C21C32C31A33=108,故组成没有重复数字的四位数的个数为72+108=180个.③若这个四位数中有三个奇数一个偶数,当偶数不包含0时有••A44=48,当偶数中含0时有1××A33=18个.故此时组成没有重复数字的四位数的个数为48+18=66个.综上可得,没有重复数字的四位数的个数为 54+180+66=300个,故选D.11.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值X围为()A.[﹣1,2] B.(﹣1,2)C.[﹣2,1] D.(﹣2,1)【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数f(x)=﹣e x﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的X围,然后把过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g (x)=ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.【解答】解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,∴∈(0,1),由g(x)=ax+2cosx,得g′(x)=a﹣2sinx,又﹣2sinx∈[﹣2,2],∴a﹣2sinx∈[﹣2+a,2+a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得﹣1≤a≤2.即a的取值X围为﹣1≤a≤2.故选:A.12.已知函数:,,设函数F(x)=f(x+3)•g(x﹣5),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为()A.8 B.9 C.10 D.11【考点】52:函数零点的判定定理.【分析】利用导数分别求出函数f(x)、g(x)的零点所在的区间,然后再求F(x)=f(x+3)•g(x﹣4)的零点所在区间,即求f(x+3)的零点和g(x﹣4)的零点所在区间,根据图象平移即可求得结果.【解答】解:∵f(0)=1>0,f(﹣1)=1﹣1﹣+﹣…+<0,∴函数f(x)在区间(﹣1,0)内有零点;当x∈(﹣1,0)时,f′(x)=>0,∴函数f(x)在区间(﹣1,0)上单调递增,故函数f(x)有唯一零点x∈(﹣1,0);∵g(1)=1﹣1+﹣+…﹣>0,g(2)=1﹣2+﹣+…+﹣<0.当x∈(1,2)时,g′(x)=﹣1+x﹣x2+x3﹣…+x2013﹣x2014=>0,∴函数g(x)在区间(1,2)上单调递增,故函数g(x)有唯一零点x∈(1,2);∵F(x)=f(x+3)•g(x﹣4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,∴f(x+3)的零点在(﹣4,﹣3)内,g(x﹣4)的零点在(5,6)内,因此F(x)=f(x+3)•g(x﹣3)的零点均在区间[﹣4,6]内,∴b﹣a的最小值为10.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上相应位置. 13.若=1+i,i为虚数单位,则z的虚部为﹣1 .【考点】A5:复数代数形式的乘除运算.【分析】直接由=1+i,得,然后利用复数代数形式的乘除运算化简,则z的虚部可求.【解答】解:由=1+i,得=,则z的虚部为:﹣1.故答案为:﹣1.14.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有116 种.【考点】D9:排列、组合及简单计数问题.【分析】考虑其对立事件“3个都是二等品”,用间接法可得结论.【解答】解:考虑其对立事件“3个都是二等品”,用间接法,得至少有1个一等品的不同取法有C103﹣C43=116.故答案为:116.15.曲线y=2x﹣x3在x=﹣1的处的切线方程为x+y+2=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义求出函数在x=﹣1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.【解答】解:y'=2﹣3x2y'|x=﹣1=﹣1而切点的坐标为(﹣1,﹣1)∴曲线y=2x﹣x3在x=﹣1的处的切线方程为x+y+2=0故答案为:x+y+2=016.函数f(x)=x2﹣2lnx的单调减区间是(0,1).【考点】6B:利用导数研究函数的单调性.【分析】依题意,可求得f′(x)=,由f′(x)<0即可求得函数f(x)=x2﹣2lnx的单调减区间.【解答】解:∵f(x)=x2﹣2lnx(x>0),∴f′(x)=2x﹣==,令f′(x)<0由图得:0<x<1.∴函数f(x)=x2﹣2lnx的单调减区间是(0,1).故答案为(0,1).三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值﹣2.求f(x)的单调区间和极大值.【考点】6D:利用导数研究函数的极值.【分析】由条件f(1)=2,f′(1)=0求得a、b,再利用导数求出单调区间,从而求解.【解答】解.由奇函数定义,有f(﹣x)=﹣f(x),x∈R.即﹣ax3﹣cx+d=﹣ax3﹣cx﹣d,∴d=0因此,f(x)=ax3+cx,f′(x)=3ax2+c由条件f(1)=2为f(x)的极值,必有f′(1)=0故,解得 a=1,c=﹣3因此f(x)=x3﹣3x,f′(x)=3x2﹣3=3(x﹣1)(x+1)当x∈(﹣∞,﹣1)时,f′(x)>0,故f(x)在单调区间(﹣∞,﹣1)上是增函数.当x∈(﹣1,1)时,f′(x)<0,故f(x)在单调区间(﹣1,1)上是减函数.当x∈(1,+∞)时,f′(x)>0,故f(x)在单调区间∈(1,+∞)上是增函数.所以,f(x)的极大值为f(﹣1)=2.18.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.【考点】DB:二项式系数的性质.【分析】(1)根据题意,令x=1求出n的值,再利用通项公式求出展开式的常数项;(2)令x=1,即可求出展开式中所有项的系数和.【解答】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r••=C9r2r,由﹣r=0,得r=3,∴常数项为:C93•23=672;(2)令x=1,得(1+2)9=39.19.某某师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)(1)三名男生和三名女生各自排在一起;(2)男生甲不担任第一辩,女生乙不担任第六辩;(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.【考点】D8:排列、组合的实际应用.【分析】(1)根据题意,分3步分析:①、用捆绑法将3名男生看成一个元素,并考虑其3人之间的顺序,②、同样方法分析将3名女生的情况数目,③、将男生、女生两个元素全排列,由分步计数原理计算可得答案;(2)根据题意,分2种情况讨论:①、男生甲担任第六辩,剩余的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,由排列数公式计算即可,②、男生甲不担任第六辩,分别分析男生甲、女生乙、其他4人的情况数目,进而由乘法原理可得此时的情况数目;最后由分类计数原理计算可得答案.(3)根据题意,分2步进行分析:①、男生甲必须排在第一辩或第六辩,则甲有2种情况,②、用间接法分析“3位女生中有且只有两位排在一起”的情况数目,由分步计数原理计算可得答案.【解答】解:(1)根据题意,分3步分析:①、将3名男生看成一个元素,考虑其顺序有A33=6种情况,②、将3名女生看成一个元素,考虑其顺序有A33=6种情况,③、将男生、女生两个元素全排列,有A22=2种情况,则三名男生和三名女生各自排在一起的排法有6×6×2=72种;(2)根据题意,分2种情况讨论:①、男生甲担任第六辩,剩余的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,有A55=120种情况,②、男生甲不担任第六辩,则甲有4个位置可选,女生乙不担任第六辩,有4个位置可选,剩余的4人进行全排列,担任其他位置,有A44=24种情况,则男生甲不担任第六辩的情况有4×4×24=384种;故男生甲不担任第一辩,女生乙不担任第六辩的顺序有120+384=504种;(3)根据题意,分2步进行分析:①、男生甲必须排在第一辩或第六辩,则甲有2种情况,②、剩下的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,有A55=120种情况,其中3名女生相邻,则有A33•A33=36种情况,3名女生都不相邻,则有A33•A22=12种情况,则3位女生中有且只有两位排在一起的情况有120﹣36﹣12=72种;故男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起有2×72=144种不同的顺序.20.设函数f(x)=x3﹣x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1(1)求b,c的值;(2)若函数f(x)有且只有两个不同的零点,某某数a的值.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性.【分析】(1)先求f(x)的导数f'(x),再求f(0),由题意知f(0)=1,f'(0)=0,从而求出b,c的值;(2)求导数,利用f(a)=0,即可求出实数a的值.【解答】解:(1)因为函数f(x)=x3﹣x2+bx+c,所以导数f'(x)=x2﹣ax+b,又因为曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,所以f(0)=1,f'(0)=0,即b=0,c=1.(2)由(1),得f'(x)=x2﹣ax=x(x﹣a)(a>0)由f'(x)=0得x=0或x=a,∵函数f(x)有且只有两个不同的零点,所以f(0)=0或f(a)=0,∵f(0)=1,∴f(a)=a3﹣+1=0,∴a=.21.在数列{a n}中,a1=6,且a n﹣a n﹣1=+n+1(n∈N*,n≥2),(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8H:数列递推式.【分析】(1)分别取n=2,3,4即可得出;(2)由(1)猜想a n=(n+1)(n+2),再利用数学归纳法证明即可.【解答】解:(1)n=2时,a2﹣a1=+2+1,∴a2=12.同理可得a3=20,a4=30.(2)猜测a n=(n+1)(n+2).下用数学归纳法证明:①当n=1,2,3,4时,显然成立;②假设当n=k(k≥4,k∈N*)时成立,即有a k=(k+1)(k+2),则当n=k+1时,由且a n﹣a n﹣1=+n+1,得+n+1,故==(k+2)(k+3),故n=k+1时等式成立;由①②可知:a n=(n+1)(n+2)对一切n∈N*均成立.22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(Ⅰ)当a=1时,研究f(x)的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.【考点】6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求导函数,确定函数的单调性,从而可得函数f(x)的极小值;(Ⅱ)f(x)在(0,e]上的最小值为1,令h(x)=g(x))+,求导函数,确定函数的单调性与最大值,即可证得结论;(Ⅲ)假设存在实数a,使f(x)的最小值是3,求导函数,分类讨论,确定函数的单调性,利用f(x)的最小值是3,即可求解.【解答】(Ⅰ)解:f(x)=x﹣lnx,f′(x)=…∴当0<x<1时,f′(x)<0,此时f(x)单调递减当1<x<e时,f′(x)>0,此时f(x)单调递增…∴f(x)的极小值为f(1)=1 …(Ⅱ)证明:∵f(x)的极小值为1,即f(x)在(0,e]上的最小值为1,∴f(x)>0,f(x)min=1…令h(x)=g(x))+=+,,…当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增…∴h(x)max=h(e)=<=1=|f(x)|min…∴在(1)的条件下,f(x)>g(x)+;…(Ⅲ)解:假设存在实数a,使f(x)的最小值是3,f′(x)=①当a≤0时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)=f(e)=ae﹣1=3,∴a=(舍去),所以,此时f(x)无最小值.…min②当0<<e时,f(x)在(0,)上单调递减,在(,e]上单调递增,f(x)min=f()=1+lna=3,∴a=e2,满足条件.…③当时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,∴a=(舍去),所以,此时f(x)无最小值.…综上,存在实数a=e2,使f(x)的最小值是3.…。

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题【含答案】

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题【含答案】

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题一、单选题1.AB BC BA ++=()A .AC B .BCC .ABD .0【答案】B【分析】利用向量加法的运算法则求解即可.【详解】AB BC BA AC BA BC ++=+=,故选:B .2.函数()2sin x f x x =+的导函数为()A .)2cos x f x x '(=-B .)2ln2cos x f x x '(=-C .)2cos x f x x '(=+D .)2ln2cos x f x x'(=+【答案】D【分析】根据给定条件,利用求导公式及导数运算法则求解作答.【详解】函数()2sin x f x x =+,求导得)2ln2cos x f x x '(=+.故选:D3.若可导函数()f x 满足()()11lim 3x f x f x∆→+∆-=∆,则()1f '=()A .1B .2C .3D .4【答案】C【分析】根据导数定义可直接得到结果.【详解】由导数的定义知:()()()111lim 3x f x f f x∆→+∆-'==∆.故选:C.4.已知直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则实数x 的值为()A .12B .12-C .10D .10-【答案】C【分析】依题意可得m n ⊥ ,即可得到0m n ⋅=,从而得到方程,解得即可.【详解】因为直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则m n ⊥ ,即0m n ⋅=,即280x --=,解得10x =.故选:C .5.若定义在R 上的函数()f x 的导数()f x '的图象如图所示,则下列说法正确的是()A .函数()f x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增B .函数()f x 在区间(),1-∞上单调递增,在区间()1,+∞上单调递减C .函数()f x 在1x =处取极大值,无极小值D .函数()f x 在0x =处取极大值,无极小值【答案】A【分析】根据导函数的正负可确定()f x 单调性,结合极值点定义可确定正确选项.【详解】对于AB ,由()f x '图象可知:当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,A 正确,B 错误;对于CD ,由单调性可知:()f x 在0x =处取得极小值,无极大值,CD 错误.故选:A.6.若函数()ln f x x x =在点00(,())x f x 处的切线斜率为1,则0x =()A .e -B .eC .1-D .1【答案】D【分析】先求出()f x ',由已知得0()1f x '=列出方程,求解即可.【详解】因为()ln 1f x x '=+,所以()f x 在点00(,())x f x 处的切线斜率为00()ln 11k f x x '==+=,解得01x =,故选:D .7.若关于x 的不等式e 0x x a -->恒成立,则a 的取值范围为()A .()e,+∞B .(),1-∞C .[)1,+∞D .(],0-∞【答案】B【分析】令()e xf x x a =--,将问题转化为()min 0f x >,利用导数可求得()f x 单调性,从而得到()min f x ,解不等式即可求得结果.【详解】令()e xf x x a =--,则()0f x >恒成立,()min 0f x ∴>;()e 1x f x '=- ,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,()()min 010f x f a ∴==->,解得:1a <,即a 的取值范围为(),1-∞.故选:B.8.已知正四面体A BCD -的棱长为2,若M 、N 分别是AB 、CD 的中点,则线段MN 的长为()A .2B .2C .3D .62【答案】B【分析】以AC 、AB、AD 作为一组基底表示出MN ,再根据数量积的运算律求出MN ,即可得解.【详解】111222MN MA AN AB AC AD =+=-++,又AC 、AB、AD 两两的夹角均为π3,且2AB AC AD === ,22111222MN AB AC AD ⎛⎫∴=-++ ⎪⎝⎭ ()22212224AB AC AD AB AC AB AD AD AC =++-⋅-⋅+⋅2221πππ2cos 2cos 2cos 24333AB AC AD AB AC AB AD AD AC ⎛⎫=++-⋅-⋅+⋅= ⎪⎝⎭ ,22MN MN ∴== .故选:B .9.函数e ()1xf x x =-的图象大致是()A .B .C .D .【答案】A【分析】根据图象结合函数定义域、单调性判断B ,C 错误;由函数在0x <时函数值的符号可判断D.【详解】由定义域为{1}x |x ≠,∴排除B ;又2e 2))1)x x f x x (-'(=(-,令)0f x '(>,得2x >,()f x ∴的单增区间为2,)(+∞,∴排除C ;当0x <时,()0f x <,∴排除D ;故选:A .10.若函数()2ln f x x ax x =-+有两个极值点,则a 的取值范围为()A .022a <<B .2222a -<<C .22a <-或22a >D .22a >【答案】D【分析】函数有两个不同的极值点,则()0f x '=在()0,∞+上有两个不同的实数解,转化为二次方程在()0,∞+有两个不同的实数解,求解即可.【详解】由题意可得()f x 的定义域为()0,x ∈+∞,()21212x ax f x x a x x-+'=-+=,因为函数()f x 有两个极值点,所以2210x ax -+=在()0,∞+上有两个不同的实数解,所以28002a a ⎧->⎪⎨>⎪⎩,解得22a >,故选:D11.如图,半径为1的球O 是圆柱12O O 的内切球,线段AB 是球O 的一条直径,点P 是圆柱12O O 表面上的动点,则PA PB ⋅的取值范围为()A .[0,1]B .[0,3]C .[0,2]D .[1,2]【答案】A【分析】先把,PA PB 都用PO 表示,再根据PO的模长的范围求出数量积的范围即可.【详解】))PA PB PO OA PO OB ⋅=(+⋅(+,因为线段AB 是球O 的一条直径,,1OA OB OA OB ∴-=== ,222))1PA PB PO OA PO OA PO OA PO ⋅=(+⋅(-=-=- ,又min1PO = ,max2PO =,[0,1]PA PB ∴⋅∈,故选:A .12.若关于x 的不等式2(2)ln 1k x x x +≤+的解集中恰有2个整数,则k 的取值范围是()A .113k <≤B .ln21183k +<≤C .ln31ln21158k ++<≤D .ln41ln312415k ++<≤【答案】C【分析】将不等式变形为ln 1(2)x k x x ++≤,令()f x =ln 1x x+,)2)g x k x (=(+,数形结合,转化为两个函数图象相交情况分析.【详解】0x >,∴不等式2(2)ln 1k x x x +≤+可化为ln 1(2)x k x x++≤,令()f x =ln 1x x+,2ln ()xf x x -∴=',由()0f x '>解得01x <<,由()0f x '<解得1x >,()f x ∴在0,1)(为增函数,()f x 在,)(1+∞为减函数,令)2)g x k x (=(+,则()g x 的图象恒过2,0)(-,若解集恰有2个整数,当0k ≤时,有无数个整数解,不满足题意;当0k >时,如图,2满足不等式且3不满足不等式,即8ln21k ≤+且15ln31k >+,ln31ln21158k ++∴<≤.故选:C .二、填空题13.已知2,1,3)OA =(- ,1,2,4)OB =(- ,则AB =______.【答案】3,3,1)(-【分析】利用空间向量的坐标运算求解作答.【详解】因为2,1,3)OA =(- ,1,2,4)OB =(- ,所以3,3,1)AB OB OA =-=(-.故答案为:3,3,1)(-14.11)d x x -(2+1=⎰______.【答案】2【分析】利用微积分基本定理直接运算求值.【详解】()1211(21)d 2021x x x x -+=+=+=-⎰,故答案为:2.15.若函数()cos f x kx x =-在区间()0,π上单调递减,则k 的取值范围是______.【答案】(],1-∞-【分析】根据函数的单调性与导函数的关系,利用分离参数法解决恒成立问题,结合三角函数的性质即可求解.【详解】由题意可知,()sin f x k x '=+,因为()f x 在区间()0,π单调递减,所以()sin 0f x k x '=+≤在()0,π上恒成立,等价于()()min sin ,0,πk x x ≤-∈即可,因为()0,πx ∈,所以0sin 1x ≤≤,即1sin 0x -≤-≤,于是有1k ≤-,所以k 的取值范围是(],1-∞-.故答案为:(],1-∞-.16.如图,正方体1111ABCD A B C D -的棱长为2,若空间中的动点P 满足1AP AB AD AA λμν=++,[0,1]λμν∈,,,则下列命题正确的是______.(请用正确命题的序号作答)①若12λμν===,则点P 到平面1AB C 的距离为233;②若12λμν===,则二面角P AB C --的平面角为π4;③若12λμν++=,则三棱锥1P BDA -的体积为2;④若12λμν+-=,则点P 的轨迹构成的平面图形的面积为33.【答案】②④【分析】分别以AB ,AD ,0AA 所在直线为x ,y ,z 轴建立空间直角坐标系,对于①:直接应用点到平面距离的向量公式,即可判断;对于②:直接应用面面角的向量公式,即可判断;对于③:先求出点P 到平面1BDA 的距离,即可计算出1P BDA V -,得出判断;对于④:延长1A A 至点0A ,使得102A A AA =,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D ,作出平面000B D A 与正方体的截面,并说明该截面为边长为2的正六边形,由条件得00022122)0B P D P A P λμλμ++(--=,根据空间向量共面定理得点P 在平面000B D A 上,即可作出判断.【详解】对于①:由空间向量的正交分解及其坐标表示可建立如图空间直角坐标系,所以1,1,1)P (,1(2,0,2)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,2)A ,向量1,1,1)AP =( ,设平面1AB C 的法向量1111,,)n x y z =(,由1(2,0,2)AB =,(2,2,0)AC =uuu r,则11100AB n AC n ⎧⋅=⎪⎨⋅=⎪⎩即1111220220x z x y +=⎧⎨+=⎩,取11x =-则11,1,1)n =(- ,则点P 与平面1AB C 的距离为111333|AP n |d |n |⋅===,故①错误;对于②:设平面ABP 的法向量2222,,)n x y z =(,又1,1,1)AP =(,1,0,0)AB =(,2200AP n AB n ⎧⋅=⎪∴⎨⋅=⎪⎩即2222=00x y z x ++⎧⎨=⎩,取21y =-,则20,1,1)n =(- ,易得平面ABC 的一个法向量3(0,0,1)n =,设二面角P AB C --的平面角为θ,则323212cos 22n n |n ||n |θ⋅===⋅ ,θ 是锐角,∴二面角P AB C --的平面角为π4,故②正确;对于③:1AP AB AD AA λμν=++ ,(2,0,0)AB = ,(0,2,0)AD = ,1(0,0,2)AA =,2,2,2)AP λμν∴=(,则112,2,22)A P AP AA λμν=-=(- ,设平面1BDA 的法向量为4444,,)n x y z =(,由(2,2,0)BD =-,1(2,0,2)BA =- ,则4444220220x y x z -+=⎧⎨-+=⎩,取41x =则41,1,1)n =( ,则点P 到平面1BDA 的距离为1442()23A P n d n λμν⋅++-== ,由12λμν++=得2()2333d λμν++-==易知12322)234BDA S =⨯(=△,则三棱锥111233P BDA BDA V S d -=⋅=△,故③错误;对于④:延长1A A 至点0A ,使得102A A AA =,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D 并延长,交棱1BB ,1DD 于点E ,F ,交11A B ,11A D 延长线于点M ,N ,连接MN ,交棱11B C ,11C D 于点G ,H ,连接EG ,HF ,如图所示,则平面000B D A 与正方体的截面为六边形00B D FHGE ,22220000112B D AB AD =+=+=,在平面11ABB A 中,01//AA BB ,点0B 为AB 中点,000B A A B EB ∴∠=∠,00AB BB =,在00AB A 和0BB E 中00000000AA B BEB AB A BB E AB BB∠=∠⎧⎪∠=∠⎨⎪=⎩ ,000()AB A BB E AAS ∴≅ ,01AA BE ∴==,1B E BE ∴=,即点E 为1BB 中点,22002B E BE BB =+=,同理可得,02EG GH HF D F ====,∴六边形00B D FHGE 为正六边形,且边长为2,则其面积2362)4S =⨯⨯(33=,12λμν+-= ,1AP AB AD AA λμν=++,10001)22122)2AP AB AD AA AB AD AA λμλμλμλμ∴=++(+-=++(-- ,整理得00022122)0B P D P A P λμλμ++(--=,∴点P 在平面000B D A 上,∴当12λμν+-=,点P 的轨迹构成的平面图形的面积为33,故④正确.故答案为:②④.三、解答题17.已知空间向量1,0,1)a =(,2,1,0)b =(- ,4,,)c λλλ=(+-.(1)若(a b )//c +,求λ;(2)若ka b + 与2a b -相互垂直,求k .【答案】(1)2λ=(2)12k =【分析】(1)根据空间向量共线公式列式求参即可;(2)根据空间向量垂直数量积为0列式求参即可.【详解】(1)311a b (,,)+=- ,()//a b c + (a b )c μ∴+=,R μ∈,即34)μλ=(+,且1μλ-=-,1μλ=,解得2λ=;(2)(2,1,)ka b k k +=+- ,2012a b (,,)-= ,又2210(ka b )(a b )k +⋅-=-= ,解得12k =.18.已知函数3215()2333f x x x x =-++.(1)求曲线()y =f x 在点1,1))f ((处的切线方程;(2)求函数在区间[1,4]-的最大值与最小值.【答案】(1)3y =(2)max )3f x (=;min 11)3f x (=-【分析】(1)利用导数求出切线的斜率,并结合切点得到切线方程;(2)先利用导数求得()f x 在区间[1,4]-上的单调区间,进而求得()f x 在区间[1,4]-上的最大值与最小值.【详解】(1)1)3f (= ,∴切点为1,3)(,又2)43f x x x '(=-+ ,1)0f '∴(=,∴切线方程为301)y x -=(-,即3y =,即曲线()y =f x 在点1,1))f ((处的切线方程为3y =;(2)由(1)知2)43f x x x '(=-+,令)0f x '(>,得1x <或3x >,令)0f x '(<,得13x <<,∴函数()f x 在区间[1,1)-,3,4](为增函数,在区间[1,3]为减函数,又1)3f (= ,4)3f (=,max )1)4)3f x f f ∴(=(=(=;又111)3f (-=- ,53)3f (=,min 11)1)3f x f ∴(=(-=-.19.如图,在正三棱柱111ABC A B C -中,1323AA AC ==,D 是1BB 的中点.(1)求异面直线1A D 与BC 所成角的余弦值;(2)证明:平面11A DC ⊥平面ADC .【答案】(1)77;(2)证明见解析.【分析】(1)分别作AC ,11AC 的中点O ,1O ,连接OB ,1OO ,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立空间直角坐标系,求出直线1A D 与BC 的空间向量,即可利用线线角的公式求解.(2)分别求出平面11A DC 和平面ADC 的法向量,利用法向量数量积为0,即可证明.【详解】(1)如图,分别作AC ,11AC 的中点O ,1O ,连接OB ,1OO ,在正三棱柱111ABC A B C -中,1OO ⊥底面ABC ,且BO AC ⊥,则OA ,OB ,1OO 互相垂直,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立如图空间直角坐标系,已知1323AA AC ==,则11,0,23)A (,0,3,3)D (,0,3,0)B (,1,0,0)C (-,设异面直线1A D 与BC 所成角为θ,2]π(0,θ∈,11,3,3)A D =(-- ,1,3,0)BC =(-- ,11137cos 772|A D BC ||||A D ||BC |θ⋅-∴===⨯⋅uuur uuu r uuur uuu r ;(2)由题可知1,0,0)A (,11,0,23)C (-,112,0,0)A C =(- ,1,3,3)AD =(- ,2,0,0)AC =(-,设平面11A DC 的法向量为()111,,m x y z =r ,则111111133020m A D x y z m A C x ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩ ,令11y =,0,1,1)m ∴=(r ,设平面ADC 的法向量为222,,)n x y z =(r,则222233020n AD x y z n AC x ⎧⋅=-++=⎪⎨⋅=-=⎪⎩ ,令21y =,0,1,1)n ∴=(-r ,110m n ⋅=-=r r Q ,∴平面11A DC ⊥平面ADC .20.制作一个容积为V 的圆柱体容器(有底有盖,不考虑器壁的厚度),设底面半径为r .(1)把该容器外表面积S 表示为关于底面半径r 的函数;(2)求r 的值,使得外表面积S 最小.【答案】(1)()222πV S r r r=+,()0,r ∈+∞(2)32πVr =【分析】(1)根据圆柱体积公式可表示出圆柱的高h ,结合圆柱表面积公式可表示出()S r ;(2)利用导数可求得()S r 的单调性,进而确定最值点.【详解】(1)设圆柱体水杯的高为h ,则2πV h r =,∴表面积()2222π2π2πV S r r rh r r =+=+,即()222πV S r r r=+,()0,r ∈+∞.(2)由(1)得:()224πV S r r r'=-;令()0S r '=,解得:32πV r =;则当302πV r <<时,()0S r '<,()S r 单调递减;当32πV r >时,()0S r '>,()S r 单调递增;∴当32πV r =时,表面积()S r 取得最小值.21.在如图①所示的长方形ABCD 中,3AB =,2AD =,E 是DC 上的点且满足3DC EC =,现将三角形ADE 沿AE 翻折至平面APE ⊥平面ABCD (如图②),设平面PAE 与平面PBC 的交线为l.(1)求二面角B l A --的余弦值;(2)求l 与平面ABCE 所成角的正弦值.【答案】(1)66(2)55.【分析】(1)建立空间直角坐标系,利用空间向量法求二面角B l A --的余弦值;(2)设直线AE 与BC 相交于点F ,PF 即为l ,PFO ∠是l 与平面ABCE 所成角,计算求解即可.【详解】(1)如图,取AE 的中点O ,连接PO ,2AD DE ==,则PO AE ⊥,又 平面PAE ⊥平面ABCE ,又平面PAE 平面ABCE AE =,又PO ⊂平面PAEPO ∴⊥平面ABCE ,延长DO 交AB 于点G ,由DE AB ∥,O 为AE 的中点,则2AG DE ==,OG AE ⊥,2OG OA ==,分别以OA OG OP ,,所在直线为x y z ,,轴建立空间直角坐标系,如图所示,()2,0,0A ,()0,2,0G ,()0,2,0D -,()2,0,0E -,()0,0,2P ,232,,022B ⎛⎫- ⎪ ⎪⎝⎭,PO ⊥ 平面ABCE ,OG ⊂平面ABCE ,OG OP ∴⊥,又OG AE ⊥ ,AE OP O = ,,AE OP ⊂平面PAE ,所以OG ⊥平面PAE ,∴平面PAE 的法向量为OG ,且(0,2,0)OG =,又(2,2,0)CB DA == ,232(,,2)22PB =-- ,设平面PBC 的法向量为(,,)n x y z = ,则2202322022CB n x y PB n x y z ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,令1y =,则(1,1,2)n =- ,设二面角B l A --的平面角为θ,26cos ,626OG n OG n OG n⋅===⨯ ,由题知π(0,)2θ∈,二面角B l A --的余弦值为66;(2)设直线AE 与BC 相交于点F ,F BC ∈ ,F ∈平面PBC ,同理F ∈平面PAE ,由平面公理3可得∈F l ,又P l ∈,PF ∴即为l ,PO ⊥ 平面ABCE ,OF ∴是PF 在平面ABCE 内的投影,PFO ∴∠是l 与平面ABCE 所成角,由2PO =,又22OF =,2210PF PO OF ∴=+=,25sin 510PO PFO PF ∠===,l ∴与平面ABCE 所成角的正弦值为55.22.已知函数()ln 1)f x x =(+,)e )x g x f x (=(.(1)求函数()g x 的导函数在0,)(+∞上的单调性;(2)证明:0,)a b ∀∈(+∞,,有)))g a b g a g b (+>(+(.【答案】(1)()g x '在0,)(+∞上单调递增;(2)证明见解析.【分析】(1)直接对函数求导,利用导数与函数间的关系即可求出结果;(2)构造函数()()()(00)F x g x a g x x a =+->>,,将求证结果转化判断函数值大小,再利用函数的单调性即可求出结果.【详解】(1)因为)e ()e ln(1)x x g x f x x (==+,所以e 1)e ln(1)+=e [ln(1)]11x xx g x x x x x '(=+++++,令))h x g x '(=(,即1)=e [ln(1)]1x h x x x (+++,又因为222121)e [ln(1)]=e [ln(1)]11)1)x x x h x x x x x x +'(=++-+++(+(+,又因为0,)x ∈(+∞,所以11,)x +∈(+∞,即有221ln(1)0,0(1)x x x ++>>-,所以()0h x '>,所以)h x (在区间0,)(+∞上单调递增,即()g x '在0,)(+∞上单调递增;(2)由题知(0)0g =,要证)))g a b g a g b (+>(+(,即证)))0)g a b g b g a g (+-(>(-(,令()()()(00)F x g x a g x x a =+->>,,则()()()F b g b a g b =+-,(0)()(0)F g a g =-即证)0)F b F (>(,由(1)知()g x '在区间0,)(+∞上单调递增,又因为x a x +>,所以)))0F x g x a g x '''(=(+-(>,所以))()F x g x a g x (=(+-在区间0,)(+∞上单调递增,因为0b >,所以)0)F b F (>(,故命题得证.。

江西省南昌市湾里管理局第一中学等六校2021-2022学年高二下学期期中联考数学(理)试题

江西省南昌市湾里管理局第一中学等六校2021-2022学年高二下学期期中联考数学(理)试题

2021—2022学年度第二学期期中考试高二数学(理)试卷出卷人:王鹏程审卷人:何运保一、单选题(本大题共12小题,共60.0分)1.已知//a α,b α⊂,则直线a 与直线b 的位置关系是()A .平行B .相交或异面C .异面D .平行或异面2.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A .圆锥B .圆柱C .三棱锥D .正方体3.已知空间直线l 和平面α,则“直线//l 平面α”是“直线l 在平面α外”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件4.正三棱锥底面边长为a ,高为6a ,则此正三棱锥的侧面积为()A .234aB .232aC 2D 25.l ,m ,n 是三条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A .若αβ⊥,βγ⊥,l αγ= ,则l β⊥B .若m n ⊥,n l ⊥,则m l∥C .若αβ∥,m α⊂,n β⊂,则m n ∥D .若l α∥,αβ⊥,则l β⊥6.已知三棱锥S ABC -中,2SC AB ==,,E F分别是,SA BC 的中点,1EF =,则EF 与AB 所成的角大小为()A .4πB .3πC .23πD .34π7.已知非零向量324a m n p =-- ,(1)82b x m n y p =+++ ,且m 、n 、p不共面.若//a b ,则x y +=().A .13-B .5-C .8D .138.某几何体的三视图如图所示,且该几何体的体积是6,则正视图中的x 的值是()A .9B .8C .3D .69.已知空间向量()0,1,2AB =- ,2AC = ,2,3AB AC π= ,则AB BC ⋅= ()A .5B 5C .5D 510.下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是()A .24B .24C .12D .1211.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.如图,在棱长为1的正方体1111ABCD A B C D -中,点,E F 分别是棱111,B B B C 的中点,点G 是棱1CC 的中点,则过线段AG 且平行于平面1A EF 的截面的面积为A .1B .98C .89D 12.如图,在边长为2的正方体1111ABCD A B C D -中,点P 是该正方体对角线1BD 上的动点,给出下列四个结论:①1AC B P⊥②APC △面积的最大值是③APC △④当BP =ACP ∥平面11AC D 其中正确的个数是()A .4B .3C .2D .1二、填空题(本大题共4小题,共20.0分)13.圆台两底面半径分别为2cm 和5cm ,母线长为cm ,则它的轴截面的面积是________cm2.14.在正方体1111ABCD A B C D -中,M 为11A B 上任一点,则1AD 与CM 位置关系是___________.15.如图,矩形O A B C ''''是水平放置的一个平面图形由斜二测画法得到的直观图,其中4O A ''=,1O C ''=,则原图形周长是__________.16.如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.三、解答题(本大题共6小题,共70.0分)17.已知平行四边形ABCD ,从平面AC 外一点O 引向量OE kOA = ,OF kOB = ,OG kOC =,OH kOD = .(1)求证:E F G H ,,,四点共面;(2)平面AC ∥平面EG .18.如图截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体.(1)该截角四面体的表面积;(2)该截角四面体的体积.19.两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,过M 作MH AB ⊥于H ,求证:(1)平面//MNH 平面BCE ;(2)//MN 平面BCE .20.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD 是等边三角形,四边形ABCD 为平行四边形,120ADC ∠=︒,2AB AD =.(1)求证:平面PAD ⊥平面PBD ;(2)求二面角A PB C --的余弦值.21.如图,直三棱柱中,AC BC ⊥,1AC BC ==,12CC =,点M 是11A B 的中点.(1)求证:1B C //平面1AC M ;(2)求三棱锥11A AMC -的体积.22.三棱锥-P ABC 中,AC BC ⊥,平面PAC ⊥平面ABC ,2PA PC AC ===,4BC =,E ,F 分别为PC 和PB 的中点,平面ABC ⋂平面AEF l =.(1)证明:直线l BC ;(2)设M 是直线l 上一点,且直线PB 与平面AEF 所成的角为α,直线PM 与直线EF 所成的角为β,满足2παβ+=,求AM 的值.1.D【分析】a平面α,直线b在平面α内,知//a b,或a与b异面.由直线//【详解】解: 直线//a平面α,直线b在平面α内,∴,或a与b异面,//a b故选:D.【点睛】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答.2.B【分析】根据圆锥、圆柱、三棱锥和正方体的结构特征判断即可【详解】用一个平面去截一个圆锥时,轴截面的形状是一个等腰三角形,所以A满足条件;用一个平面去截一个圆柱时,截面的形状可能是矩形,可能是圆,可能是椭圆,不可能是一个三角形,所以B不满足条件;用一个平面去截一个三棱锥时,截面的形状是一个三角形,所以C满足条件;用一个平面去截一个正方体时,截面的形状可以是一个三角形,所以D满足条件.故选:B.3.A【分析】根据直线l在平面α外则直线l与平面α平行或相交可判定“直线l与平面α平行”与“直线l 在平面α外”的关系.【详解】“直线l与平面α平行”⇒“直线l在平面α外”“直线l在平面α外”则直线l与平面α平行或相交,故“直线l在平面α外”不能推出“直线l与平面α平行”故“直线l与平面α平行”是“直线l在平面α外”的充分非必要条件故选A.【点睛】本题主要考查了线面的位置关系,以及充要条件的判定,熟悉定理是解题的关键,同时考查了分析问题的能力,属于基础题.4.A 【分析】根据条件,可计算正三棱锥的斜高,利用侧面积公式计算即可求出.【详解】23a ⨯,所2a ,斜高为2a =,所以侧面积为21133224S a a a =创=.选A.【点睛】本题主要考查了正三棱锥的性质,侧面积公式,属于中档题.5.A 【分析】可利用长方体线线,线面,面面之间的关系.【详解】如下图所示,在长方体1111ABCD A B C D -中,令α为平面1AD ,β为平面1AB ,γ为平面11A C ,易知A 正确;令m 为AD ,n 为DC ,l 为1CC ,易知B 错误;令α为平面1AD ,β为平面1BC ,m 为AD ,n 为1CC ,易知C 错误;令α为平面1AD ,β为平面AC ,l 为1BC ,易知D 错误.故选:A6.B 【分析】取SB 的中点G ,然后根据异面直线所成角的定义证明GEF ∠(或其补角)是EF 与AB 所成的角,进而求得答案.【详解】取SB 的中点G ,连接GF ,GE ,又F 为BC 的中点,所以1//,12EG AB EG AB ==,1//,2GF SC GF SC ==GEF ∠(或其补角)是EF 与AB 所成的角.取GF 的中点H ,连接EH ,则EH ⊥GF ,所以sin 3HF HEF HEF EF π∠==∠=,则23GEF π∠=,所以EF 与AB 所成的角为3π.故选:B.7.B 【解析】先由向量平行,得到b a λ=,利用系数对应相等构建关系,即求得x ,y ,即得结果.【详解】//a b 且0a ≠ ,∴b a λ=,即(1)82324x m n y p m n p λλλ+++=-- ,又m 、n 、p 不共面,∴138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得13x =-,8y =,5x y +=-.故选:B .8.D 【分析】由三视图可还原几何体是一个底面为梯形的四棱锥,根据体积公式即可求解高.【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,高为x ,棱锥的底面是一个上下底分别为1和2,高为2的梯形,故()1=122=32S +⨯梯,又因为几何体的体积为6,所以13663x x ⨯=⇒=故选:D 9.A 【分析】根据向量的数量积的运算公式,求得AB AC ⋅=,结合()AB BC AB AC AB ⋅=⋅- ,即可求解.【详解】由题意,空间向量()0,1,2AB =- ,2AC = ,2π,3AB AC = ,可得2πcos 3AB AC AB AC ⋅=⋅= 则()25AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-= .故选:A.10.B 【分析】先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.【详解】如图,设上底面的半径为r ,下底面的半径为R ,高为h ,母线长为l ,则21r ππ=⋅,22R ππ=⋅,解得1,12r R ==,211l =-=,2h ===,设上底面面积为2124S ππ⎛⎫'=⋅= ⎪⎝⎭,下底面面积为21S ππ=⋅=,则体积为(1173342224S S h πππ⎛⎫'+=+⋅= ⎝⎭.故选:B.11.B【分析】取BC 的中点H ,连接,AH GH ,证明平面AHGD 1∥平面A 1EF ,得截面图形,求面积即可【详解】取BC 的中点H ,连接,AH GH ,因为1,EF BC GH EF ⊄ 面AHGD 1,GH Ì面AHGD 1,EF ∴∥面AHGD 1,同理,1A E ∥面AHGD 1,又1A E EF E ⋂=,则平面AHGD 1∥平面A 1EF ,等腰梯形AHGD 1的上下底分别为2,则梯形面积为98,故选B .【点睛】此题考查了几何体截面问题,灵活运用面面平行的判定是关键,考查空间想象与推理能力,是中档题.12.B【分析】通过证明AC ⊥平面11BDD B 来证明1AC B P ⊥;将APC △的面积表示出来,等价于求PE 长度的最值,从而在1Rt BDD 中分别求得最大值和最小值;通过证明1BD ⊥平面APC 且1BD ⊥平面11AC D 来证明平面//ACP 平面11AC D .【详解】解:在正方体1111ABCD A B C D -中,11,,AC BD AC DD BD DD D ⊥⊥⋂=,故AC ⊥平面11BDD B ,又111B P BDD B ⊂,则1AC B P ⊥,①正确;连接BD 交AC 与E ,由11EP BDD B ⊂,则AC EP ⊥,12APC S AC PE =⋅= ,则求APC △的面积的最值等价于求PE 长度的最值.在1Rt BDD 中,当1PE BD ⊥时,PE最小,易知BD =,1BD =111sin 3DD DBD BD ∠==,此时1sin PE BE DBD =⋅∠=此时,APC △33==,故③错误;当EP 与1ED 重合时,PE最大,易知DE =1ED =此时,APC△=,故②正确;当3BP =时,在BPE 中,BE =,11cos 3DB DBD BD ∠==,则3PE ===,则PE PB ⊥,又,AC PB AC PE E ⊥⋂=,故1BD ⊥平面APC ,由正方体体对角线性质,易知11111,D A B BD C A D ⊥⊥,即1BD ⊥平面11AC D ,故平面//ACP 平面11AC D ,④正确;故正确的有:①②④.故选:B13.63【分析】首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A 作AM ⊥BC 于M ,则BM =5-2=3(cm ),AM 9(cm ),所以S 四边形ABCD =()41092+⨯=63(cm 2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.14.垂直【分析】根据线线垂直可得线面垂直,进而可得线线垂直.【详解】在正方体1111ABCD A B C D -中,因为侧棱11A B ⊥平面1BC ,1BC ⊂平面1BC ,所以111A B BC ⊥,又因为四边形11BCC B 是正方形,所以111111,B C BC B C A B B ⊥⋂=,故1BC ⊥平面1B CM ,111//AD BC AD ∴⊥ 平面1B CM ,因此1AD ⊥CM ,故答案为:垂直15.14【分析】根据直观图还原该平面图形,然后可得答案.【详解】在直观图中,设O y ''与B C ''交于点P',则1C P ''=,3P B ''=,O P ''=在原图形中,4OA =,1CP =,23OP O P OC ''====,所以原图形周长是()24314⨯+=故答案为:1416【分析】建立空间直角坐标系,借助空间向量求出点Р到直线1CC 距离的函数关系,再求其最小值作答.【详解】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===-- ,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==-- ,(22,4,4)CP CE EP λλλ=+=-- ,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅== ,而||CP = ,则点Р到直线1CC的距离25h =,当且仅当15λ=时取“=”,所以点Р到直线1CC17.(1)证明见解析(2)证明见解析【分析】(1)根据向量的线性运算可得EG EF EH =+ ,由空间向量,可判断向量共面,进而可得点共面.(2)根据向量共线可得直线与直线平行,进而可证明线面平行,进而可证明面面平行.【详解】(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+ ,∵EG OG OE =- ,()()k OC k OA k OC OA k AC k AB AD =⋅-⋅=-==+ ()k OB OA OD OA OF OE OH OE EF EH =-+-=-+-=+ ∴E 、F 、G 、H 四点共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅ ,∴EF AB ∥又因为EF ⊄平面ABCD ,AB ⊂平面ABCD ,所以EF ∥平面ABCD又∵EG k AC =⋅ ,∴EG AC ∥,EG ⊄平面ABCD ,AC ⊂平面ABCD ,EG ∥平面ABCD ,又EF EG E = ,,EF EG ⊂平面EG所以,平面EG ∥平面AC .18.(1)(2)12.【分析】(1)求出截角四面体一个的正六边形、正三角形的面积即可求解作答.(2)求出原正四面体和截去的一个正四面体的体积,再用割补法求解作答.【详解】(1)依题意,该截角四面体是4个边长为1的正三角形和4个边长为1的正六边形围成,截角四面体中,正三角形的面积11112S =⨯⨯⨯边长为1的正六边形的面积21611222S =⨯⨯⨯⨯=,所以该截角四面体的表面积为4442S =⨯⨯(2)该截角四面体是棱长为3的正四面体去掉4个角上棱长为1的正四面体而得,棱长为1的正四面体的高h =3的正四面体的高为3h =则棱长为1的正四面体的体积211134312V ⨯⨯==,棱长为3的正四面体的体积22133V =所以该截角四面体的体积为:2144V V V =--19.(1)证明见解析;(2)证明见解析.【分析】(1)由线面平行的判定推证//MH 平面BCE ,再借助比例式推平行得//NH BE ,利用线面、面面平行的判定推理作答.(2)利用(1)的结论,结合面面平行的性质推理作答.(1)在正方形ABCD 中,MH AB ⊥,BC AB ⊥,则//MH BC ,又MH ⊄平面BCE ,BC ⊂平面BCE ,因此//MH 平面BCE ,由//MH BC ,得AM AH MC HB =,而AM FN =,AC FB =,则有MC NB =,即FN AM AH NB MC HB==,于是得////NH AF BE ,又NH ⊄平面BCE ,BE ⊂平面BCE ,则//NH 平面BCE ,因MH NH H ⋂=,,MH NH ⊂平面MNH ,所以平面//MNH 平面BCE .(2)由(1)知:平面//MNH 平面BCE ,而MN ⊂平面MNH ,所以//MN 平面BCE .20.(1)证明见解析(2)35-【分析】(1)先证明线面垂直,再证明面面垂直即可;(2)先建立空间直角坐标系,求出相关平面的法向量,再利用夹角公式求解即可.【详解】(1)证明:在平行四边形ABCD 中,令1AD =,则BD ==在ABD △中,222AD BD AB +=,所以AD BD ⊥.又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =,所以BD ⊥平面PAD .又因为BD ⊂平面PBD ,所以平面PAD ⊥平面PBD ;(2)由(1)得AD BD ⊥,以D 为空间直角原点,建立空间直角坐标系D xyz -,如图所示,令1AD =,()1,0,0A,()B,()C -,12P ⎛⎫ ⎪ ⎪⎝⎭,()AB =-,122PB ⎛⎫=-- ⎪ ⎪⎝⎭ ,()1,0,0BC =-uu u r ,设平面PAB 的法向量为()111,,n x y z = ,则0,0,AB n PB n ⎧⋅=⎨⋅=⎩得111110,10,2x x z ⎧-=⎪⎨-=⎪⎩令11y =,得1x =11z =,所以平面PAB的法向量为)n = ;设平面PBC 的法向量为()222,,m x y z = ,0,0,BC m PB m ⎧⋅=⎨⋅=⎩即22220,10,2x x =⎧⎪⎨-+-=⎪⎩令22z =,得21y =,所以平面PBC 的法向量为()0,1,2m = .所以3cos ,5n m n m n m ⋅== ,由图可知二面角为钝角,所以所求二面角A PB C --的余弦值为35-.21.(1)证明见解析;(2)16.【分析】(1)连接1AC 交1AC 与N ,则N 为1AC 的中点,利用三角形中位线定理可得1//MN B C ,再由线面平行的判定定理可得结果;(2)由等积变换可得11A AMC V -11A A C M V -=,再利用棱锥的体积公式可得结果.【详解】(1)连接1AC 交1AC 与N ,则N 为1AC 的中点,又M 为11A B 的中点,1//MN B C ∴,又因为MN ⊂平面1AC M ,1B C ⊄平面1AC M ,1//B C ∴平面1AC M ;(2)因为,直三棱柱111A B C ABC -中,AC BC ⊥,1AC BC ==,12CC =,且点M 是11A B 的中点所以11A AMC V -11A A C MV -=11113A C M S AA ∆=⨯11111132A CB S AA ∆=⨯⨯11111123226=⨯⨯⨯⨯⨯=.【点睛】本题主要考查线面平行的判定定理、利用等积变换求三棱锥体积,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.22.(1)证明见解析答案第15页,共15页(2)1【分析】(1)由线面平行的判定与性质定理证明(2)建立空间直角坐标系,由空间向量求解(1)证明:∵E 、F 分别为PB 、PC 的中点,∴BC EF ∥,又∵EF ⊂面EFA ,BC ⊄面EFA ,∴BC ∥面EFA ,又∵BC ⊂面ABC ,面⋂EFA 面=ABC l ,∴BC l ∥,(2)以C 为坐标原点,CB 所在直线为x 轴,CA 所在直线为y 轴,过C 垂直于面ABC 的直线为z 轴,建立空间直角坐标系,则()0,2,0A ,()4,0,0B ,()0,1,3P ,130,,22E ⎛⎫ ⎪ ⎪⎝⎭,132,,22F ⎛⎫ ⎪ ⎪⎝⎭,设(),2,0M m ,()4,1,3PB =-- ,()2,0,0EF = ,330,,22AE ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,设平面AEF 的一个法向量为(),,n x y z = 有2033022x y z =⎧⎪⎨-+=⎪⎩则平面AEF 的一个法向量为()0,1,3n = 131sin cos ,2205PB n PB n PB n α--⋅====⋅ (),1,3PM m =- ,22cos cos ,1324m PM EF m PM EF PM EF m m β⋅====⋅++⋅+ ∵2παβ+=,∴cos sin αβ=,2154mm =+∴1m =±即存在M 满足题意,此时1AM =。

2015-2016学年高二下学期期中考试数学(理)试题含答案

2015-2016学年高二下学期期中考试数学(理)试题含答案

白云中学2015—2016学年第二学期期中测试高二理科数学试卷一、选择题(每题5分,共60分)1.函数),1)(1()(-+=x x x f 则=')2(f ( )A. 3B. 2C. 4D. 0 2.已知函数,2)(2+-=x x x f 则⎰=10)(dx x f ( )A.613 B. 611 C. 2 D. 33.已知a 为实数,若2321>++i a i ,则=a ( ) A .1 B .2- C . 31 D .214.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( )A .演绎推理B .类比推理C .合情推理D .归纳推理5.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++C.23119y x x =-+D.23119y x x =--+6.命题p :∃x ∈R ,使得3x >x ;命题q :若函数y=f (x ﹣1)为偶函数,则函数y=f (x )关于直线x=1对称,则( )A .p ∨q 真B .p ∧q 真C .¬p 真D .¬q 假7.在复平面内,复数2(13)1iz i i =+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,阴影部分的面积是( )A.23B.23-C.323D.3539.函数2()sin f x x =的导数是( )A.2sin xB.22sin xC.2cos x D.sin 2x10.下列说法正确的是()A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值11.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y x x =· C.12y x x=+D.1cos y x=12.已知抛物线C 的方程为x 2=y ,过点A (0,﹣1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(﹣∞,﹣1)∪(1,+∞)B .(﹣∞,﹣)∪(,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣)∪(,+∞)二、填空题(每小题5分 ,共20分)13.函数23)(x x x f +=单调递减区间是14.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 . 15.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .16.通过观察下面两等式的规律,请你写出一般性的命题:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++________________________________________________高二理科数学试卷答题卡1 2 3 4 5 6 7 8 9 10 11 12二、填空题(每小题5分 ,共20分)13.___________, 14.____________,15.____________,16.______________________________.三、解答题(共70分)17.(本小题满分12分)已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.18.(本小题满分12分)求函数5224+-=x x y 在区间[-2,2]上的最大值与最小值19.(本小题满分10分)求曲线2xy 过点P(1,-1)的切线方程。

黑龙江省哈尔滨市第十一中学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

黑龙江省哈尔滨市第十一中学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

哈尔滨市第十一中学校2023-2024学年高二下学期期中考试数学试题分数:150分时间120分钟一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)1. 的展开式中的系数为( )A. 80 B. 40 C. 10 D.2. 在等比数列中,,则( )A. B. 3 C. D. 23. 已知函数 的导函数 的图象如图所示,那么对于函数 ,下列说法正确的是( )A. 在 上单调递增B. 在 上单调递减C. 在 处取得最大值D. 在 处取得极大值4. 已知函数,曲线在点处的切线方程为( )A. B. C. D.5. 在等差数列中,若,则( )A. 45B. 6C. 7D. 86. 有5个人到南京、镇江、扬州的三所学校去应聘,若每人至多被一个学校录用,每个学校至少录用其中一人,则不同的录用情况种数是( )A. 300B. 360C. 390D. 420522x x ⎛⎫- ⎪⎝⎭4x 40-{}n a 35727a a a =-5a =3-2-()y f x =()f x '()y f x =(),1∞--()1,∞+1x =2x =()33f x x x =-()y f x =()()22f ,9160x y --=9160x y +-=6120x y --=6120x y +-={}n a 25192228a a a a +++=12a =7. 若函数有两个不同极值点,则实数a 的取值范围是( )A. B. C. D. 8. 已知数列前n 项和为且,若对任意恒成立,则实数a 的取值范围是( )A. B. C. D. 二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的不得分)9. 下列四个关系式中,一定成立的是( )A. B. C. D. 10. 关于等差数列和等比数列,下列说法正确的是( )A. 若数列的前项和,则数列为等比数列B. 若的前项和,则数列为等差数列C. 若数列为等比数列,为前项和,则成等比数列D. 若数列为等差数列,为前项和,则成等差数列11. 已知函数在区间上单调递减,则的值可能为( )A B. C. D. 三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)12. 已知函数,则的最大值为_______.13. 展开式中的系数为,则的值为______.14. 大连市普通高中创新实践学校始建于2010年1月,以丰富多彩的活动广受学生们的喜爱.现有A ,B ,的的.21()42ln 2f x x x a x =-+-(,1)-∞(0,1)(0,2)(,2)-∞{}n a n S 2n n n a =(1)n n n S a a +>-*N n ∈(,1)(2,)-∞-⋃+∞(1,2)-3(1,)2-3(,1)(,)2-∞-+∞ 32853C 2C 148-=()()111!A !m n n m n ---=-(2,,N)n m m n ³³Î11A A m m n n n --=(2,,N)n m m n ³³Î333345610C C C C 328++++= {}n a n 122n n S +=-{}n a {}n b n 22=++n S n n {}n b {}n a n S n 232,,,n n n n n S S S S S -- {}n b n S n 232,,,n n n n n S S S S S -- ()e ln x f x a x =-()1,2a 2e 2e -3e -e-()[],0,πf x x x x =∈()f x ()2024(1)a x x +-2024x 2023-aC ,D ,E 五名同学参加现代农业技术模块,影视艺术创作模块和生物创新实验模块三个模块,每个人只能参加一个模块,每个模块至少有一个人参加,其中A 不参加现代农业技术模块,生物创新实验模块因实验材料条件限制只能有最多两个人参加,则不同的分配方式共有__________种.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 第24届哈尔滨冰雪大世界开园后,为了了解进园游客对本届冰雪大世界的满意度,从进园游客中随机抽取50人进行调查并统计其满意度评分,制成频率分布直方图如图所示,其中满意度评分在的游客人数为18.(1)求频率分布直方图中值;(2)从抽取的50名游客中满意度评分在及的游客中用分层抽样的方法抽取5人,再从抽取的5人中随机抽取2人,求2人中恰有1人的满意度评分在的概率.16. 已知数列满足,且,,成等比数列.(1)求的通项公式;(2)设数列的前项和为,求的最小值及此时的值.17. 已知函数,当时,取得极值.(1)求的解析式;(2)求函数的单调区间;(3)求在区间上的最值.18. 已知数列的前项和为,满足.(1)求的通项公式;(2)删去数列的第项(其中),将剩余的项按从小到大的顺序排成新数列,设的[)76,84,a b [)60,68[]92,100[)60,68{}n a 12(N )n n a a n *+-=∈5a 8a 9a {}n a {}n a n n S n S n 32()1(R)f x ax bx a =++∈2x =()f x 3-()f x ()f x ()f x []23-,{}n a n n S 22n n S a =-{}n a {}n a 3i 1,2,3,i =⋅⋅⋅{}n b的前项和为,请写出的前6项,并求出和.19. 已知函数.(1)讨论函数的单调性;(2)当时,证明:当时,.哈尔滨市第十一中学校2023-2024学年高二下学期期中考试数学试题 简要答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】C二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的不得分)【9题答案】{}n b n n T {}n b 6T 2n T ()()ln R m f x x m x=+∈()f x 1m =1x ≥()e e 0xxf x x --+≤【10题答案】【答案】AD【11题答案】【答案】CD三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)【12题答案】【答案】【13题答案】【答案】1【14题答案】【答案】84四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)【15题答案】【答案】(1),(2).【16题答案】【答案】(1)(2),【17题答案】【答案】(1)(2)单调递增区间为,单调递减区间为(3)最大值1,最小值为【18题答案】【答案】(1)(2)前6项为2,,,,,;;【19题答案】【答案】(1)答案略 为π0.01a =0.045b =35219n a n =-()min 81n S =-9n =32()31f x x x =-+(,0),(2,)-∞+∞(0,2)19-2n n a =22425272826438T =()26817n n T =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年高二(下)期中数学试卷(理科)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若命题P:“∀x∈Q,x2+2x﹣3≥0”,则命题P的否定:.2.抛物线y=x2的准线方程是.3.已知复数(i为虚数单位),则复数z的虚部为.4.已知双曲线的渐近线方程为,则m=.5.已知正三棱锥的底面边长为6,侧棱长为5,则此三棱锥的体积为.6.用反证法证明命题:“如果a,b∈N,ab可被3整除,那么a,b中至少有一个能被3整除”时,假设的内容应为.7.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0平行”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)8.某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xoy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C,…”②解:设AB的斜率为k,…点B(,),D(﹣,0),…据此,请你写出直线CD的斜率为.(用k表示)9.已知A(3,1)、B(﹣1,2),若∠ACB的平分线在y=x+1上,则AC所在直线方程是.10.设α,β为两个不重合的平面,m,n是两条不重合的直线,给出下列四个命题:①若m⊂α,n⊂α,m∥β,n∥β,则α∥β;②若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直;③若α⊥β,α∩β=m,m⊥n,则n⊥β;④若m∥n,n⊥α,α∥β,则m⊥β.其中所有真命题的序号是.11.如图所示,已知抛物线y2=2px(p>0)的焦点恰好是椭圆的右焦点F,且两条曲线的交点连线也过焦点F,则该椭圆的离心率为.12.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是.13.若实数a,b,c成等差数列,点P(﹣1,0)在动直线ax+by+c=0上的射影为M,点N 坐标为(3,3),则线段MN长度的最小值是.14.已知函数f(x)=x﹣1﹣(e﹣1)lnx,其中e为自然对数的底,则满足f(e x)<0的x 的取值范围为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2015春•淮安校级期中)已知命题P:函数y=log a(2x+1)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立,若P、Q都是真命题,求实数a的取值范围.16.(14分)(2013•越秀区校级模拟)如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.17.(15分)(2015春•淮安校级期中)已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程;(3)经过A,P,M三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由.18.(15分)(2015春•淮安校级期中)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当θ为多少时,年总收入最大?19.(16分)(2015春•淮安校级期中)在平面直角坐标系xOy中,已知椭圆E:+=1(a>b>0)过点(1,),其左、右焦点分别为F1、F2,离心率为.(1)求椭圆E的方程;(2)若A、B分别为椭圆E的左、右顶点,动点M满足MB⊥AB,且MA交椭圆E于点P.(i)求证:•为定值;(ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.20.(16分)(2014•徐州模拟)已知函数f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.(1)当a=﹣,c=时,求函数f(x)的单调区间;(2)当c=+1时,若f(x)≥对x∈(c,+∞)恒成立,求实数a的取值范围;(3)设函数f(x)的图象在点P(x1,f(x1))、Q(x2,f(x2))两处的切线分别为l1、l2.若x1=,x2=c,且l1⊥l2,求实数c的最小值.三、加试部分(总分40分,加试时间30分钟)21.(10分)(2015春•淮安校级期中)在正方体ABCD﹣A1B1C1D1中,O是AC的中点,E 是线段D1O上一点,且D1E=EO.求异面直线DE与CD1所成角的余弦值.22.(10分)(2015春•淮安校级期中)设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.23.(10分)(2015春•淮安校级期中)已知整数n≥4,集合M={1,2,3,…,n}的所有3个元素的子集记为A 1,A2,…,.当n=5时,求集合A1,A2,…,中所有元素的和.24.(10分)(2015春•淮安校级期中)过抛物线y2=2px(p为大于0的常数)的焦点F,作与坐标轴不垂直的直线l交抛物线于M,N两点,线段MN的垂直平分线交MN于P点,交x轴于Q点,求PQ中点R的轨迹L的方程.2014-2015学年高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若命题P:“∀x∈Q,x2+2x﹣3≥0”,则命题P的否定:∃x∈Q,x2+2x﹣3<0.考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃x∈Q,x2+2x﹣3<0,故答案为:∃x∈Q,x2+2x﹣3<0点评:本题主要考查含有量词的命题的否定,比较基础.2.抛物线y=x2的准线方程是y=﹣1.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先将抛物线方程化为标准方程,进而可求抛物线的准线方程.解答:解:由题意,抛物线的标准方程为x2=4y,∴p=2,开口朝上,∴准线方程为y=﹣1,故答案为:y=﹣1.点评:本题的考点是抛物线的简单性质,主要考查抛物线的标准方程,属于基础题.3.已知复数(i为虚数单位),则复数z的虚部为﹣1.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简已知复数,由复数的基本概念易得复数的虚部.解答:解:化简可得====1﹣i∴复数z的虚部为:﹣1故答案为:﹣1.点评:本题考查复数的代数形式的乘除运算,属基础题.4.已知双曲线的渐近线方程为,则m=﹣2.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线的渐近线方程为,可得=,即可求出m.解答:解:∵双曲线的渐近线方程为,∴=,∴m=﹣2.故答案为:﹣2.点评:本题考查双曲线的渐近线,解题的关键是由渐近线方程导出a,b,c的关系.5.已知正三棱锥的底面边长为6,侧棱长为5,则此三棱锥的体积为3.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:由正三棱锥的底面边长为6,侧棱长为5,知底面的正三角形的面积为:S==9,三棱锥的高为:h==.由此能求出此三棱锥的体积.解答:解:∵正三棱锥的底面边长为6,侧棱长为5,∴底面的正三角形的面积为:S==9,故底面的正三角形的高为3,其外接圆半径为2三棱锥的高为:h==.所以体积为:V==3.故答案为:3.点评:本题考查三棱锥的体积的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.6.用反证法证明命题:“如果a,b∈N,ab可被3整除,那么a,b中至少有一个能被3整除”时,假设的内容应为a,b都不能被3整除.考点:反证法的应用.专题:证明题.分析:根据用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面.再由命题:“a,b中至少有一个能被3整除”的否定是:a,b都不能被3整除,从而得到答案.解答:解:根据用反证法证明数学命题的方法和步骤,把要证的结论进行否定.命题:“a,b中至少有一个能被3整除”的否定是:“a,b都不能被3整除”,故答案为a,b都不能被3整除.点评:本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属于中档题.7.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0平行”的充分不必要条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:利用a=1判断两条直线是否平行;通过两条直线平行是否推出a=1,即可得到答案.解答:解:因为“a=1”时,“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0”化为l1:x+2y﹣1=0与l2:x+2y+4=0,显然两条直线平行;如果“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0平行”必有a(a+1)=2,解得a=1或a=﹣2,所以“a=1”是“直线l1:ax+2y﹣1=0与l2:x+(a+1)y+4=0平行”的充分不必要条件.故答案为:充分不必要.点评:本题考查充要条件的判断,能够正确判断两个命题之间的条件与结论的推出关系是解题的关键.8.某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xoy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C,…”②解:设AB的斜率为k,…点B(,),D(﹣,0),…据此,请你写出直线CD的斜率为.(用k表示)考点:直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:由题意可得直线AC的斜率为,则将k换成,可得点C(,),运用直线的斜率公式,计算即可得到.解答:解:椭圆x2+2y2=1的左顶点为A(﹣1,0),过点A作两条斜率之积为2的射线,设直线AB的斜率为k,则直线AC的斜率为,由题意可得点B(,),D(﹣,0),则将k换成,可得点C(,),则直线CD的斜率为=.故答案为:.点评:本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,考查运算能力,属于中档题.9.已知A(3,1)、B(﹣1,2),若∠ACB的平分线在y=x+1上,则AC所在直线方程是x﹣2y﹣1=0.考点:与直线关于点、直线对称的直线方程.分析:设点A关于直线y=x+1对称的点A′(x0,y0),则由题条件可求出A′(0,4).所以直线A′B的方程为2x﹣y+4=0.由此知C(﹣3,﹣2).从而得到直线AC的方程.解答:解:设点A关于直线y=x+1对称的点A′(x0,y0),则,解得,即A′(0,4).∴直线A′B的方程为2x﹣y+4=0.由得,解得C(﹣3,﹣2).∴直线AC的方程为x﹣2y﹣1=0.故答案:x﹣2y﹣1=0点评:本题考查直线方程的求法,解题时要结合实际情况,准确地进行求解.10.设α,β为两个不重合的平面,m,n是两条不重合的直线,给出下列四个命题:①若m⊂α,n⊂α,m∥β,n∥β,则α∥β;②若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直;③若α⊥β,α∩β=m,m⊥n,则n⊥β;④若m∥n,n⊥α,α∥β,则m⊥β.其中所有真命题的序号是④.考点:平面与平面之间的位置关系.专题:证明题.分析:①若m⊂α,n⊂α,m∥β,n∥β,则α∥β,由面面平行的判定定理判断;②若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直,由线线的位置关系判断;③若α⊥β,α∩β=m,m⊥n,则n⊥β,由线面垂直的条件进行判断;④若m∥n,n⊥α,α∥β,则m⊥β,由线面垂直的条件进行判断.解答:解:①若m⊂α,n⊂α,m∥β,n∥β,则α∥β,是一个错误命题,因为m,n不一定相交;②若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直,是错误命题,因为两个不垂直的平面中也存在互相垂直的两条直线;③若α⊥β,α∩β=m,m⊥n,则n⊥β,是错误命题,因为对比面面垂直的性质定理知,少了一个条件即n⊂α;④若m∥n,n⊥α,α∥β,则m⊥β是一个正确命题,因为两条平行线中的一条垂直于一个平面,则它也垂直于另一个平面,再有两个平行平面中的一个平面与一条直线垂直,则另一个平面也与这条直线垂直.故答案为④点评:本题考查平面与平面之间的位置关系,解题的关键是有着较好的空间想像能力以及对命题相关的定义与定理掌握得比较熟练.11.如图所示,已知抛物线y2=2px(p>0)的焦点恰好是椭圆的右焦点F,且两条曲线的交点连线也过焦点F,则该椭圆的离心率为﹣1.考点:抛物线的简单性质;椭圆的简单性质.专题:计算题.分析:设椭圆的左焦点为F',抛物线与椭圆在第一象限的交点为A,连接AF',可得Rt△AFF'中,AF=FF'=p,从而AF'=p,再根据椭圆的定义,可得AF+AF'=2a=(1+)p,最后用椭圆的离心率的公式求出该椭圆的离心率.解答:解:设椭圆的左焦点为F',抛物线与椭圆在第一象限的交点为A,连接AF',∴F(,0),F'(﹣,0),可得焦距FF'=p=2c,(c=为椭圆的半焦距)对抛物线方程y2=2px令x=,得y2=p2,所以AF=|y A|=p∴Rt△AFF'中,AF=FF'=p,可得AF'=p再根据椭圆的定义,可得AF+AF'=2a=(1+)p,∴该椭圆的离心率为e===﹣1故答案为:﹣1点评:本题给出椭圆的右焦点恰好是抛物线的焦点,并且两曲线的通径合在一起,求椭圆的离心率,着重考查了椭圆的定义与简单几何性质和抛物线的标准方程等知识点,属于中档题.12.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是(﹣∞,2﹣)∪.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线⇔方程f′(x)=在区间x∈(0,+∞)上有解,并且去掉直线2x﹣y=0与曲线f(x)相切的情况,解出即可.解答:解:,(x>0).∵函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,∴方程在区间x∈(0,+∞)上有解.即在区间x∈(0,+∞)上有解.∴a<2.若直线2x﹣y=0与曲线f(x)=lnx+ax相切,设切点为(x0,2x0).则,解得x0=e.此时.综上可知:实数a的取值范围是(﹣∞,2﹣)∪.故答案为:(﹣∞,2﹣)∪.点评:本题考查了导数的几何意义、切线的斜率、相互平行的直线之间的斜率关系、恒成立问题的等价转化等基础知识与基本技能方法,属于中档题.13.若实数a,b,c成等差数列,点P(﹣1,0)在动直线ax+by+c=0上的射影为M,点N 坐标为(3,3),则线段MN长度的最小值是5﹣.考点:等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列的性质得到2b=a+c,整理后可得直线ax+by+c=0恒过Q(1,﹣2),由条件得到PM与QM垂直得到M在以PQ为直径的圆上,利用中点坐标公式求出圆心A 的坐标,利用两点间的距离公式求出此圆的半径r和|AN|,判断出点N与圆的位置关系,在求出线段MN长度的最小值.解答:解:∵实数a,b,c成等差数列,∴2b=a+c,即a﹣2b+c=0,可得动直线ax+by+c=0恒过Q(1,﹣2),∵点P(﹣1,0)在动直线ax+by+c=0上的射影为M,∴∠PMQ=90°,则M在以PQ为直径的圆上,∴此圆的圆心A坐标为(,),即A(0,﹣1),半径r=|PQ|==,又N(3,3),∴|AN|==5,则点N在圆外,则|MN|min=5﹣,故答案为:5﹣.点评:本题考查了等差数列的性质,恒过定点的直线方程,圆周角定理,线段中点坐标公式,以及两点间的距离公式,利用等差数列的性质得到2b=a+c,即a﹣2b+c=0是解本题的突破点.14.已知函数f(x)=x﹣1﹣(e﹣1)lnx,其中e为自然对数的底,则满足f(e x)<0的x 的取值范围为(0,1).考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求函数的导数,判断函数的单调性,求出不等式f(x)<0的解,即可得到结论.解答:解:∵f(x)=x﹣1﹣(e﹣1)lnx,∴函数的定义域为(0,+∞),函数的导数为f′(x)=1﹣=,由f′(x)>0得x>e﹣1,此时函数单调递增,由f′(x)<0得0<x<e﹣1,此时函数单调递减,在x=e﹣1时,函数取得极小值,∵f(1)=0,f(e)=0,∴不等式f(x)<0的解为1<x<e,则f(e x)<0等价为1<e x<e,即0<x<1,故答案为:(0,1)点评:本题主要考查不等式的求解,根据导数研究函数的单调性是解决本题的关键.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2015春•淮安校级期中)已知命题P:函数y=log a(2x+1)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立,若P、Q都是真命题,求实数a的取值范围.考点:命题的真假判断与应用.专题:函数的性质及应用;不等式的解法及应用.分析:先求出P、Q是真命题时,实数a的取值范围,结合P、Q都是真命题,求出两个范围的交集,可得答案.解答:解∵命题P函数y=log a(2x+1)在定义域上单调递增;∴a>1…(4分)又∵命题Q不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立;∴a=2…(6分)或,…(10分)解得:﹣2<a<2综上所述:﹣2<a≤2…(12分)∵P、Q都是真命题,∴a的取值范围是1<a≤2…(14分)点评:本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.16.(14分)(2013•越秀区校级模拟)如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(1)连结BD,AC交于O,连结EO.可证出△PBD中,EO是中位线,得EO∥PB,结合线面平行的判定定理,即可证出PB∥平面AEC;(2)由线面垂直的性质,证出CD⊥PA.正方形ABCD中证出AD⊥CD,结合PA∩AD=A,可得CD⊥平面PAD,最后根据面面垂直判定定理,即可证出平面PAD⊥平面PCD.解答:解:(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PA又∵ABCD是正方形,可得AD⊥CD,且PA∩AD=A∴CD⊥平面PAD∵CD⊂平面PCD,∴平面PAD⊥平面PCD点评:本题在四棱锥中证明线面平行,并且证明面面垂直.着重考查了三角形的中位线定理、线面平行的判定定理和线面垂直、面面垂直的判定与性质等知识,属于中档题.17.(15分)(2015春•淮安校级期中)已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程;(3)经过A,P,M三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由.考点:直线与圆的位置关系;点到直线的距离公式.专题:综合题;直线与圆.分析:(1)设P(2m,m),代入圆方程,解得m,进而可知点P的坐标.(2)设直线CD的方程为:y﹣1=k(x﹣2),由圆心M到直线CD的距离求得k,则直线方程可得.(3)设P(2m,m),MP的中点Q(m,),因为PA是圆M的切线,进而可知经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,进而得到该圆的方程,根据其方程是关于m的恒等式,进而可求得x和y,得到经过A,P,M三点的圆必过定点的坐标.解答:解:设P(2m,m),由题可知MP=2,所以(2m)2+(m﹣2)2=4,解之得:m=0或m=,故所求点P的坐标为P(0,0)或P(,).(2)设直线CD的方程为:y﹣1=k(x﹣2),易知k存在,由题知圆心M到直线CD的距离为,所以,解得,k=﹣1或k=﹣,故所求直线CD的方程为:x+y﹣3=0或x+7y﹣9=0.(3)设P(2m,m),MP的中点Q(m,),因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,故其方程为:(x﹣m)2+(y﹣﹣1)2=m2+(﹣1)2,化简得:x2+y2﹣2y﹣m(2x+y﹣2)=0,此式是关于m的恒等式,故x2+y2﹣2y=0且(2x+y﹣2)=0,解得或所以经过A,P,M三点的圆必过定点(0,2)或(,).点评:本题主要考查了圆方程的综合运用.解题的关键是对圆性质的熟练掌握.18.(15分)(2015春•淮安校级期中)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当θ为多少时,年总收入最大?考点:在实际问题中建立三角函数模型.专题:导数的综合应用;三角函数的图像与性质.分析:(1)根据三角形的面积公式即可求区域Ⅱ的总面积;(2)建立三角函数关系式,求函数的导数,利用导数研究函数的最值即可.解答:解:(1)因为BD=AC,OB=OA,所以OD=OC.因为,DE∥OA,CF∥OB,所以DE⊥OB,CF⊥OA.又因为OE=OF,所以Rt△ODE≌Rt△OCF.所以.…(2分)所以.所以,所以,.…(6分)(2)因为,所以.所以=,…(10分)所以,令y'=0,则.…(12分)当时,y'>0,当时,y'<0.故当时,y有最大值.答:当θ为时,年总收入最大.…(15分)点评:本题主要考查三角函数的应用问题,根据条件建立三角关系是解决本题的关键.19.(16分)(2015春•淮安校级期中)在平面直角坐标系xOy中,已知椭圆E:+=1(a>b>0)过点(1,),其左、右焦点分别为F1、F2,离心率为.(1)求椭圆E的方程;(2)若A、B分别为椭圆E的左、右顶点,动点M满足MB⊥AB,且MA交椭圆E于点P.(i)求证:•为定值;(ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.考点:椭圆的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由题意的离心率公式和点满足题意方程,结合椭圆的a,b,c的关系,可得a,b,进而得到椭圆方程;(2)(i)设M(2,y0),P(x1,y1),求得直线MA的方程,代入椭圆方程,解得点P的坐标,再由向量的数量积的坐标表示,计算即可得证;(ii)直线MQ过定点O(0,0).先求得PB的斜率,再由圆的性质可得MQ⊥PB,求出MQ的斜率,再求直线MQ的方程,即可得到定点.解答:解:(1)由题意可得且a2﹣b2=c2,解得a=2,b=,即有椭圆方程为+=1;(2)(i)证明:由A(﹣2,0),B(2,0),MB⊥AB,设M(2,y0),P(x1,y1),可得MA:y=x+,代入椭圆方程可得,(1+)x2+x+﹣4=0,由﹣2x1=,可得x1=﹣,y1═x1+=,则•=﹣+•y0=4为定值;(ii)直线MQ过定点O(0,0).理由如下:由题意可得k PB==•=﹣,由PB与以PM为直径的圆的另一交点为Q,可得MQ⊥PB,即有k MQ=.则直线MQ:y﹣y0=(x﹣2),即y=x,故直线MQ过定点O(0,0).点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,注意联立直线方程和椭圆方程,运用韦达定理,同时考查向量的数量积的坐标表示和直线和圆的位置关系,属于中档题.20.(16分)(2014•徐州模拟)已知函数f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.(1)当a=﹣,c=时,求函数f(x)的单调区间;(2)当c=+1时,若f(x)≥对x∈(c,+∞)恒成立,求实数a的取值范围;(3)设函数f(x)的图象在点P(x1,f(x1))、Q(x2,f(x2))两处的切线分别为l1、l2.若x1=,x2=c,且l1⊥l2,求实数c的最小值.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)求函数的导数,利用函数单调性和导数之间的关系,即可求f(x)的单调区间;(2)若f(x)≥对x∈(c,+∞)恒成立,则只需求出f(x)的最小值即可;(3)由l1⊥l2知,,得到,分类讨论,再由导数与单调性的关系,即可得到实数c的最小值.解答:解:函数,求导得.(1)当,时,,若,则恒成立,所以f(x)在上单调减;若,则,令f′(x)=0,解得或(舍),当时,f′(x)<0,f(x)在上单调减;当时,f′(x)>0,f(x)在上单调增.所以函数f(x)的单调减区间是,单调增区间是.(2)当x>c,时,,而,所以当c<x<1时,f′(x)<0,f(x)在(c,1)上单调减;当x>1时,f′(x)>0,f(x)在(1,+∞)上单调增.所以函数f(x)在(c,+∞)上的最小值为,所以恒成立,解得a≤﹣1或a≥1,又由,得a>﹣2,所以实数a的取值范围是(﹣2,﹣1].(3)由l1⊥l2知,,而,则,若,则,所以,解得,不符合题意;故,则,整理得,,由c>0得,,令,则,t>2,所以,设,则,当时,g′(t)<0,g(t)在上单调减;当时,g′(t)>0,g(t)在上单调增.所以,函数g(t)的最小值为,故实数c的最小值为.点评:本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.三、加试部分(总分40分,加试时间30分钟)21.(10分)(2015春•淮安校级期中)在正方体ABCD﹣A1B1C1D1中,O是AC的中点,E 是线段D1O上一点,且D1E=EO.求异面直线DE与CD1所成角的余弦值.考点:异面直线及其所成的角.专题:计算题;空间角.分析:根据题意,建立如图所示空间直角坐标系,算出向量、的坐标,利用空间向量的夹角公式算出、所成角的余弦值,结合异面直线所成角的定义,即可得出异面直线DE与CD1所成角的余弦值.解答:解:设正方体的棱长为2,以DA、DC、DD1为x、y、z轴,建立如图所示空间直角坐标系,可得D(0,0,0),E(,,1),C(0,2,0),D1(0,0,2),∴=(,,1),=(0,﹣2,2),可得cos<,>===.由异面直线DE与CD1所成角等于、所成角,可得异面直线DE与CD1所成角的余弦值等于.点评:本题在正方体中求异面直线所成角的大小,着重考查了正方体的性质、利用空间向量研究空间直线所成角等知识,属于中档题.22.(10分)(2015春•淮安校级期中)设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:利用数学归纳法即可证明.解答:解:①当n=1时,左边=cosx+isinx=右边,此时等式成立;②假设当n=k时,等式成立,即(cosx+isinx)k=coskx+isinkx.则当n=k+1时,(cosx+isinx)k+1=(cosx+isinx)k(cosx+sinx)=(coskx+isinkx)(cosx+isinx)=coskxcosx﹣sinkxsinx+(coskxsinx+sinkxcosx)i=cos[(k+1)x]+isin[(k+1)x],∴当n=k+1时,等式成立.由①②得,(cosx+isinx)n=cosnx+isinnx.点评:本题考查了数学归纳法和三角函数的两角和差的正弦余弦公式,属于中档题.23.(10分)(2015春•淮安校级期中)已知整数n≥4,集合M={1,2,3,…,n}的所有3个元素的子集记为A 1,A2,…,.当n=5时,求集合A1,A2,…,中所有元素的和.考点:排列、组合及简单计数问题.专题:排列组合.分析:由题意可知集合A中的元素,组成集合A的子集的元素,出现的概率相等,求出每个元素出现的次数,即可求出所有元素的和.解答:解:当n=5时,含元素1的子集中,必有除1以外的两个数字,两个数字的选法有=6个,所以含有数字1的子集有6个.同理含2,3,4,5的子集也各有6个,于是所求元素之和为(1+2+3+4+5)×=6×15=90.点评:本题考查了子集的概念,排列组合的问题,关键是组成集合A的子集的元素,出现的概率相等,属于基础题.24.(10分)(2015春•淮安校级期中)过抛物线y2=2px(p为大于0的常数)的焦点F,作与坐标轴不垂直的直线l交抛物线于M,N两点,线段MN的垂直平分线交MN于P点,交x轴于Q点,求PQ中点R的轨迹L的方程.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由抛物线方程求出焦点坐标,再由题意设出直线l的方程为(k≠0),联立直线方程和抛物线方程,化为关于x的一元二次方程,利用根与系数关系得到P点坐标,结合PQ⊥l,求得PQ的方程,再设R的坐标为(x,y),再由中点坐标公式求得PQ的中点R的轨迹L的方程.解答:解:抛物线y2=2px的焦点为,设l的直线方程为(k≠0).由得,设M,N的横坐标分别为x1,x2,则,得,,资料收集于网络,如有侵权 请联系网站删除只供学习与交流 而PQ ⊥l ,故PQ 的斜率为,PQ 的方程为.代入y Q =0得.设动点R 的坐标(x ,y ),则,因此,故PQ 中点R 的轨迹L 的方程为4y 2=p (x ﹣p )(y ≠0).点评: 本题考查了轨迹方程的求法,考查了学生的灵活变形能力和整体运算能力,灵活性强,属于中档题.。

相关文档
最新文档