考研数学三必背知识点:线性代数
考研数学重要知识点解析线性代数

考研数学重要知识点解析线性代数线性代数是考研数学中的一个重要知识点,也是研究线性空间和其上的线性映射的一门数学分支。
它在数学中具有广泛的应用,例如在物理学、工程学、计算机科学等领域都有着重要的地位。
线性代数的重要知识点主要包括线性空间、线性映射、矩阵和向量等。
首先,线性空间是指满足一定条件的集合,其中的元素称为向量。
线性空间具有加法和数乘两种运算,满足一定的性质。
线性空间的基可以用来表示该空间中的任意向量,并且可以通过坐标来表示向量。
线性映射是线性代数中的一个重要概念,它是指将一个线性空间映射到另一个线性空间的函数。
线性映射保持向量空间的加法和数乘运算。
线性映射的矩阵也是线性代数中的一个重要概念,它可以通过矩阵乘法来表示。
矩阵是一个矩形的数表,由行和列组成。
矩阵是线性代数中的重要工具,可以用来表示线性映射、线性方程组等。
向量是线性代数中的另一个重要概念,它可以用来表示一个点或一个方向。
向量具有大小和方向两个属性,可以通过加法和数乘来进行运算。
向量的点乘和叉乘是线性代数中的两种重要运算,它们分别表示向量的数量积和向量的向量积。
在研究线性代数时,我们需要掌握线性映射和矩阵的基本性质,理解线性方程组、特征值和特征向量的概念,掌握矩阵的行列式和逆矩阵的计算方法,熟练运用向量的点乘和叉乘进行计算等。
同时,在解决线性代数相关问题时,我们还可以运用线性代数的一些方法和技巧,如矩阵的变换、矩阵的秩等。
这些方法和技巧在解决实际问题时往往能够提高解题的效率和准确度。
总之,线性代数是考研数学中的一个重要知识点,掌握线性空间、线性映射、矩阵和向量等的基本概念和性质,熟练运用相关的计算方法和技巧对于考研数学的学习和考试至关重要。
通过对线性代数的深入理解和应用,我们可以更好地理解和应用数学在实际问题中的作用。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
考研数学三必背知识点:线性代数

线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i >时,我们称21i i 组成一个逆序。
一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i τ 2、行列式性质(1) 行列式行列互换,其值不变,即TAA =(2) 行列式两行或两列互换,其值反号。
(3) 行列式某行或某列乘以k 等于行列式乘以k 。
(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。
(5) 行列式两行或两列对应成比例,则行列式为零。
(6) 行列式某行或某列元素为零,则行列式为零。
(7) 上、下三角行列式其值为主对角线上元素乘积。
(8) 行列式值等于对应矩阵所有特征值的乘积,即n A λλλ 21= (9) 齐次线性方程组0=Ax有非零解n A r A <⇔=⇔)(03、行列式行列展开定理 (1) 余子式ijji ijA M +-=)1( (2) 代数余子式ijji ijMA +-=)1(4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。
(2) 矩阵乘法是将对应行与对应列元素相乘再相加。
(3) 矩阵除法是乘以逆矩阵。
(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。
(5)n阶方阵一般可以有1*,,,-AA A A T 四大基本矩阵运算2、矩阵的行列式(1) A k kA A A n T ==, (2) A B B A BA AB === 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A ==+=+=)(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A ==--4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,AkkA A B AB AA A AA E A A A AA A A A n n -----=======(2)1)(0)(1)(1)()()(***-<⇔=-=⇔==⇔=n A r A r n A r A r nA r n A r5、逆矩阵 (1)1111*111111*1)(,1)(,,)(,,1-----------=======ABAB A AA AAA AE A AAAA AA(2) 分块矩阵的逆矩阵 ①111---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭AO A O OB O B (主对角分块)② 111OA O BB O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(副对角分块) ③11111AC A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭(拉普拉斯)④ 11111A O A O C B B C A B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭(拉普拉斯)6、矩阵初等变换(1) 交换矩阵两行或两列(2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵7、矩阵其他考点(1) 行列矩阵相乘:α为行矩阵),,(21n a a a ,β为列矩阵),,(21n b b b , 则βααβααβαβββαβαβαβα1)()()()())(()(-===k k(2) 矩阵n A 的求法:若A 可对角化,则有Λ=-AP P 1,于是1-Λ=P P A n n (3) 若n B r m A r ==)(,)(,则有m A r B A r =≤+)()(且n B r B A r =≤+)()(三、向量1、向量运算:βαβαλβαλβααββαk k k ±=±±±=±±±=±)(),()(,2、线性表示对于向量组s ααα ,,21和向量β,若存在一组数s k k k ,,21使得s s k k k αααβ+++= 2211 (1) 若s s k k k αααβ+++= 2211有唯一解,则β能由向量组s ααα ,,21唯一线性表示。
线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
线性代数知识点总结

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。
下面我们就来详细梳理一下线性代数中的重点知识。
一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。
计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。
其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。
行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。
行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。
二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。
矩阵的运算有加、减、乘、数乘。
矩阵乘法需要注意其规则,不满足交换律。
逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。
求逆矩阵的方法有伴随矩阵法和初等变换法。
矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。
三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。
判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。
极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。
向量组的秩等于其极大线性无关组所含向量的个数。
四、线性方程组线性方程组是线性代数的重点应用之一。
齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。
非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。
求解线性方程组可以使用高斯消元法。
五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。
求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。
考研数学线性代数必背知识点

反对称矩阵 A = A 。
0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。
向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。
A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。
或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。
上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。
如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
考研数学三内容知识点总结

考研数学三内容知识点总结一、高等代数高等代数是数学三中的一个重要部分,它包括了矩阵论、线性代数和群论等内容。
1.1 矩阵论矩阵是高等代数中的一个基本概念,通过矩阵可以描述多种数学对象,如线性方程组、线性映射、向量空间等。
矩阵的基本运算包括加法、数乘和乘法,其中乘法是矩阵论中的一个重要部分。
对于矩阵的乘法,可以通过定义求解矩阵的乘法运算。
在矩阵的乘法中,要注意矩阵乘法的结合律、分配律和单位矩阵的性质。
另外,行列式也是重要的内容之一,矩阵的行列式可以用来描述矩阵的性质和特征。
另外,矩阵的迹、秩、特征值等也是需要重点掌握的内容,它们可以描述矩阵的重要性质,对于矩阵的分解和性质分析有着重要的应用。
1.2 线性代数线性代数是高等代数的另一个重要内容,它主要包括了向量、线性空间、线性映射等内容。
在考研数学三中,线性代数的重点内容包括线性相关、线性无关、向量组的极大线性无关组、维数、正交性等。
线性代数中的概念和定理较多,需要考生认真掌握。
特别是要注意对向量空间的理解,线性相关和线性无关的判别方法,以及对线性映射的理解和运用。
1.3 群论群论是高等代数中的一个重要分支,它研究的是一类代数结构。
在数学三考研中,群论主要包括群的定义、子群、商群、同态映射、正规子群等内容。
重点需要掌握群的性质、群的同态映射、群的分解等。
二、数学分析数学分析是数学三中的另一个重要部分,它主要包括了实变函数和复变函数两个方面。
2.1 实变函数实变函数是数学分析中的一个核心内容,它研究的是实数集上的函数的性质。
在数学三考研中,实变函数的重点内容包括实数集、实数列、数列极限、函数极限、函数的连续性、一致连续性、导数和积分等。
对于实变函数的学习,需要重点掌握数列和函数的极限定义和性质,连续性的定义和判定方法,以及导数和积分的计算方法。
2.2 复变函数复变函数是数学三中的一个较为难点的内容,它研究的是复数集上的函数的性质。
在复变函数中,需要重点掌握函数的解析性、柯西—黎曼方程、留数定理和辐角原理等内容。
考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半;<2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
~特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1(。
定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
%2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)}7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
数三线性代数必考知识点

数三线性代数必考知识点线性代数必考知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;( 例14)4. ;( 例15)5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;②、对矩阵,存在,、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
线性代数背诵要点(全)

第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数是考研数学中的重要一部分,是以线性代数为基础的高等数学课程。
线性代数在科学与工程中有着广泛的应用,而考研数学线性代数的知识点主要包括矩阵、行列式、线性方程组、特征值与特征向量、线性空间和线性变换等内容。
一、矩阵1.矩阵的基本运算:矩阵的加减法、数乘、乘法及其性质;2.矩阵的转置、对称与反对称矩阵、单位矩阵;3.矩阵的秩:元素型和行列型定义、秩的性质和计算方法;4.矩阵的逆:可逆矩阵与非奇异矩阵、矩阵的逆的存在性和计算方法;5.矩阵的秩公式和分块矩阵。
二、行列式1.行列式的定义:n阶行列式的定义、性质和计算方法;2.行列式的性质:行列式的性质和性质导出的定理;3.方阵的行列式的计算:按行(列)展开、对角线法则、拉普拉斯展开;4.计算商工差、计算行列式的特殊方法;5.行列式的应用:方阵可逆的判定、线性方程组的解的存在性与唯一性、向量线性相关与线性无关的判定。
三、线性方程组1.线性方程组的线性组合与线性相关性;2.齐次方程组与非齐次方程组的概念;3.齐次线性方程组的基础解系与通解;4.线性方程组的求解方法:初等变换法、高斯消元法、矩阵法;5.线性方程组的解的判别准则:齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件。
四、特征值与特征向量1.特征值与特征向量的定义;2.特征值与特征向量的性质:特征值的性质、特征向量的性质;3.对角化与相似矩阵:矩阵的相似与相似矩阵的性质;4.对称矩阵的主轴定理和谱定理;5.特征值与特征向量的计算方法。
五、线性空间与线性变换1.线性空间的定义和性质;2.线性子空间的定义和性质;3.线性相关与线性无关性质的判定;4.线性空间的基与维数的概念;5.线性变换的定义和性质:线性变换的线性性质、线性变换的像与核。
以上就是考研数学线性代数必考的主要知识点。
掌握了这些知识点,可以帮助考生有效准备考研数学线性代数的复习和应对考试,为取得良好成绩打下坚实的基础。
考研数学有哪些线性代数复习重点

考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
解密考点河北省考研数学三复习资料线性代数与解析几何重要考点总结

解密考点河北省考研数学三复习资料线性代数与解析几何重要考点总结解密考点:河北省考研数学三复习资料线性代数与解析几何重要考点总结一、线性代数重要考点总结线性代数是数学的一个重要分支,也是考研数学三中的一大重点内容。
在河北省考研数学三的复习资料中,线性代数占有相当大的比重。
下面是一些线性代数的重要考点总结。
1. 向量和矩阵向量和矩阵是线性代数的基础,是考研数学三中最为基本的概念。
需要掌握向量的加法、数乘、点乘等运算法则,以及矩阵的加法、数乘、乘法、转置等运算法则。
2. 行列式行列式是线性代数的一个重要概念,也是考研数学三中必考的考点之一。
需要熟练掌握行列式的定义、性质和计算方法。
特别是高阶行列式的计算,需要掌握常见的计算方法,如按行、按列展开等。
3. 矩阵的特征值与特征向量矩阵的特征值与特征向量是矩阵理论中的重要内容。
需要掌握特征值与特征向量的定义、性质,以及计算特征值与特征向量的方法。
还需要了解特征值的几何意义和应用。
4. 线性方程组线性方程组是线性代数中的一个重要概念,也是考研数学三中必考的考点之一。
需要掌握线性方程组的基本概念、解的存在性和唯一性,以及解的表示形式和求解方法。
还需要掌握线性方程组的矩阵表示形式和求解方法。
5. 线性空间与线性变换线性空间是线性代数的一个重要概念,需要掌握线性空间的定义、性质和基本运算法则。
线性变换是线性代数中的一个重要概念,需要掌握线性变换的定义、性质和基本运算法则。
二、解析几何重要考点总结解析几何是数学的一个分支,也是考研数学三的一大考点。
在河北省考研数学三的复习资料中,解析几何也是占有相当比重的内容。
下面是一些解析几何的重要考点总结。
1. 平面与直线的方程平面与直线的方程是解析几何的基础,是考研数学三中最为基本的概念。
需要掌握平面与直线的标准方程、一般方程和截距式方程。
需要熟悉平面与直线的位置关系,如平行、垂直等。
2. 空间中的点、直线与平面空间中的点、直线与平面是解析几何中的重要概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。
一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质(1) 行列式行列互换,其值不变,即T A A(2) 行列式两行或两列互换,其值反号。
(3) 行列式某行或某列乘以k 等于行列式乘以k 。
(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。
(5) 行列式两行或两列对应成比例,则行列式为零。
(6) 行列式某行或某列元素为零,则行列式为零。
(7) 上、下三角行列式其值为主对角线上元素乘积。
(8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理(1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。
(2) 矩阵乘法是将对应行与对应列元素相乘再相加。
(3) 矩阵除法是乘以逆矩阵。
(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。
(5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式(1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,A k kA A B AB A A A AA E A A A AA A A A n n(2) 1)(0)(1)(1)()()(*** n A r A r n A r A r nA r n A r5、逆矩阵 (1) 1111*111111*1)(,1)(,,)(,,1A B AB A AA A A A A E A A AA A A A (2) 分块矩阵的逆矩阵① 111A O A O OB OB (主对角分块)② 111O A O B B O AO(副对角分块) ③ 11111A C A A CB O B OB(拉普拉斯)④ 11111A O A O C B B CA B(拉普拉斯) 6、矩阵初等变换(1) 交换矩阵两行或两列 (2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵 7、矩阵其他考点(1) 行列矩阵相乘: 为行矩阵),,(21n a a a , 为列矩阵),,(21n b b b , 则 1)()()()())(()( k k(2) 矩阵n A 的求法:若A 可对角化,则有 AP P 1,于是1 P P A n n (3) 若n B r m A r )(,)(,则有m A r B A r )()(且n B r B A r )()(三、向量1、向量运算: k k k )(),()(,2、线性表示对于向量组s ,,21和向量 ,若存在一组数s k k k ,,21使得s s k k k 2211 (1) 若s s k k k 2211有唯一解,则 能由向量组s ,,21唯一线性表示。
(2) 若s s k k k 2211有无穷解,则 能由向量组s ,,21不唯一线性表示。
(3) 若s s k k k 2211无解,则 不能由向量组s ,,21线性表示。
3、线性相关性(1) 方程02211 s s k k k 中有021 s k k k 时线性相关,不全为零则线性无关。
(2) 一组向量线性无关,则在每个向量相同位置添加分量后仍然线性无关。
(3) 一组向量线性相关,则减少其中某些分量后仍然线性无关。
(4) 设有m 个n 维列向量组),,(21m A ,m A r )(时线性无关,m A r )(时线性相关。
(5) 设有n 个n 维列向量组),,(21m A ,0 A 时时线性无关,0 A 时线性相关。
4、向量内积:向量的对应元素之积(常数),即 n n T n T n b a b a b a b b a a 221111,),(,),(5、施密特正交化(三阶向量组)一线性无关向量组321,, 所对应的正交向量组321,, 为:222231111333111122211),(),(),(),(,),(),(,四、线性方程组1、克莱姆法则方程组n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212111212111中,系数行列式0212222111211 nnn n nn a a a a a a a a a D时,方程有唯一解,且 DD x D Dx D D x n n,,2211,其中j D 是将行列式D 中第j 列元素用n b b b ,,21来代替 (1) 当021 n b b b 时,对应方程组称为n 元齐次线性方程组。
(2) 克莱姆法则只适用于方程个数和未知量个数相等的线性方程组,若0 D 时法则失效。
2、齐次线性方程组0 Ax(1) 0 Ax 一定有解,当n r A r )((即0 A )时有非零解,当n A r )((即0 A )时仅有零解。
(2) 0 Ax 的基础解系不是唯一的,且基础解系中所含向量个数r n k (3) 若21, 为0 Ax 的解,则2211 k k 为0 Ax 的解,其中21,k k 为常数 (4) 若0 Ax 和0 Bx 同解)()(B r A r(5) 若0 Ax 和0 Bx 有公共解,则两方程组联立的新方程组0 Cx 有非零解,即0 C 3、非齐次线性方程组b Ax(1) nb A r A r b Ax n b A r A r b Ax b A r A r b Ax )()()()()()( 有无穷解有唯一解无解(2) 若21, 为b Ax 的解,则21 为0 Ax 的解(3) 若 为b Ax 的解,且 为对应0 Ax 的解,则 为b Ax 的解 (4) 若* 为b Ax 的特解,且 为对应0 Ax 的通解,则* 为b Ax 的通解(5) 若r A r )(,则0 Ax 有r n k 1个线性无关解,且b Ax 有12 r n k 个线性无关解。
(6) 若1b Ax 和2b Bx 同解)()(21b B r b A r五、特征值与特征向量1、基本定义(1) 特征值和特征向量:对于n 阶方阵A ,有非零向量x 使得x Ax 成立,则 为特征值,对应的x 为特征向量 (2) 特征方程和特征多项式:求特征值时0 A E 为特征方程,而A E 为特征多项式。
2、特征值的性质(1) n A 21 n nn a a a A tr 212211)((2) 不同特征值对应的特征向量 特征向量线性无关(3) 一个特征值可能对应多个特征向量,一个特征向量有且仅有一个对应特征值 (4) 若i 为k 重特征值(k 重根)i 对应的线性无关特征向量个数k(5) 若n 阶矩阵有n 个线性无关特征向量 每个特征值重根数 对应线性无关特征向量个数 3、相似矩阵(1) 定义:若B AP P 1,则A 与B 相似。
(2) 常用运算式:BP lP AP kP P lB kA P BP P AP P ABP P 111111)(),)(((3) 若A 和B 相似B A B E A E B tr A tr B A B r A r )()()()( (4) 若A 和B 相似1 A 和1 B 相似 A 和B 相似于同一个对角阵(5) 若T n T n b b a a ),(,),(11 ,则有n n T T T b a b a b a tr 2211)( 4、矩阵对角化(1) 定义:n 阶矩阵A ,若有 AP P 1,则称A 可对角化(2) n 阶矩阵A (特征值为s ,,21且n r A r )()可对角化的充要条件: ①若s ,,21互不相等A 可对角化②若s ,,21中有k 个 相等,且A k n A E r )( 可对角化 ③若s ,,21中有k 个 相等,且A k n A E r )( 不可对角化 5、正交矩阵(1) A 是正交矩阵11, A A A A E AA T T T 也是正交矩阵 (2) A 是正交矩阵A A 1的各行(列)是单位向量且两两正交 (3) B A ,都是正交矩阵AB 是正交矩阵六、二次型1、基本概念(1) 二次型(三元二次型):32233113211223333222222111222x x a x x a x x a x a x a x a f (2) 标准二次型(三元二次型):233222211y k y k y k f2、矩阵合同(1) 定义:若AB 矩阵有B AC C T ,则称AB 合同,记为B A(2) 设AB 均为n 阶实对称矩阵,则有相似 合同,相似 等价,反之不成立。
(3) 若)()(B r A r B A 且AB 有相同的正惯性指数B A , 正负特征值个数相同 3、正定二次型和正定矩阵(A 为n 阶实对称方阵)(1) 定义:对阵矩阵A 的二次型Ax x f T 如果对于任何非零向量x 都有0 Ax x T 则称Ax x f T 为正定二次型,称矩阵A 为正定矩阵。
(2) A 为正定矩阵)2,1(,0 i i (3) A 为正定矩阵*1,,A A A T 为实对称矩阵 (4) A 为正定矩阵A 的正惯性指数n p (5) A 为n m 矩阵且A A m n A r T )(为正定矩阵(6) A 为正定矩阵且有非奇异矩阵C 使得E A C C A T (7) B A ,为n 正定矩阵B A 为正定矩阵,但BA AB ,不能确定 (8) A 为正定矩阵0 A 且)2,1(0n i a ii(9) A 为正定二次型A 各阶顺序主子式全大于零,即:0,0,011112221121111 nnn n a a a a a a a a a。