中南大学冶金原理第4章

合集下载

中南大学冶金原理题库

中南大学冶金原理题库

中南大学冶金原理题库第一篇冶金熔体第一章概述1(什么是冶金熔体,它分为几种类型,2(何为熔渣,简述冶炼渣和精炼渣的主要作用。

3(什么是富集渣,它与冶炼渣的根本区别在哪里,4(试说明熔盐在冶金中的主要应用。

5(熔锍的主要成分是什么,6(为什么熔盐电解是铝、镁、钠、锂等金属的惟一的或占主导地位的生产方法, 第二章冶金熔体的相平衡1(在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律。

X:A 10%,B 70%,C 20%;Y:A 10%,B 20%,C 70%;Z:A 70%,B 20%,C 10%;若将3kg X熔体与2kg Y熔体和5kg Z熔体混合,试依据杠杆规则用作图法和计算法求出混合后熔体的组成点。

2(试找出图2-44所示的三元系相图中的错误,说明原因并更正。

3(图2-45是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界线上的平衡反应;(2)写出P、E两个无变点的平衡反应;(3)分析熔体1、2、3、4、5、6的冷却结晶路线。

4(某三元系相图如图2-46中所示,AmBn为二元不一致熔融化合物。

试分析熔体1、2、3的冷却结晶过程。

5(图2-47为生成一个三元化合物的三元相图,(1)判断三元化合物N的性质;(2)标出边界线的温度降低方向;(3)指出无变点K、L、M的性质,写出它们的平衡反应;(4)分析熔体1、2的冷却过程。

6(试分析图2-23熔体3、4、5、6的冷却过程。

7(试根据CaO-SiO2-A12O3系相图说明组成为(wB / %)CaO 40.53,SiO232.94,A12O3 17.23,MgO 2.55的熔渣冷却过程中液相及固相成分的变化。

8(试根据图2-30绘制CaO- A12O3- SiO2三元系1500?C时的等温截面图。

9(给出CaO-SiO2-FeO系相图中1500?C的等温截面图,标出各相区内的相平衡关系。

组成为(wB / %)CaO 45、SiO2 25、FeO 20的熔渣在此温度下析出什么晶相,怎样才能使此熔渣中的固相减少或消除?10(假定炉渣碱度为= 2。

中南大学冶金原理题库

中南大学冶金原理题库

中南大学冶金原理题库第一篇冶金熔体第一章概述1.什么是冶金熔体?它分为几种类型?2.何为熔渣?简述冶炼渣和精炼渣的主要作用。

3.什么是富集渣?它与冶炼渣的根本区别在哪里?4.试说明熔盐在冶金中的主要应用。

5.熔锍的主要成分是什么?6.为什么熔盐电解是铝、镁、钠、锂等金属的惟一的或占主导地位的生产方法?第二章冶金熔体的相平衡1.在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律。

X:A 10%,B 70%,C 20%;Y:A 10%,B 20%,C 70%;Z:A 70%,B 20%,C 10%;若将3kg X熔体与2kg Y熔体和5kg Z熔体混合,试依据杠杆规则用作图法和计算法求出混合后熔体的组成点。

2.试找出图2-44所示的三元系相图中的错误,说明原因并更正。

3.图2-45是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界线上的平衡反应;(2)写出P、E两个无变点的平衡反应;(3)分析熔体1、2、3、4、5、6的冷却结晶路线。

4.某三元系相图如图2-46中所示,AmBn为二元不一致熔融化合物。

试分析熔体1、2、3的冷却结晶过程。

5.图2-47为生成一个三元化合物的三元相图,(1)判断三元化合物N的性质;(2)标出边界线的温度降低方向;(3)指出无变点K、L、M的性质,写出它们的平衡反应;(4)分析熔体1、2的冷却过程。

6.试分析图2-23熔体3、4、5、6的冷却过程。

7.试根据CaO-SiO2-A12O3系相图说明组成为(wB / %)CaO 40.53,SiO2 32.94,A12O3 17.23,MgO 2.55的熔渣冷却过程中液相及固相成分的变化。

8.试根据图2-30绘制CaO- A12O3- SiO2三元系1500°C时的等温截面图。

9.给出CaO-SiO2-FeO系相图中1500°C的等温截面图,标出各相区内的相平衡关系。

组成为(wB / %)CaO 45、SiO2 25、FeO 20的熔渣在此温度下析出什么晶相?怎样才能使此熔渣中的固相减少或消除?10.假定炉渣碱度为= 2。

《冶金原理》课后习题及解答

《冶金原理》课后习题及解答

第一章1 冶金原理研究的主要内容包括________、________和________。

冶金动力学、冶金热力学、冶金溶液。

2 金属熔体指________、________。

液态的金属、合金。

1、冶金原理是提取冶金的主要基础科学,它主要是应用_______的理论和方法研究提取冶金过程,为解决有关_____问题、开拓____的冶金工艺、推进冶金技术的发展指明方向。

物理化学、技术、新2、根据组成熔体的主要成分的不同,一般将冶金熔体分为________、______、_______、_______四种类型。

金属熔体、熔渣、熔盐、熔硫。

3、冶金原理按具体的冶金对象分为______冶金原理及_____冶金原理。

钢铁、有色金属。

4、根据熔渣在冶炼过程中的作用的不同,熔渣主要分为________、_______、________、__________四种。

在生产实践中,必须根据各种冶炼过程的特点,合理地选择_____,使之具有符合冶炼要求的物理化学性质。

冶炼渣、精炼渣、富集渣、合成渣。

熔渣。

5、熔渣是_______和_______的重要产物之一。

金属提炼、精炼过程。

6、熔渣是指主要由各种______熔合而成的熔体。

氧化物。

7、________的作用在于使原料中的某些有用成分富集于炉渣中,以便在后续工序中将它们回收利用。

富集渣、8、_______的作用是捕集粗金属中杂质元素的氧化产物,使之与主金属分离。

精炼渣。

9、在造锍熔炼过程中,为了使锍的液滴在熔渣中更好的沉降、降低主金属在渣中的损失,要求熔渣具有较低的______、______和_______。

粘度、密度、渣-锍界面张力。

10、为了提高有价金属的回收率、降低冶炼过程的能耗,必须使锍具有合适的______.物理化学性质。

11、在生产实践中,必须根据各种冶炼过程的特点,合理地选择________,使之具有符合冶炼要求的物理化学性质。

熔渣成分12、冶金过程热力学可以解决的问题有:1)计算给定条件下的;根据的正负判断该条件下反应能否自发地向________进行:2)计算给定条件下的平衡常数,确定反应进行的______;3)分析影响反应的和平衡常数,为进一步提高________指明努力方向。

冶金原理课件(中南)-第4章课件PPT学习

冶金原理课件(中南)-第4章课件PPT学习
第3页/共78页
4.1 熔化温度
图41 MgOFeOSiO2渣系熔化等温线图
第4页/共78页
4.1 熔化温度
当炼镍原料中含有较多的CaO时,可选用高钙渣。 图42中的C点为高钙渣CaO含量的下限,位于鳞石英相区 内1200C等温线下面。 D点代表高钙渣CaO含量的上限,位于硅灰石CaO SiO2相 区,紧靠1100C等温线。 高钙渣的熔化温度处于1100~1200C之间。 由于渣中MgO含量约为4%~9%或更高,高钙渣的熔化温度 可能更高。
+ 0.367(MgO) + 0.48 (P2O5) + 0.402(A12O3),103m3·kg1
(MxOy) —— 氧化物MxOy的质量分数。
当T >1673K时,可按下式计算任意温度下的熔渣密度:
T
1673
0.071673 T , 10 3 kg m3 100
第14页/共78页
4.2 密 度
SiO2
CaO / %(质量) CaO / %(mol)
/ %(mol) SiO 2 / %(质量) SiO 2
Al2O3 / %(质量) 图45 A12O3CaOSiO2渣系的密度 (1500C,单位为103kg·m3)
Cu
1083
熔盐
熔渣 熔锍
Pb 铝电解质 镁电解质 锂电解质
327.5 ~960 580~700 350~360 1100~1400 700~1100
第2页/共78页
4.1 熔化温度
冶炼镍铜品位低、钙镁含量高的镍精矿时的渣型选择
根据矿石成分的变化可选择两种酸性渣型:高硅渣和高钙渣 两种渣型都能抑制氧化镁和磁性氧化铁的有害作用。 对于含镁高的矿石,采用高硅渣可以增加炉渣硅酸度,抑制 MgO(熔点约2800C) 的危害,同时使Fe3O4造渣: 2MgO + SiO2 = 2MgO·SiO2 2Fe3O4 + FeS + 5SiO2 = 5(2FeO·SiO2) + SO2 SiO2的加入量随原料成分而变化。 图中A点代表高硅渣中SiO2含量的下限,B点代表其上限。 高硅渣的熔化温度大致在1400~1500C之间。 炼镍鼓风炉的风口区温度可达1500~1800C,足以保证渣 的过热与排放。

《冶金原理》课后习题及解答

《冶金原理》课后习题及解答

第一章1 冶金原理研究的主要内容包括________、________和________。

冶金动力学、冶金热力学、冶金溶液。

2 金属熔体指________、________。

液态的金属、合金。

1、冶金原理是提取冶金的主要基础科学,它主要是应用_______的理论和方法研究提取冶金过程,为解决有关_____问题、开拓____的冶金工艺、推进冶金技术的发展指明方向。

物理化学、技术、新2、根据组成熔体的主要成分的不同,一般将冶金熔体分为________、______、_______、_______四种类型。

金属熔体、熔渣、熔盐、熔硫。

3、冶金原理按具体的冶金对象分为______冶金原理及_____冶金原理。

钢铁、有色金属。

4、根据熔渣在冶炼过程中的作用的不同,熔渣主要分为________、_______、________、__________四种。

在生产实践中,必须根据各种冶炼过程的特点,合理地选择_____,使之具有符合冶炼要求的物理化学性质。

冶炼渣、精炼渣、富集渣、合成渣。

熔渣。

5、熔渣是_______和_______的重要产物之一。

金属提炼、精炼过程。

6、熔渣是指主要由各种______熔合而成的熔体。

氧化物。

7、________的作用在于使原料中的某些有用成分富集于炉渣中,以便在后续工序中将它们回收利用。

富集渣、8、_______的作用是捕集粗金属中杂质元素的氧化产物,使之与主金属分离。

精炼渣。

9、在造锍熔炼过程中,为了使锍的液滴在熔渣中更好的沉降、降低主金属在渣中的损失,要求熔渣具有较低的______、______和_______。

粘度、密度、渣-锍界面张力。

10、为了提高有价金属的回收率、降低冶炼过程的能耗,必须使锍具有合适的______.物理化学性质。

11、在生产实践中,必须根据各种冶炼过程的特点,合理地选择________,使之具有符合冶炼要求的物理化学性质。

熔渣成分12、冶金过程热力学可以解决的问题有:1)计算给定条件下的;根据的正负判断该条件下反应能否自发地向________进行:2)计算给定条件下的平衡常数,确定反应进行的______;3)分析影响反应的和平衡常数,为进一步提高________指明努力方向。

冶金原理课件(中南大学)

冶金原理课件(中南大学)

可划分为15个子三角形,对应15个无变点。
其中 8个低共熔点 8个独立三角形; 7个转熔点 无对应的独立三角形。 23条二元低共熔线,5条二元转熔线。 8个二元低共熔点,5个二元转熔点。
返 回 ① ② ③ ④ ⑤ ⑥
体系特点(续)
图229 ①
在靠近纯 SiO2 附近有一个不大的液相分层区。 当Al2O3含量达到3%时,液相分层区消失。
图2ቤተ መጻሕፍቲ ባይዱ22 ④
体系特点(续) 各种钙硅酸盐的熔化温度都很高 熔化温度不超过 1600°C的体系只局限于含 32~59%CaO范围内。 超过 50% CaO的体系,熔化温度急剧上升。 高炉渣中CaO含量控制在35~50%之间; 有色冶金炉渣CaO含量一般在15%以下。 CaO的作用 降低炉渣密度、减少重金属硫化物在炉渣中的 溶解度 → 降低金属在炉渣中的损失。


图222 ②
体系特点(续) 一致熔融化合物C2S及CS的稳定程度是不同的。

C2S比较稳定,熔化时只部分分解; CS在熔化时则几乎完全分解。
一般而言,可根据化合物组成点处液相线的形状(平滑 程度),近似推断熔融态内化合物的分解程度。

若化合物组成点处的液相线出现尖峭高峰形,则该化 合物非常稳定,甚至在熔融时也不分解; 若化合物组成点处的液相线比较平滑,则该化合物熔 融时会部分分解; 化合物组成点处的液相线越平滑,该化合物熔融时的 分解程度也越大。
库尔纳柯夫规则 (1)
库尔纳柯夫规则 (2)
图222 ③
体系特点(续)
图中水平线可分为五大类 低 共 熔 线 : 3 条 ( 2065°C , 1455°C , 1436°C) 转熔线:1条(1475°C) 偏晶线:l条(1700°C) 固相分解线:2条(1250°C,1900°C) 晶型转变线:6条(1470°C,1420°C, 1210°C,870°C,725°C,575°C)

冶金原理第四章优秀课件

冶金原理第四章优秀课件
单独分析
a △S-CAS2-A 共晶点1 L=CAS2+A3S2+S
包晶点7 L+A=CAS2+A3S2
b △S-CAS2-CS 共晶点2 L=CAS2+CS+S
c △CS-C2AS-CAS2 共晶点4 L=CS+C2AS+CAS2
d △CS-C2AS–C2S 包晶点3 L+C2S=C3S2+C2AS
3.3 CaO-SiO2-FeO渣系的相图
3.3.1 确定化合物的稳定性
Ø一个三元稳定化合物 CFS = CaO·FeO·SiO2 Ø三个稳定二元化合物 CS = CaO·SiO2
C2S = 2CaO·SiO2 F2S = 2 FeO·SiO2 Ø 两个不稳定的二元化合物 C3S2 = 3CaO·2SiO2
4.2.2 离子的种类
(1)简单的阳离子:Ca2+、Mg2+、Mn2+、Fe2+ (2)简单的阴离子:O2-、F-、S2(3)复杂的阴离子:、SiO44-、PO44-、AlO2-、
FeO2-、Fe2O54- 、 SixOyz-
硅氧复合阴离子是熔渣中主要的复合阴离子
4.2 离子结构理论
4.2.2 离子的种类
冶金原理第四章
3.2.2 分三角形、无变量点及相平衡关系
Ø 确定化合物的初晶面 Ø 作连接线
a 有相界线的化合物之间才能做连接线; b 稳定化合物之间作实线; c 不稳定化合物之间(或稳定与不稳定化合物
之间)做虚线。 转熔线、共晶线) Ø 确定三元共晶点和包晶点 Ø 由实线组成的三角形或多边形是独立的可以
(2) 分子间的作用力为范德华力。作用力很弱,分子运动容易,高温时 分子呈无序状态分布;可假定熔渣为理想溶液,各组元活度用浓度表 示。

最新《冶金原理》课后习题及解答

最新《冶金原理》课后习题及解答

第一章1 冶金原理研究的主要内容包括________、________和________。

冶金动力学、冶金热力学、冶金溶液。

2 金属熔体指________、________。

液态的金属、合金。

1、冶金原理是提取冶金的主要基础科学,它主要是应用_______的理论和方法研究提取冶金过程,为解决有关_____问题、开拓____的冶金工艺、推进冶金技术的发展指明方向。

物理化学、技术、新2、根据组成熔体的主要成分的不同,一般将冶金熔体分为________、______、_______、_______四种类型。

金属熔体、熔渣、熔盐、熔硫。

3、冶金原理按具体的冶金对象分为______冶金原理及_____冶金原理。

钢铁、有色金属。

4、根据熔渣在冶炼过程中的作用的不同,熔渣主要分为________、_______、________、__________四种。

在生产实践中,必须根据各种冶炼过程的特点,合理地选择_____,使之具有符合冶炼要求的物理化学性质。

冶炼渣、精炼渣、富集渣、合成渣。

熔渣。

5、熔渣是_______和_______的重要产物之一。

金属提炼、精炼过程。

6、熔渣是指主要由各种______熔合而成的熔体。

氧化物。

7、________的作用在于使原料中的某些有用成分富集于炉渣中,以便在后续工序中将它们回收利用。

富集渣、8、_______的作用是捕集粗金属中杂质元素的氧化产物,使之与主金属分离。

精炼渣。

9、在造锍熔炼过程中,为了使锍的液滴在熔渣中更好的沉降、降低主金属在渣中的损失,要求熔渣具有较低的______、______和_______。

粘度、密度、渣-锍界面张力。

10、为了提高有价金属的回收率、降低冶炼过程的能耗,必须使锍具有合适的______.物理化学性质。

11、在生产实践中,必须根据各种冶炼过程的特点,合理地选择________,使之具有符合冶炼要求的物理化学性质。

熔渣成分12、冶金过程热力学可以解决的问题有:1)计算给定条件下的;根据的正负判断该条件下反应能否自发地向________进行:2)计算给定条件下的平衡常数,确定反应进行的______;3)分析影响反应的和平衡常数,为进一步提高________指明努力方向。

(完整word版)物理冶金学第四章习题及答案

(完整word版)物理冶金学第四章习题及答案
9.在下图所示的面心立方晶体的(111)滑移面上有两条弯折的位错线OS和O’S’,其中O’S’位错的台阶垂直于(111),它们的柏氏矢量如图中箭头所示。
(1)判断位错线上各段位错的类型。
(2)有一切应力施加于滑移面,且与柏氏矢量平行时两条位错线的滑移特征有何差异?
解:(1)在两根位错线上,除1~2、3~4段为刃型位错以外,其余各段均为螺型位错。
(3)在足够大的切应力 的作用下,位错环将如何运动?晶体将如何变形?
(4)在足够大的拉应力 的作用下,位错环将如何运动?它将变成什么形状?晶体将如何变形?
解:(1)AB是右螺型位错,CD是左螺型位错;根据右手法则,BC是正刃型位错,DA是负刃型位错。
(2)设想在完整晶体中有一个贯穿晶体的上、下表面的正四棱柱,它和滑移面MNPQ交于ABCDA。现让ABCDA上部的柱体相对于下部的柱体滑移 ,柱体外的各部分晶体均不滑移。这样,ABCDA就是在滑移面上已滑移区(环内)和未滑移区(环外)的边界,因而是一个位错环。
当两根异号刃型位错无限靠近时,相遇相消,其总能量为零。
7.在如图所示的立方体形晶体中,ABCD滑移面上有一个位错环,其柏氏矢量 平行于AC。
(1)指出位错环各部分的位错类型。
(2)指出使位错环向外运动所需施加的切应力的方向。
(3)位错环运动出晶体后晶体外形如何变化?
解:(1)1点为正刃型位错,2点为右螺型位错,3点为负刃型位错,4点为左螺型位错,其余均为混合位错。
3.证明位错线不能终止在晶体内部。
解:设有一位错C终止在晶体内部,如图所示,终点为A。绕位错C作一柏氏回路L1,得柏氏矢量b。现把回路移动到L2位置,按柏氏回路性质,柏氏回路在完整晶体中移动,它所得的柏氏矢量不会改变,仍为b。但从另一角度看,L2内是完整晶体,它对应的柏氏矢量应为0。这二者是矛盾的,所以这时不可能的。

冶金原理课件中南大学

冶金原理课件中南大学
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。
化 学 组 成 / %(质量)
铝电解的电解质 镁电解的电解质
(电解氯化镁)
镁电解的电解质 (电解光卤石)
锂电解的电解质 铝电解精炼的电解质
(氟氯化物体系)
铝电解精炼的电解质 (纯氟化物体系)
镁熔剂精炼熔剂
Na3AlF6 82~90,AlF3 5~6,Al2O3 3~7,添加剂 (CaF2、MgF2 或 LiF) 3~5 MgCl2 10,CaCl2 30~40,NaCl 50~60,KCl 10~6
▪ 其它的碱金属、碱土金属,钛、铌、钽等高熔点金属以
及某些重金属(如铅)的熔盐电解法生产
▪ 利用熔盐电解法制取合金或化合物
如铝锂合金、铅钙合金、稀土铝合金、WC、TiB2等
熔盐的冶金应用(二)
▪ 某些氧化物料(如TiO2、MgO)的熔盐氯化
◇ 适合处理CaO、MgO含量高的高钛渣或金红石 ◇ 流程短、原料适应性强、设备生产率高、产物杂质含量低。

冶金原理课后题答案

冶金原理课后题答案

冶金原理课后题答案第一章冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。

2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。

4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种因素对平衡的影响?5.试谈谈你对活度标准态的认识。

活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。

8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti(S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。

《冶金原理》课后习题及解答

《冶金原理》课后习题及解答

第一章1 冶金原理研究的主要内容包括________、________和________。

冶金动力学、冶金热力学、冶金溶液。

2 金属熔体指________、________。

液态的金属、合金。

1、冶金原理是提取冶金的主要基础科学,它主要是应用_______的理论和方法研究提取冶金过程,为解决有关_____问题、开拓____的冶金工艺、推进冶金技术的发展指明方向。

物理化学、技术、新2、根据组成熔体的主要成分的不同,一般将冶金熔体分为________、______、_______、_______四种类型。

金属熔体、熔渣、熔盐、熔硫。

3、冶金原理按具体的冶金对象分为______冶金原理及_____冶金原理。

钢铁、有色金属。

4、根据熔渣在冶炼过程中的作用的不同,熔渣主要分为________、_______、________、__________四种。

在生产实践中,必须根据各种冶炼过程的特点,合理地选择_____,使之具有符合冶炼要求的物理化学性质。

冶炼渣、精炼渣、富集渣、合成渣。

熔渣。

5、熔渣是_______和_______的重要产物之一。

金属提炼、精炼过程。

6、熔渣是指主要由各种______熔合而成的熔体。

氧化物。

7、________的作用在于使原料中的某些有用成分富集于炉渣中,以便在后续工序中将它们回收利用。

富集渣、8、_______的作用是捕集粗金属中杂质元素的氧化产物,使之与主金属分离。

精炼渣。

9、在造锍熔炼过程中,为了使锍的液滴在熔渣中更好的沉降、降低主金属在渣中的损失,要求熔渣具有较低的______、______和_______。

粘度、密度、渣-锍界面张力。

10、为了提高有价金属的回收率、降低冶炼过程的能耗,必须使锍具有合适的______.物理化学性质。

11、在生产实践中,必须根据各种冶炼过程的特点,合理地选择________,使之具有符合冶炼要求的物理化学性质。

熔渣成分12、冶金过程热力学可以解决的问题有:1)计算给定条件下的;根据的正负判断该条件下反应能否自发地向________进行:2)计算给定条件下的平衡常数,确定反应进行的______;3)分析影响反应的和平衡常数,为进一步提高________指明努力方向。

钢铁冶金原理4

钢铁冶金原理4

第二章 冶金过程动力学基础冶金热力学可通过体系状态函数的改变,判断反应进行的可能性、方向性及最大限度。

但反应进行的途径、机理及速度则是动力学解决的任务。

微观动力学:据参加反应的物质的性质,从分子理论出发研究化学反应的机理和速度。

宏观动力学:结合反应体系中的流体流动、传质、传热及反应器条件等宏观因素来研究反应的速度和机理。

钢铁冶金过程中的反应是在高温、有流体流动、传热、传质等复杂状态下进行的多相反应。

如炼钢过程中钢—渣界面上元素的氧化反应由三个步骤或三个环节组成,组元由钢渣内部向界面的传质,界面化学反应、产物离开界面向钢渣内部传质。

其中最慢的步骤为过程的限制性环节。

通过分析影响反应速度的因素,可确定加速反应的措施,以实现控制冶金工艺、提高生产效率的目的。

动力学研究的主要内容:研究反应构成环节(机理)、建立各环节及总体反应速率公式、分析影响反应速度的因素,建立加快翻印速度的措施。

§2.1多相化学反应速率§2.1.1化学反应速率的表示方法化学反应的速率通常用某一时刻反应物或生成物的浓度对时间的变化率来表示。

dD bB aA =+dtdC v dt dC v dt dC v DB A =-=-=,, C :体积摩尔浓度,3mmol,v :sm mol⋅3d b a dC dC dC D B A ::::=dtdCd dt dC b dt dC a D B A ⋅=⋅-=⋅-∴111基元反应:化学反应的速率与反应物的浓度的若干次方成正比,且反应级数与反应物的计量系数相等。

bB a A AC kC dtdC v =-= 反应级数b a n +=(n=0,1,2,3…或分数) 非基元反应:化学反应的速率与反应物的浓度的若干次方成正比,但反应级数与反应物的计量系数不相等。

、、b B a A A C kC dtdC v =-= 反应级数b a b a n +≠+=// k :化学反应的速率常数,n 不同k 的单位不同,k=f(T)。

《钢铁冶金原理》课件资料

《钢铁冶金原理》课件资料


相图内的垂直线代表C3S。只有在1250℃以下急冷淬火可把C3S保 持到常温,C3S有水硬性,是水泥熟料组分。
2、C2S-CS系“子相图”:为具有一个不稳定化合物(C3S2)的相图。
① ②
当温度下降时,C3S2由转熔反应形成:L+C2S=C3S2;
在加热时,它在1475℃发生分解:C3S2→L+C2S。
7
第四章 冶金炉渣
一、 基本概念
炉 渣
SiO2 高炉炼铁渣 转炉炼钢渣 电炉炼钢渣 电渣重熔渣 铜闪速炉熔炼渣 铅鼓风炉熔炼渣 锡反射炉熔炼渣 高 钛 渣 30~40 9~20 10~25 0~10 28~38 19~35 19~24 2.8~5.6 A12O3 10~20 0.1~2.5 0.7~8.3 0~30 2~12 3~5 8~10 2~6 CaO 35~50 37~59 20~65 0~20 5~15 0~20 1.5~6 38~54 28~40 45~50 2~5.6 1~1.5
22
第一节 二元渣系相图
一、CaO-SiO2系相图
① ②
3、CS-SiO2系“子相图” 由于液相时组分的溶解度有限,形成两液相共存的相图。 在互为饱和的二液相中,L1是SiO2在CS相内的饱和熔体;L2是 CS在SiO2相内的饱和熔体,大约在1700℃以上两者平衡共存,它 们的平衡成分分别由两条虚线表出,称为分溶曲线。 在1700℃时,相平衡关系为L2=L1+SiO2(偏晶反应)。 温度高于1700℃时,SiO2逐渐消失,仅两液相共存,它们的饱和 溶解度随温度的升高,不断变化,逐渐接近,最后达到相同(曲线上 的此点称为临界点),成为均匀液相。
6
第四章 冶金炉渣
一、 基本概念

熔渣是火法冶金过程产物 主要由冶金原料中的氧化物或冶金过程中生 成的氧化物组成的熔体。

冶金原理第4章

冶金原理第4章

γ B = γ ⋅γ
0 B
(2) B
பைடு நூலகம்
⋅γ Lγ
(3) B
(K) B
4.2.1.2 以重量1%浓度溶液为标准态 以重量1%浓度溶液为标准态
K K 以w[ B]、w[ K ]、f B、代替xB、xK、γ B、ε B B
B K lg f B = lg f B0 + eB w[ B ] + L + eB w[ K ]
4.2.1 活度的相互作用系数
4.2.1.1 以纯物质为标准态
目标及条件: 目标及条件: 设铁液(组分1)内组分2的活度系数 为所求,除组分2外 的活度系数γ 设铁液(组分 )内组分 的活度系数γ2为所求,除组分 外, 尚有组分3, , , , 等存在 其浓度分别为x 等存在, 尚有组分 ,4,5,…,j等存在,其浓度分别为 2,x3,x4, x5,…,xj,则γ2在恒温恒压下是其自身浓度及其他组分浓度 , 的函数, 的函数,即: γ2=γ(x2,x3,x4,x5,…,xj)。 γ , 。 泰勒级数 :
2 C
C原子半径很小,形成间隙式熔体。 原子半径很小,形成间隙式熔体。 原子半径很小
3 Si
Si在铁中的溶解焓很大,Fe—Si键很强。 在铁中的溶解焓很大,Fe Si键很强。 Si键很强 在铁中的溶解焓很大 0 ∆H Si = −75.5 KJ / mol
4 O
氧在铁液中的溶解度很小,属于稀溶液类型。 氧在铁液中的溶解度很小,属于稀溶液类型。 fO=1 气体氧溶解于铁液中是单原子状。 气体氧溶解于铁液中是单原子状。 1/2O2 = [O]
4.2铁液中组分活度的相互作用系数 4.2铁液中组分活度的相互作用系数
C.Wagner法(计算活度系数):把lnγi函数按泰勒级数展 法 计算活度系数):把 γ ): ★ 开成组分浓度的多项式,代入实验测定的相互作用系数, 开成组分浓度的多项式,代入实验测定的相互作用系数, 即可计算出组分的活度系数。 即可计算出组分的活度系数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MO —— 渣中MO的密度 %MO —— 渣中MO的质量分数 高温下的熔渣密度可按经验公式计算。
估算冶炼温度下熔渣密度的经验公式:
当T =1673K时,
1/1673 = 0.45(SiO2) + 0.286(CaO) + 0.204(FeO) + 0.35(Fe2O3) + 0.237(MnO) + 0.367(MgO) + 0.48 (P2O5) + 0.402(A12O3),103m3·kg1
常见冶金熔体的熔化温度范围 表4—1 熔化温度与熔体组成有关。
例如,在铁液中
非金属元素C、O、S、P等使能其熔化温度显著降低, 含1%C的铁液的熔化温度比纯铁熔点低~90C; 由Mn、Cr、Ni、Co、Mo等金属元素引起的铁液熔化温 度的降低很小。
表 41 常见冶金熔体的熔化温度
金属
物质 工业纯铁
图41 MgOFeOSiO2渣系熔化等温线图
当炼镍原料中含有较多的CaO时,可选用高钙渣。 图42中的C点为高钙渣CaO含量的下限,位于鳞石英相区内 1200C等温线下面。 D点代表高钙渣CaO含量的上限,位于硅灰石CaO SiO2相区, 紧靠1100C等温线。 高钙渣的熔化温度处于1100~1200C之间。 由于渣中MgO含量约为4%~9%或更高,高钙渣的熔化温度可 能更高。
第四章 冶金熔体的物理性质
4.1 熔化温度 4.2 密度 4.3 粘度 4.4 导电性 4.5 熔体组分的扩散系数 4.6 表面性质与界面性质
4.1 熔化温度
冶金熔体在一定的温度范围内熔化,没有确定的熔点,冷却 曲线上无平台。
熔化温度 —— 冶金熔体由其固态物质完全转变成均匀的液 态时的温度。
凝固温度或凝固点 —— 冶金熔体在冷却时开始析出固相时 的温度。
(MxOy) —— 氧化物MxOy的质量分数。
当T >1673K时,可按下式计算任意温度下的熔渣密度:
T

1673
0.071673 T , 10 3 kg m3 100
CaO / %(质量) CaO / %(mol)
/ %(mol) SiO 2 / %(质量) SiO 2
密度 / 103kg•m3
温度 / °C
温度 / K
图43 铁液的密度与温度的关系
密度 / 103kg•m3
温度 / °C
图44 A12O3CaOSiO2Na2O渣系的密度
三、密度与熔体成分的关系
1、金属熔体
熔融金属的密度与原子量、原子的半径和配位 数有关。 金属熔体的密度与其中溶解元素的种类有关。
SiO2
Al2O3 / %(质量) 图45 A12O3CaOSiO2渣系的密度
(1500C,单位为103kg·m3)
CaO
FeO / %(mol)
FeO
图46 CaOFeOSiO2渣系的密度 (1500C,单位为103kg·m3)
二、密度与温度的关系
熔体的密度随着温度升高而减小,且通常遵从线性关系: T = m (T Tm)
T —— 熔体在某一温度T时的密度; m —— 熔体在熔化温度Tm时的密度; —— 与熔体性质有关的常数。
或:
T = T
对于纯铁液:T = 8580 0.853T kg·m3
表 42 某些熔体密度公式中的系数
熔体

纯铁 8580 0.853
纯铝 2487 0.272
冰晶石 3288 0.937
NaF 2734 0.610
CaF2 3179 0.391
MgCl2 1976 0.302

BaCl2 4015 0.681
LiCl 1884 0.433
KCl 2136 0.583
两种渣型都能抑制氧化镁和磁性氧化铁的有害作用。 对于含镁高的矿石,采用高硅渣可以增加炉渣硅酸度,抑制 MgO(熔点约2800C) 的危害,同时使Fe3O4造渣:
2MgO + SiO2 = 2MgO·SiO2 2Fe3O4 + FeS + 5SiO2 = 5(2FeO·SiO2) + SO2 SiO2的加入量随原料成分而变化。 图中A点代表高硅渣中SiO2含量的下限,B点代表其上限。 高硅渣的熔化温度大致在1400~1500C之间。 炼镍鼓风炉的风口区温度可达1500~1800C,足以保证渣的 过热与排放。
v

2grM2
9S
(M

S )
V —— 沉降速度,m·s–1
rM —— 金属或锍微粒的半径,m
M,S —— 金属和熔渣的密度,kg·m–3
S —— 熔渣的粘度,Pa·s
g
—— 重力加速度, 9.80m·s–2
一、常见冶金熔体的密度范围
熔融的铁及常见重有色金属:7000~11000 kg·m3 铝电解质:2095~2111 kg·m3 镁电解质:1700~1800 kg·m3 熔渣:3000~4000 kg·m3 熔锍:4000~5000 kg·m3 生产实践中,金属(或熔锍)与熔渣的密度差通常 不应低于1500 kg·m3。
溶于铁液的元素中,
钨、钼等能提高熔铁的密度。 铝、硅、锰、磷、硫等会使熔铁的密度降 低。 镍、钴、铬等过渡金属对铁液密度的影响 则很小。
2、熔 渣
缺乏实验数据时,可用固体炉渣的密度代替熔融炉 渣的密度。 缺乏固态炉渣密度资料的实验数据时,可以近似地 由纯氧化物密度,按加和规则估算熔渣的密度:
1/ (%MO / MO ), m3 kg1
结论 高钙渣的熔化温度比高硅渣低。 对于高镁原料,在强化熔炼和其它因素变化不大的情况下, 选用高硅渣或高钙渣,均能正常冶炼并得到低的渣含镍。
图42 CaOFeOSiO2渣系熔化等温线图
4.2 密 度
密度——单位体积的质量。 密度影响金属与熔渣、熔锍与熔渣、金属与熔盐的分 离,影响金属的回收率。 金属或熔锍微粒在熔渣中的沉降——斯托克斯公式:
熔化温度 / C 1530
Fe
1538
Ni
1453
Cu
1083
熔盐
熔渣 熔锍
Pb 铝电解质 镁电解质 锂电解质
327.5 ~960 580~700 350~360 1100~1400 700~1100
冶炼镍铜品位低、钙镁含量高的镍精矿时的渣型选择
根据矿石成分的变化可选择两种酸性渣型:高硅渣和高钙渣
相关文档
最新文档