内切球和外接球问题专题复习
专题08 外接球与内切球(新高考地区专用)(解析版)复习资料
![专题08 外接球与内切球(新高考地区专用)(解析版)复习资料](https://img.taocdn.com/s3/m/02450bd7e2bd960591c677a6.png)
专题08 外接球与内切球一.外接球8大模型秒杀公式推导r α说明:为底面外接圆的半径,R 为球的半径,l 为两面公共边的长度 为两个面的二面角,h 是空间几何体的高,H 为某一面的高1.墙角模型(1) 使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合 (2)推导过程:长方体的体对角线就是外接球的直径(2) 秒杀公式:222222a b c 3a R (a b c R (a 44++==、、为长方体的长宽高)正方体的边长)(4)图示过程(3) 秒杀公式:2.汉堡模型技巧导图技巧详讲(1)使用范围:有一条侧棱垂直与底面的柱体或椎体(2)推导过程第一步:取底面的外心O1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得2 22h R r4=+(3)秒杀公式:2 22h R r4=+(4)图示过程3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上(2)推导过程第一步:取底面的外心O1,,连接顶点与外心,该线为空间几何体的高h 第二步:在h上取一点作为球心O第三步:根据勾股定理22 222r h R(h R)r R2h+ =-+⇔=(3)秒杀公式:22r h R2h+ =(4)图示过程4.折叠模型(1)使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠 (2)推导过程第一步:过两个平面取其外心H 1、H 2,分别过两个外心做这两个面的垂线且垂线相交于球心O第二步:计算2222222111OH H E tan=(CE-H E)tan (H r)tan (222ααα==-α为两个平面的二面角) 第三步:22222211OC OH CH (H r)tanr 2α=+=-+ (3)秒杀技巧:2222R (H r)tanr 2α=-+ (4)图示过程5.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥 (2)推导过程:第一步:分别在两个互相垂直的平面上取外心F 、N ,过两个外心做两个垂面的垂线,两条垂线的交点即为球心O ,取BC 的中点为M ,连接FM 、MN 、OF 、ON第二步:22222222212l ONMF OA AN ON AN MF R r r 4∴=+=+∴=+-为矩形由勾股可得(3)秒杀公式:2 22212lR r r4=+-(4)图示过程6.麻花模型(1)使用范围:对棱相等的三棱锥(2)推导过程:设3组对棱的长度分别为x、y、z,长方体的长宽高分别为a、b、c 2222222222222x a bx y zy b c R8z a c⎧=+⎪++⎪=+⇔=⎨⎪=+⎪⎩(3)秒杀公式:2222x y zR8++=(4)图示过程7.矩形模型(1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边(2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径(3)秒杀公式:22l R 4=(4)图示过程8.鳄鱼模型(1)使用范围:适用所有的棱锥 (2)推导过程:121212222121221212221122211O O O O O O OO E r (1sin O O E O O =O E O E 2O E O E cos 2 OD O O O D 3OD O O O D∴α∆+-α=+=+第一步:在两个平面上分别找外心、两外心做这两面的垂线相交于球心第二步:四点共圆,正弦定理可得OE=2=)在中,()()第三步:由(1)(2)(3)整理可得 且 过 2221122212112222221211122221212 =OE O E O DO O O E O D sin O E O E 2O E O E cos O E O D sin O E O E 2O E O E cos =sin -+=-+α+-α=-+α+-α=2211O E O B-+α2122222O E =m O E =n AB =l,m n 2mncos l R =+sin 4α+-αα第四步:设,,两个面的二面角为由第三步可得(3)秒杀公式:22222m n 2mncos l R =+ sin 4+-αα (4)图示过程二.内切球的半径---等体积法 1. 推导过程P ABC PAB PAC PBC ABC PAB PAC PBC ABC 11111V S h RS RS RS RS 333331=R(S S S S )31=RS 33V R=S -∆∆∆∆∆∆∆∆==++++++∴底面表面积几何体表面积以三棱锥P-ABC 为例2. 秒杀公式:3V R=S 几何体表面积3. 图示过程特别说明:下面例题或练习都是常规方法解题,大家可以利用模型的秒杀公式技巧1 外接球之墙角模型【例1】(2020·河南高三月考)已知长方体''''ABCD A B C D-中,''3A B=,''1B C=,'A B与平面''ACC A所成角的正弦值为510,则该长方体的外接球的表面积为()A.4πB.16πC.163πD.323π【答案】B【解析】作BE AC⊥,垂足为E,连接'A E,BE.因为平面ABC⊥平面''ACC A,平面ABC平面''ACC A AC=,BE⊂平面ABC,所以BE⊥平面''ACC A,所以'BA E∠是'A B与平面''ACC A所成的平面角.又223132(3)1BE⨯==+,22'(3)'3'A B AA AA=+=+.例题举证所以sin''10BEBA EA B∠===,解得'AA=.4=.设长方体的外接球的半径为R,则24R=,解得2R=.所以该长方体的外接球的表面积为2244216S Rπππ==⨯=.故选B.【举一反三】1.(2020·全国高三专题练习)棱长为2的正方体的外接球的表面积为()A.4πB.43πC.12πD.【答案】C【解析】因为正方体的外接球的直径为正方体的体对角线的长,所以2R=解得R=2412S Rππ==.故选:C2.(2019·绥德中学)球面上有,,,A B C D四个点,若,,AB AC AD两两垂直,且4AB AC AD===,则该球的表面积为()A.803πB.32πC.42πD.48π【答案】D【解析】由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R,由题意可得:()22222444R=++,据此可得:212R=,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.技巧2 外接球之汉堡模型【例2】(2020·四川泸州市·高三)已知四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE ,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【答案】C【解析】由题意,四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形, 3AB =且AB ⊥平面BCDE ,可把四棱锥A BCDE -放置在如图所示的一个长方体内, 其中长方体的长、宽、高分别为2,2,3,则四棱锥A BCDE -的外接球和长方体的外接球表示同一个球, 设四棱锥A BCDE -的外接球的半径为R ,2R =,解得R =,所以该四棱锥外接球的表面积为22=4=417S R πππ⨯=. 故选:C.【举一反三】1.(2020·广州市广外)各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为2,体积为8,则这个球的表面积是( ) A .16π B .12πC .10πD .8π【答案】B【解析】因为正四棱柱高为2,体积为8,所以它的底面边长是2,所以它的体对角线的长是因此它的外接球的直径是所以这个球的表面积是:2412S ππ==.故选:B .2.(2020·辽宁省高三)如图,在三棱锥A ﹣BCD 中,BD ⊥平面ADC ,BD =1,AB =2,BC =3,AC ,则三棱锥A ﹣BCD 外接球的体积为( )A .4πB .3πC .D .【答案】D【解析】因为BD ⊥平面ADC ,所以BD AD ⊥,BD DC ⊥,所以222413AD AB BD =-=-=,222918DC BC BD =-=-=, 所以222AC AD DC =+,所以AD DC ⊥,所以以DA 、DB 、DC 为棱的长方体与三棱锥A ﹣BCD 具有相同的外接球,==则该外接球的体积为343π⨯=故选:D.3.(2020·广东广州市·高三月考)在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为( ) A .11π2B .7πC .11πD .14π【答案】C【解析】长方体1AC 中,11A D ⊥平面11CDD C ,1C M ⊂平面11CDD C ,∴111C M A D ⊥,又1C M ⊥平面1ACM ,1AC ⊂平面1ACM ,∴11C M AC ⊥, ∵1111AC A D A =,∴1C M ⊥平面11A CD ,而1CD ⊂平面11A CD ,∴11C M CD ⊥,11CDD C 是正方形,∴M 是1CD 与1C D 交点,即为1CD 的中点,也是1C D 的中点.1C MC △是直角三角形,设E 是1CC 中点,F 是1BB 中点,则由//EF BC 可得EF ⊥平面1MCC (长方体中棱与相交面垂直),E 是1C MC △的外心,三棱锥11A MCC -的外接球球心O 在直线EF 上(线段EF 或EF 的延长线上).设OE h =,则22222(1)22h h ⎛⎫⎛+=++- ⎪ ⎪ ⎝⎭⎝⎭,解得32h =,∴外接球半径为2r ==, 表面积为21144114S r πππ==⨯=. 故选:C .4.(2020·全国高三月考(文))三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC AB ⊥,1AC =,AB =12AA =,则该三棱柱111ABC A B C -的外接球的体积为( )A .3B .3C .3D .8π【答案】B【解析】如图,取BC 中点1O ,连1BC 交1B C 于点O ,AC AB ⊥,1O ∴为Rt ABC 的外接圆圆心,3AB =,1AC =,2BC ∴=,ABC ∴外接圆半径为12BC=, 111////OO CC AA ,1AA ⊥平面ABC ,1OO ∴⊥平面ABC ,又1112BB OO ==,∴点O 为三棱柱111ABC A B C -的外接球球心,∴外接球半径R OB ===,∴外接球体积3433V R π==.故选:B.技巧3 外接球之斗笠模型【例3】(2020·江苏南通市·高三期中)正三棱锥S ABC -中,2SA =,AB =的表面积为( )A .B .4πC .12πD .6π【答案】C【解析】正三棱锥S ABC -中,2SA =,AB =所以222SA SB AB +=, 故SA SB ⊥,同理可得SA SC ⊥, SB SC ⊥, 以,,SA SB SC 为棱构造正方体, 则该棱锥外接球即为该正方体的外接球, 如图,所以2222(2)22212R =++=,故球的表面积为2412S R ππ==,故选:C 【举一反三】1.(2020·秦皇岛市抚宁区第一中学)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是________. 【答案】64π【解析】过点S 作SE ⊥平面ABC 于点E ,记球心为O .∵在正三棱锥S ABC -中,底面边长为6,侧棱长为∴263BE ==∴6SE ==.∵球心O 到四个顶点的距离相等,均等于该正三棱锥外接球的半径长R , ∴OB R =,6OE R =-.在Rt BOE 中,222OB BE OE =+, 即()22126R R =+-,解得4R =, ∴外接球的表面积为2464S R ππ==. 故答案为:64π.2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π【答案】A【解析】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,1AO =由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.技巧4 外接球之折叠模型【例4】(2020·广东省高三)在三棱锥A ﹣BCD 中,△ABD 与△CBD 均为边长为2的等边三角形,且二面角A BD C --的平面角为120°,则该三棱锥的外接球的表面积为( )A .7πB .8πC .163πD .283π【答案】D【解析】如图,取BD 中点H ,连接AH ,CH 因为△ABD 与△CBD 均为边长为2的等边三角形所以AH ⊥BD ,CH ⊥BD ,则∠AHC 为二面角A ﹣BD ﹣C 的平面角,即∠AHD =120°设△ABD 与△CBD 外接圆圆心分别为E ,F则由AH =22⨯=AE 23=AH =EH 13=AH = 分别过E ,F 作平面ABD ,平面BCD 的垂线,则三棱锥的外接球一定是两条垂线的交点 记为O ,连接AO ,HO ,则由对称性可得∠OHE =60°所以OE =1,则R =OA ==则三棱锥外接球的表面积221284493R πππ=⨯= 故选:D【举一反三】1.(2020·山东枣庄市·高三期中)已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【答案】2887π【解析】设()06AB x x =<<,则6BC x =-,设PAB △和ABC 的外心分别为E 、H ,则,E H 分别为,PB AC 的中点,过点,E H 分别作PAB △和ABC 所在平面的垂线,两垂线的交点为点O ,则O 为三棱锥P ABC -的外心,连接OB ,则OB 为三棱锥外接球的半径.取AB 的中点G ,连接EG 、GH 、OG ,如图所示,由题意可知,2x EG =,32x GH =-,2xGB =,且EG AB ⊥,GH AB ⊥, EGH ∴∠为二面角PAB C 的平面角,即120EGH ∠=,连接EH ,OE ⊥平面PAB ,OH ⊥平面ABC , OE EG ∴⊥,OH GH ⊥,,,,O E G H ∴四点共圆,且该圆的直径为OG .在EGH 中,由余弦定理知,222222132cos 32392222242x x x x x EH EG GH EG GH EGH x ⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅∠=+--⋅⋅-⋅-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭EGH ∴的外接圆直径2sin1203EH OG ==2222224371272934221277x x OB OG GB x x ⎛⎫⎛⎫⎛⎫∴=+=⋅-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当127x =时,2OB 取得最小值,为727, 此时该球的表面积取得最小值,为2722884477OB πππ⋅=⋅=. 故答案为:2887π. 2.(2020·南昌市八一中学)如图所示,三棱锥S 一ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A ﹣BC ﹣S 的大小为23π,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A .73π B .133π C .43π D .3π【答案】A【解析】取线段BC 的中点D ,连结AD ,SD , 由题意得AD ⊥BC ,SD ⊥BC ,∴∠ADS 是二面角A ﹣BC ﹣S 的平面角,∴∠ADS 23π=, 由题意得BC ⊥平面ADS , 分别取AD ,SD 的三等分点E ,F ,在平面ADS 内,过点E ,F 分别作直线垂直于AD ,SD , 两条直线的交点即球心O , 连结OA ,则球O 半径R =|OA |,由题意知BD 12=,AD =DE 13AD ==AE 23AD ==连结OD ,在Rt △ODE 中,3ODE π∠=,OE =12=, ∴OA 2=OE 2+AE 2712=, ∴球O 的表面积为S =4πR 273π=.故选:A .技巧5 外接球之切瓜模型【例5】(2020·内蒙古赤峰市·高三月考)已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( )A .143πB .283πC .11πD .12π【答案】B 【解析】如图,1PA =,3PB =,AB =∴222PA AB PB +=,2PAB π∠=,所以ABP △的外接圆的圆心为斜边PB 的中点N,CA CB ==∴ABC 为等腰三角形.取AB 的中点D ,连接CD ,DN ,∴CD AB ⊥,AD BD ==∴CD ==又 面PAB ⊥面ABC ,面PAB ⋂面ABC AB =,CD ⊂面ABC ,∴CD ⊥面PAB ,过点N 作CD 的平行线,则球心O 一定在该直线上.设ABC 的外接圆的圆心为1O ,,则1O 点在CD 上,连接1OO , 由球的性质则,1OO ⊥平面ABC ,则1O OND 为矩形. 在ABC中,cos 5CAB ∠==,则sin 5CAB ∠= 所以ABC的外接圆的半径12sin 3BC O A CAB ===∠所以16O A =,则1O D ===则1ON O D ==所以球的半径为OP ===所以三棱锥的外接球的表面积为2212844393πππ⎛⎫=⨯= ⎪ ⎪⎝⎭故选:B【举一反三】1.(2020·四川泸州市·高三一模)已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( ) A .4π B .163πC .8πD .203π【答案】D 【解析】如图,由已知可得,ABD △与BCD △均为等边三角形, 取BD 中点G ,连接AG ,CG ,则AG BD ⊥, ∵平面ABD ⊥平面BCD ,则AG ⊥平面BCD ,分别取ABD △与BCD △的外心,E F ,过,E F 分别作两面的垂线,相交于O , 则O 为三棱锥A BCD -的外接球的球心, 由ABD △与BCD △均为边长为2的等边三角形,可得11233OE OF CG ===⨯=,223CE ∴==,R OC ∴====,∴三棱锥A −BCD 的外接球的表面积为2220443R πππ⨯=⨯=.故选:D.技巧6 外接球之麻花模型【例6】(2020·四川省眉山市彭山区第二中学)在四面体ABCD 中,若AB CD ==2==AC BD ,AD BC ==ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π【答案】C【解析】由题意可采用割补法,考虑到四面体ABCD 的四个面为全等的三角形,2x ,y ,z 长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为球的半径),得2R 2=3, 所以球的表面积为S =4πR 2=6π. 故答案为6π.技巧7 外接球之矩形模型【例7】(2020·新疆维吾尔自治区)在四面体ABCD 中,AB =,1DA DB CA CB ====,则四面体ABCD 的外接球的表面积为( ) A .π B .2πC .3πD .4π【答案】B【解析】由AB =1DA DB CA CB ====,所以222CA CB AB +=,222AD BD AB +=可得90ACB ADB ∠=∠=,所以OA OB OC OD ====,即O 为外接球的球心,球的半径2R =所以四面体ABCD 的外接球的表面积为: 214422S R πππ==⨯=.故选:B 【举一反三】1.(2020·黑龙江省哈尔滨三中)四面体SABC 中,AC BC ⊥,SA ⊥平面ABC ,SA =AC =,BC =,则该四面体外接球的表面积为( )A .323πB .163πC .16πD .32π【答案】C【解析】如图所示:由已知可得SAB 与SBC 为直角三角形,所以该几何体的外接球球心为SB 的中点O ,因为AC BC ==,且AC BC ⊥,所以10AB ,所以4SB ===,所以四面体SABC 的外接球半径2R =,则表面积2416S R ππ==.故答案选:C2.(2020·重庆一中高三)已知四面体ABCD 满足:1AB BC CD DA AC =====,BD =,则四面体ABCD 外接球的表面积为_______. 【答案】2π【解析】因为1AB BC CD DA ====,BD =,所以222BD AB AD =+,222BD BC CD =+,所以△,ABD △,CBD 均为直角三角形,取斜边BD 的中点O ,连接CO 、AO ,如图:易得CO AO BO DO ===,所以点O 为该四面体外接球的球心,所以球的半径122r OD BD ===22424S r πππ=⨯⎝⎭==. 故答案为:2π.技巧8 内切球半径【例8】(2020·全国)正四面体的外接球与内切球的表面积比为( ) A .9: 1 B .27: 1 C .3: 1D .不确定【答案】A【解析】如图,正四面体ABCD 的中心O 即为外接球与内切球的球心,设正四面体的棱长为a ,可得33BE a =,63AE a =,又14OE AE =,64R OA a ∴==,612r a=,∴22342S R a ππ==外,22146S r a ππ==内.所以22392116a S S a ππ==外内故选:A【举一反三】1.(2020·北京)如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a π B .3aC .32a D .316a π【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12, 所以球的半径为2a ,所以球的体积为334326a a ππ⎛⎫= ⎪⎝⎭,故选:D.2.(2020·山西大同一中)已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( )A .25︰1B .1︰25C .1︰5D .5︰1【答案】D【解析】设点O 是三棱柱外接球和内切球的球心,点M 是底面等边三角形的中心,点N 是底边AB 的中点,连结OM ,MN ,AM ,OA ,设底面三角形的边长为a ,则MN =,MA =, 因为三棱锥内切球与各面都相切,所以三棱柱的高是内切球的直径,底面三角形内切圆的直径也是三棱柱内切球的直径,所以OM MN ==,即三棱柱内切球的半径r =,AM =,所以OA ==,即三棱柱外接球的半径3R a =, 所以内切球的表面积为22443r a ππ=,外接球的表面积222043S R a ππ==, 所以三棱柱外接球和内切球表面积的比值为22204:5:133a a ππ=故选:D3.(2020·江苏无锡市第六高级中学)的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3【答案】B的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,13⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2, 故此正三棱柱的体积V=54=cm 3.故选:B .1.(2020·江苏镇江市·高三期中)直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA = )A .40πB .32πC .10πD .8π【答案】A 【解析】如图所示,直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA =∴可将直三棱柱111ABC A B C -补成长方体,其中2AB AC BM CM ====,11AA BB ==1CB ====r .∴球的表面积为224440S r πππ==⨯=.故选: A.2.(2020·江西高三其他模拟)在三棱锥P ABC -中,AB AC ==120BAC ∠=,PB PC ==PA = )A .40πB .20πC .80πD .60π【答案】A【解析】在BAC 中,2222cos 24BC AB AC AB AC BAC =+-⋅⋅⋅∠=,即BC =PB PC ==∴PBC 为等边三角形 根据题意,有如下示意图:如图,设ABC 的外接圆的圆心为1O ,连接1O C ,1O A ,1BC O A H ⋂=,连接PH.由题意可得AH BC ⊥,且112AH O A ==12BH BC ==.∴由上知:PH BC ⊥且PH ==222PH AH PA +=,∴PH AH ⊥,由AHBC H =,PH ⊥平面ABC.设O 为三棱锥P ABC -外接球的球心,连接1OO ,OP ,OC 过O 作OD PH ⊥,垂足为D ,则外接球的半径R 满足()22222111()R OO CO PH OO OD =+=-+,1A C B O == 1OD O H AH ===,代入解得1OO =210R =,∴三棱锥P ABC -外接球的表面积为2440R ππ=.故选:A.3.(2020·四川泸州市·高三)已知四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是边长为2的正方形,且3AB =,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【答案】C【解析】由题意,四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形, 3AB =且AB ⊥平面BCDE ,可把四棱锥A BCDE -放置在如图所示的一个长方体内,其中长方体的长、宽、高分别为2,2,3,则四棱锥A BCDE -的外接球和长方体的外接球表示同一个球, 设四棱锥A BCDE -的外接球的半径为R ,2R =,解得R =,所以该四棱锥外接球的表面积为22=4=417S R πππ⨯=. 故选:C.4.(2020·四川宜宾市·高三)已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PBBC PC =2,则该球的表面积为( )A .6πB .8πC .12πD .16π【答案】A【解析】如图,三棱锥P ABC -补体在长方体中,三棱锥的外接球就是补体后长方体的外接球,长方体的外接球的直径2R ====即2R =, 则该球的表面积246S R ππ==.故选:A5.(2020·江西赣州市·高三)四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3π B .4πC .6πD .12π【答案】B【解析】如图,在四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1. 其表面积为2414ππ⨯=. 故选:B .6.(2020·全国高三专题练习))平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2π B .2πC .4πD .16π【答案】C【解析】由题意,平面ABD ⊥平面BDC , 又因为平面ABD ⋂平面BDC BD =,AB平面ABD ,AB BD ⊥,可得AB ⊥平面BDC ,因为四边形ABCD 为平行四边形,所以//AB CD , 同理CD ⊥平面ABD ,所以ABC ∆、ACD ∆均为Rt ∆, 设AC 中点为O ,连BO 、DO , 则12AO BO CO DO AC R =====,其中R 为三棱锥A BCD -外接球半径, 则222222222224AC AB BC AB AD AB AB BD AB BD =+=+=++=+=,2AC =, 则112R AC ==,故三棱锥A BCD -外接球的表面积为4π. 故选:C.7.(2020·湖北省鄂州高中高三月考)张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .36【答案】C【解析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:22222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则R =.由题意知:122aR r a -=-=,则2a =,R , 该正方体的外接球的表面积为12π,又因为圆周率的平方除以十六等于八分之五,即2π5168=,所以π=所以外接球的表面积为故选:C.8.(2020·江苏南京市第二十九中学高三期中)已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( )A .25πB .50πC .100πD .500π3【答案】C【解析】如图所示:设点O '为ABC 外接圆的圆心, 因为30ACB ∠=︒,所以60AO B '∠=,又O A O B r ''==, 所以AO B '△是等边三角形, 所以4r O A O B AB ''====,又直三棱柱111ABC A B C -的顶点都在球O 上,所以外接球的半径为5R ==, 所以直三棱柱的外接球O 的表面积是24100S R ππ==, 故选:C9.(2020·全国高三专题练习)已知三棱柱111ABC A B C -(侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形)内接于球O ,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3,则球O 的表面积是( ) A .228π c m 3B .256π c m 3C .27π c m 3D .214π c m 3【答案】A【解析】易知11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =.设111AA A B a ==,则11131224ABC A B C V a a a -=⨯⨯⨯==三棱柱,解得2a =.所以球O 的半径R ==所以球O 的表面积22228π4π4π3S R cm ==⨯=. 故选:A .10.(2020·甘肃省民乐县第一中学高三)在四棱锥P ABCD -中,//BC AD ,AD AB ⊥,AB =6AD =,4BC =,PA PB PD ===P BCD -外接球的表面积为( )A .60πB .40πC .100πD .80π【答案】D【解析】如图,取AD 的两个三等分点1O 、E ,连接BD 、1O C 、CE , 设1BDO C H =,连接PH 、AH .则1123AO AD ==,14O D BC ∴==,又//BC AD ,1//BC O D ∴,所以,四边形1BCDO 为平行四边形,1O C BD H =,H ∴为BD 的中点,所以,1122AH BH DH BD =====由勾股定理可得14O B ===,则11O B O D =,在1Rt O AB △中,11tan ABAO B AO ∠==13AO B π∴∠=, //BC AD ,13CBO π∴∠=,又11BC O D O B ==,则1O BC △为等边三角形,1114O C O B O D ∴===,则1O 是BCD 的外接圆的圆心.因为PA PB PD ===H 为BD 的中点,PHBD ∴⊥,PA PB =,AH BH =,PH PH =,PAH PBH ∴≅△△,2PHA PHB π∴∠=∠=,PH AH ∴⊥,又PH BD ⊥,AHBD H =,PH ∴⊥平面ABCD ,且6PH ===.设O 为三棱锥P BCD -外接球的球心,连接1OO 、OP 、OD ,过O 作OF PH ⊥,垂足为F ,则外接球的半径R 满足()2222211146R OO OO O H =+=-+, 设1OO x =,则()221664x x +=-+,解得2x =,从而222420R x =+=,故三棱锥P BCD -外接球的表面积为2480R ππ=. 故选:D.11.(2020·天津红桥区·高三期中)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .10B .20πC .24πD .32π【答案】C【解析】因为正四棱柱高为4,体积为16,所以正四棱柱的底面积为4,正四棱柱的底面的边长为2,正四棱柱的底面的对角线为,正四棱柱的对角线为即2R =2424R S R ππ===球, 故选:C12.(2020·河南洛阳市·高三月考)我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B C .30π D .45π【答案】D【解析】解法一:由“堑堵”的定义可知,ABC 为直角三角形,故4BC ==,易知1AC PC ⊥,又1PC PC ⊥,1PC PC P ⋂=,所以1PC ⊥平面APC ,而AP ⊂平面APC ,于是得1AP PC ⊥.设1BB z =,BP t =,则1B P z t =-,则AP ==1PC ==1AC ==由1AP PC ⊥,得()222925161z t z +=+++-,整理得16z t t=+, 所以()22212161616PC z t x=+-=+,所以1112APC S AP PC =⋅==△18≥=, 当且仅当22400tt=,即t =1APC 的面积取得最小值18. 此时AP ==设三棱锥P ABC -的外接球半径为R ,因为AC CP ⊥,AB BP ⊥,故线段AP 为外接球的直径, 故所求外接球的表面积454π45π4S =⨯=. 故选:D .解法二:令11PCB C PB θ∠==∠,则14sin C P θ=,4cos CP θ=,AP == 又因为AC ⊥平面11CBB C ,所以1AC C P ⊥,又1CP C P ⊥. 所以1C P ⊥平面ACP ,所以190C PA ∠=︒.1APC的面积1111422sin APC S C P AP θ=⋅=⋅=△===当且仅当2210064tan tan θθ=时,1APC S △取最小值,此时tan 2θ=,AP ===. 在三棱锥P ABC -中,因为90ACP ABP ∠=∠=︒,取AP 中点为O , 则12OC OB AP OA OP ====, 故O 为三棱锥P ABC -的外接球的球心,所以AP 为外接球直径,224ππ45πO S R AP ===球. 故选:D .13.(2020·山西高三月考)已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球为球1O ,则外接球1O 的表面积是__________. 【答案】60π【解析】因为正三棱柱111ABC A B C -的底面积216sin 602S =⨯⨯︒=底面外接圆半径62sin 60r ==︒所以正三棱柱111ABC A B C -的高Vh S==所以外接球1O 的半径R ==,则24π60πS R ==, 故答案为:60π.14.(2020·济南市·山东省实验中学高三月考)在三棱锥P ABC -中,侧棱PA ⊥底面,120,1ABC BAC AB AC ∠===且2,PA BC =则该三棱锥的外接球的体积为__________. 【答案】323π【解析】在ABC 中,由余弦定理可知:BC ===因为120,1BAC AB AC ∠===,所以ABC 是顶角为钝角的等腰三角形, 设ABC 的外接圆的直径为AD ,由正弦定理可知:2sin BC AD BAC ===∠,因为侧棱PA ⊥底面ABC , 2PA BC ==, 所以三棱锥P ABC -的外接球的直径为PD ,由勾股定理可知:4P D ===,所以三棱锥P ABC -的外接球的半径为:1422R =⨯=, 所以三棱锥P ABC -的外接球的体积为:3344322.333V R πππ==⨯= 故答案为:323π15.(2020·湖南怀化市·高三期中)如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【答案】192π【解析】由题意知:在,,ABC CBD DBA 中,根据余弦定理有:29412cos73AC π=+-=,2448cos43CD π=+-=,24912cos73DA π=+-=,∴CAD 中有2AC DA CD ===,即CBD 为等边三角形,若E 为CD 中点,连接,BE AE ,可得BE AE ==3AB =,则在AEB △中有222AB BE AE =+,∴BE AE ⊥,又BE CD ⊥且AE CD E ⋂=,即BE ⊥面ACD ,又由BE ⊂面CBD 知:面CBD ⊥面ACD ,∴三棱锥B ACD -的外接球球心:在AEB △中,过BE 三等份点E '作BE 的垂线与AB 的垂直平分线的交点即为球心O ,所以令外接球半径为R,3EE '=,则:2243R -=,解得2198R =,所以由球的表面积21942S R ππ==, 故答案为:192π. 16.(2020·广东肇庆市·高三月考)鳖臑(bi ē n ào )出自《九章算术·商功》:“斜解立方,得两重堵.斜解壍堵,其一为阳马,一为鳖臑.”鳖臑是我国对四个面均为直角三角形的三棱锥的古称.如图,三棱锥A BCD -是一个鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,且4AB BC DC ===,过点B 向AC引垂线,垂足为E ,过E 作CD 的平行线,交AD 于点F ,连接BF .设三棱锥A BCD -的外接球的表面积为1S ,三棱锥A BEF -的外接球的表面积为2S ,则12S S =________.【答案】125. 【解析】AB BC ⊥,AB BD ⊥,BC BD B =,则AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB CD ⊥,又CD BC ⊥,BCAB B =,∴CD ⊥平面ACB ,,BE AC ⊂平面ACB ,∴CD AC ⊥,CD BE ⊥.又//CD EF ,∴EF BE ⊥,AC EF ⊥,又BE AC ⊥,∴三棱锥E ABF -可补形成以,,EA EF EB 为棱的一个长方体,其外接球的直径的平方等于,,EA EF EB 的平方和,而由,AB BD AC DC ⊥⊥,则AD 是三棱锥A BCD -外接球的直径. ∵4AB BC DC ===,∴AC =2EF =,EB =22EA,BD =,AD ==∴22220EA EB EF ++=,2148444824AD S πππ⎛⎫==⨯= ⎪⎝⎭,22420S ππ=⨯=⎝⎭, ∴124812205S S ππ==. 故答案为:125. 17.(2020·上海市松江二中高三期中)若体积为8的正方体的各个顶点均在一球面上,则该球的体积为______.【答案】【解析】因为正方体的体积为8,故棱长为2,因此正方体的体对角线的长为故正方体外接球的直径为故球的体积为343π⨯=,故答案为:.18.(2020·江苏南通市·高三期中)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,AC =则这个“堑堵”的外接球的表面积为________. 【答案】9π【解析】因为2,1,AB BC AC ===222AB BC AC +=,所以AB BC ⊥,所以可将三棱柱111ABC A B C -补成一个长方体,如图:则该长方体的对角线长等于这个“堑堵”的外接球的直径2R,所以23R ==,所以32R =. 所以外接球的表面积为22344()92R πππ=⨯=. 故答案为:9π19.(2020·合肥市第六中学高三期中)在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为______. 【答案】11π 【解析】如图所示:1C M ⊥平面1ACM ,连接1CD , 又11CDD C 为正方形,∴点M 为正方形11CDD C 对角线的交点,则1MCC △是等腰直角三角形,M 是直角顶点, 设E 是1CC 中点,则E 是1MCC △的外心, 取F 是1BB 中点,则//EF BC ,而BC ⊥平面11DCC D ,EF ∴⊥平面11DCC D ,∴三棱锥11M ACC -的外接球的球心O 在直线EF 上,由已知可计算,1FC A F ====FC >, O ∴在EF 的延长线上,设OF x =,则由1OA OC =得2222(1)22x x ⎛⎛+=++ ⎝⎭⎝⎭,解得12x =,2OC ∴==,∴外接球表面积:2411S ππ=⨯=⎝⎭.故答案为:11π.20.(2020·湖南高三开学考试)在四面体S ABC -中,SA ⊥平面ABC ,120BAC ∠=︒,2SA =,BC =________. 【答案】403π 【解析】在ABC 中,因为120BAC ∠=︒,BC =可得ABC的外圆球直径为2sin 2BC r BAC ===∠,又由球的性质,可得()()2222402243R r SA ⎛⎫=+=+=, 所以球的表面积为240=43S R ππ=球表. 故答案为:403π. 21.(2020·全国高三月考)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知某方锥各棱长均为2,则其内切球的体积为______.【解析】如图,设方锥底面的中心为O ,则在Rt ABC △中,AC =AO CO ==在Rt PAO △中,PO =,所以方锥的体积为3, 设方锥内切球的半径为r ,而方锥的表面积为2144242+⨯⨯=+(143r =⨯+,解得2r =,体积为34π3⨯=⎝⎭..22.(2020·江西南昌市·南昌十中)已知在三棱锥P ABC -中,PA PB ==,23APB ∠=π,6ACB π∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_____. 【答案】523π 【解析】当点C 到平面PAB 的距离最大时,平面ABC ⊥平面PAB ,设1O ,2O 分别为PAB △,ABC 的外心,O 为三棱锥P ABC -外接球的球心,连结1O P ,2OO ,设1O P 交AB 于H ,由面面垂直的性质定理可知1O H ⊥平面ABC ,在PAB △中,PA PA ==,23APB ∠=π,所以6πPAB PBA ∠=∠=,所以1sin 2PH PA PAB =⋅∠==,2cos 22AB PA PAB =⋅∠==,PAB △的外接圆直径为31sin 32PA PBA ==∠,所以1O P =,所以11O H O P PH =-=, ABC 的外接圆直径为241sin 2AB ACB ==∠,所以22O A =, 在2Rt OO A △中,OA ===, 所以三棱锥P ABC -外接球的半径为, 所以三棱锥P ABC -外接球的表面积为25243ππ⨯=. 故答案为:523π 23.(2021·福建省福州第一中学高三期中)三棱锥A BCD -中,60ABC CBD DBA ===∠∠∠,2BC BD ==,面ACD,则此三棱锥外接球的表面积为___.【答案】16π【解析】如图,2BC BD ==,60ABC CBD DBA ===∠∠∠,ABC ABD ∴≅,则AC AD =,∴2CD =,又由面ACD,则ACD △的高AE为AC AD ==,60ABC DBA ==∠∠,可得4AB =,90ACB ADB ∠=∠=︒,即AC BC ⊥,AD DB ⊥,明显地,当球内有一条边能同时对应两个面的三角形的直角,则该边必为球的直径,所以,24AB R ==,所以,三棱锥外接球的表面积为2416R ππ=故答案为:16π24.(2020·福建福州市·高三期中)在三棱锥P ABC -中,平面PAB 垂直平面ABC ,PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【答案】52π【解析】如图,过点A 在面PAB 内作AQ AB ⊥交PAB △的外接圆于点Q ,平面PAB 垂直平面ABC ,两平面的交线为AB ,AQ AB ⊥,AQ ⊂面PAB ,AQ ∴⊥面ABC ,PAB △的外接圆直径为4QB ==,2QA ∴==,而2h QA ==,ABC 中,AB AC ==,120BAC ∠=︒,30ACB ∴∠=︒,设底面ABC 的外接圆半径为r ,则2sin AB r BCA==∠R , 则有2222(2)(2)448524R h r R =+=+==,球的表面积为2452S R ππ==故答案为:52π25.(2020·全国高三其他模拟)在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,BC =1cos 3BAC ∠=,若三棱锥D ABC -的体积为3,则此三棱锥的外接球的表面积为______ 【答案】20π【解析】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO , 过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.。
外接球与内切球专题
![外接球与内切球专题](https://img.taocdn.com/s3/m/8cfde22f571252d380eb6294dd88d0d233d43c08.png)
【典例 1】 已知各顶点都在同一个球面上的正四棱柱的高为 4,体
积为 16,则这个球的表面积是( )
A.16π
B.20π
C.24π
D.32π
【解析】 已知各顶点都在同一个球面上的正四棱柱的高为 4,体积 为 16,可求得底面边长为 2,故球的直径为 22+22+42=2 6,半径为 6, 球的表面积为 24π,故选 C。
【答案】 C
【小结】 本题是运用“正四棱柱的体对角线的长等于其外接球的三视图如图所示,则它的外接球的表 面积为( )
A.16π C.8π
B.4π D.2π
【解析】 由三视图可知该三棱锥的高为 1,底面为一个直角三角形, 由于底面斜边上的中线长为 1,则底面外接圆的半径为 1,顶点在底面上 的投影落在底面外接圆的圆心上。由于顶点到底面的距离与底面外接圆 的半径相等,则三棱锥的外接球的半径 R 为 1,则三棱锥的外接球的表 面积 S=4πR2=4π,故选 B。
【答案】 B
二、构造长方体或正方体确定球心 1.正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角 形的三棱锥,可将三棱锥补形成长方体或正方体; 2.同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱 锥,可将三棱锥补形成长方体或正方体; 3.若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方 体; 4.若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正 方体。
5 2 4π× 2 2=50π。故选 D。
【答案】 D
三、由性质确定球心 利用球心 O 与截面圆圆心 O′的连线垂直于截面圆及球心 O 与弦中 点的连线垂直于弦的性质,确定球心。
【典例 3】 正三棱锥 A-BCD 内接于球 O,且底面边长为 3,侧 棱长为 2,则球 O 的表面积为________。
高中数学 外接球、内切球专题
![高中数学 外接球、内切球专题](https://img.taocdn.com/s3/m/a98932d5cc7931b764ce15b1.png)
基本知识回顾:
一、 球体的体积与表面积
二、球与多面体的接、切
定义外1:接若球一个球多心面体到的各各顶顶点点都在的一距个球离的相球面等上(,R)
则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球 。
定义内2:切若一球个球多面心体到的各各面面都与的一距个球离的相球面等相(切r),
小结1
如何求直棱柱的外接球半径呢? (1)先找外接球的球心:
它的球心是连接上下两个多边形的外心 的线段的中点; (2) 再构造直角三角形,勾股定理求解。
二、棱锥与球
3.正四面体ABCD的棱长为a,求其 内切球半径r与外接球半径R.
1. 已知球O的表面上有P、A、B、C四点,且PA、PB、PC两两互 相垂直,若PA=PB=PC=a,求这个球的表面积和体积。
则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球 。
球与正方体的“切”“接”问题
一、直棱柱与球
若正方体的棱长为a,则
⑴正方体的内切球直径= ⑵正方体的外接球直径= ⑶与正方体所有棱相切的球直径=
变式1:
已知长方体 ABCD A1B1C1D1 的长宽高分别为 3,4,5, 则该长方体的外接球的表面积等于_________。
A
O C
P
B
三、球面相切则称这个多面体是这个球的外切多面体这个球是这个多面体的外接球多面体的内切球外接球球心到各顶点的距离相等r内切球球心到各面的距离相等r球与正方体的切接问题一直棱柱与球正方体的内切球直径正方体的外接球直径与正方体所有棱相切的球直径若正方体的棱长为a则abcd的长宽高分别为345则该长方体的外接球的表面积等于
外接球和内切球问题总结归纳
![外接球和内切球问题总结归纳](https://img.taocdn.com/s3/m/0c68d1622e60ddccda38376baf1ffc4ffe47e22a.png)
外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。
它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。
本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。
一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。
在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。
2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。
在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。
二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。
以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。
这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。
2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。
以正方形为例,内切圆的半径等于正方形的边长的一半。
这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。
三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。
例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。
2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。
例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。
个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。
通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。
专题05 立体几何外接球、内切球专题(解析版)
![专题05 立体几何外接球、内切球专题(解析版)](https://img.taocdn.com/s3/m/e97e8497011ca300a7c39049.png)
专题05 立体几何外接球、内切球专题1、在三棱锥P ABC -中,PA ⊥底面,ABC AB BC ⊥.若2PA AB BC ===,,E F 分别是,PB PC 的中点,则三棱锥P AEF -的外接球的表面积为__________.答案: 5π解析: 根据题意,结合题中几何体的结构,将题中棱锥的外接球问题转化为长方体外接球问题. 【详解】因为PA ⊥底面ABC ,所以PA BC ⊥.又AB BC ⊥,所以BC ⊥平面PAB ,故BC AE ⊥. 又PA AB =,故AE PB ⊥, 所以AE ⊥平面PBC , 所以,AE EF AE PE ⊥⊥. 又//EF BC ,所以EF PE ⊥,故,,EF PE AE 两两垂直.又11,22EF BC PE AE ====, 故该三棱锥外接球的半径与一个棱长分别为1,2,2. 所以三棱锥P AEF -的外接球的半径为122522++=, 故外接球的表面积为25452ππ⎛⎫⨯= ⎪ ⎪⎝⎭.故答案为:5π.2、已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -的体积为3,则球O 的表面积为( )A .323πB .16πC .52πD .64π答案: C 解析:由题意2AB BC ==,120ABC ∠=︒,可求得ABC ∆的面积,进而通过O ABC -的体积得到三棱锥的高,即球心到平面ABC 的距离.通过外接圆的半径公式,求得截面圆的半径,得到球O 的半径,即得解. 【详解】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=, 1333O ABC ABC V S h h -∆==∴=.又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===因此球O 的半径222313R =+= 球的表面积:2452S R ππ==. 故选:C3、已知球O 是三棱锥P ABC -的外接球,1PA AB PB AC ====,2CP =,点D 是PB 的中点,且72CD =,则球O 的表面积为( ) A .73π B .76π C .72127πD .72154π答案: A 解析:证明AC ⊥平面PAB ,以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球,计算半径得到答案. 【详解】由1PA AB PB AC ====,2CP =,得PA AC ⊥. 由点D 是PB 的中点及PA AB PB ==,易求得32AD =,又72CD =,所以AD AC ⊥,所以AC ⊥平面PAB .以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球, 球心O 到底面PAB ∆的距离1122d AC ==, 由正弦定理得PAB ∆的外接圆半径12sin 603PA r ==︒,所以球O 的半径为22712R d r =+=,所以球O 的表面积为2743S R ππ==.故选:A .4、已知四边形ABCD 是菱形,60BAD ︒∠=,2AB =,将菱形ABCD 沿对角线BD 翻折后,二面角A BD C --的余弦值为13,则四面体ABCD 的外接球的表面积为( ). A .5πB .6πC .7πD .8π答案: B解析: 由菱形ABCD 中,连接AC 和BD 交于O ,求出3OA OC ==,由二面角A BD C --的余弦值为13,可得2AC =,即四面体ABCD 为棱长为2的正四面体求解可得表面积,将正四面体补成一个正方体,求出正方体的外接球半径即可得结果. 详解:由题意,菱形ABCD 中,连接AC 和BD 交于O , 可知AC BD ⊥,即OA BD ⊥,OC BD ⊥, ∵60BAD ︒∠=,2AB =,∴3OA OC ==, ∴AOC ∠为二面角A BD C --的平面角,即1cos 3AOC ∠=, 22212cos 3323343AC OA OC OA OC AOC =+-⋅⋅∠=+-⨯⨯⨯=即2AC =,即四面体ABCD 为棱长为2的正四面体,将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为6, ∵正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为26462S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故选:B.5、已知A ,B ,C 是球心为O 的球面上三点,60AOB ∠=,120AOC ∠=,若三棱锥O ABC -体积的最大值为1,则球O 的表面积为( ) A .12π B .16π C .24π D .36π 答案: B 解析:根据题意分析可知,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大.此时,点B 到平面AOC 的距离达到最大值,为正三角形AOB 的OA 边上的高,根据三棱锥的体积公式计算体积,可解得R ,根据球的表面积公式可得结果.详解:设球O 半径为R ,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大. 注意AOB 是正三角形,AOC △是顶角等于120︒的等腰三角形, 所以231131sin120123228V R R R R ⎛⎫=︒⨯==⇒=⎪⎝⎭,所以16S π=. 故选:B.6、在四面体ABCD 中,60ACB ∠=︒,90DCA ∠=︒,2DC CB CA ===,二面角D-AC-B 的大小为120°,则此四面体的外接球的表面积是________.答案: (100163)9π+解析:取,AC AD 的中点,M N ,和ABC ∆的中心E ,点N 是ACD ∆外接圆的圆心,点E 是ABC ∆外接圆的圆心,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,在四边形OEMN 中找几何关系,构造方程求解外接圆的半径和表面积.【详解】由条件可知ABC ∆是等边三角形,取,AC AD 的中点,M N ,和ABC ∆的中心E ,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,120EMN ∠=,60EON =∠,如图:由条件可知,33EM =,60EMG ∠= 30OEH ∠= 331322HN EG ∴==⨯=,316EH GN GM MN ==+=+ 33123tan 301636OH EH ⎛⎫+∴=⋅=+⨯= ⎪ ⎪⎝⎭, 323ON OH HN +∴=+=, ()222222322543239R OD ON ND ⎛⎫++==+=+=⎪ ⎪⎝⎭, 210016349S R ππ+==7、如图,在体积为233的四棱锥P ABCD -中,底面ABCD 为边长为2的正方形,PAB △为等边三角形,二面角PAB C 为锐角,则四棱锥P ABCD -外接球的半径为( )A .213 B .2C .3D .32答案: A解析:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,易得AB ⊥平面PEF ,PH ⊥平面ABCD ,根据四棱锥的体积为233,得到32PH =,进而得到30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥,然后利用截面圆的性质求得外接球的球心再求半径即可. 详解:如图所示:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,垂足为H. 则AE BE =、CF DF =,有AB EP ⊥,AB EF ⊥, 所以AB ⊥平面PEF ,所以AB PH ⊥,又PH EF ⊥, 所以PH ⊥平面ABCD , 因为四棱锥的体积为233, 所以123433PH ⨯=, 解得32PH =,由3PE =,得30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥. 三角形PEF 的平面图如下:2PM EM =,N 为EF 的中点,由图可知四棱锥外接球的球心O 为过点M 的EP 的垂线1和EF 的中垂线的交点,设四棱锥P ABCD -外接球的半径为R ,33EM =,23EQ =,13NQ =,33NO =,17212333R =+==. 故选:A8、已知三棱锥A BCD -的四个顶点在球O 的球面上,AB AC AD ==,BCD 是边长为2的正三角形,M 、N 分别为AB 、BC 中点,且MD MN ⊥,则球O 的表面积为__________.答案: 3π解析: 利用已知条件可知三棱锥A BCD -是正三棱锥,结合MD MN ⊥可得AC ⊥面ABD ,即可知ABC 是等腰直角三角形,可得1AB AC AD ===且两两垂直,借助于正方体的外接球,即可求出三棱锥的外接球.详解:由题意知A BCD -为正三棱锥,取BD 中点F ,连接,AF CF , 所以CF BD ⊥ ,AF BD ⊥ ,且AF CF F ⋂= , 所以BD ⊥平面ACF ∴AC BD ⊥,又M 、N 分别为AB 、BC 中点,易知||MN AC , 由已知MD MN ⊥, 所以AC MD ⊥ MD BD D ⋂=, 所以AC ⊥面ABD ,所以AC AB ⊥,即ABC 是等腰直角三角形,因为斜边2BC =,所以1AB AC AD ===且两两垂直,则A BCD -为以A 为顶点的正方体一部分,()222221113R AB AC AD =++=++=, 即243R =所以球O 的表面积为243S R ππ==. 故答案为:3π9、已知三棱锥P ABC -的底面是正三角形,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的体积为( )A B C .6π D 答案: D解析: 设点O 是点P 在底面ABC 的射影,先分析可得O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,再求得外接球的体积即可【详解】设点D 为BC 的中点,则AD BC ⊥,因为点A 在侧面PBC 内的射影H 是PBC ∆的垂心,所以PA BC ⊥,PC AB ⊥, 设点O 是点P 在底面ABC 的射影,则BC ⊥平面PAD ,所以O 一定在AD 上, 因为AB PC ⊥,AB PO ⊥,所以CO AB ⊥,所以O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,设球的半径为R ,故选:D10、点,,,A B C D 在同一个球的球面上,,若四面体ABCD 体积)A B .8πC D 答案: A 解析:根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积. 【详解】根据题意知,ABC ∆是一个等边三角形,其面积为334,由正弦定理322sin3r π==知,外接圆的半径为1r =.设小圆的圆心为Q ,若四面体ABCD 的体积有最大值,由于底面积ABC S ∆不变,高最大时体积最大, 所以,DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ∆⨯=,4DQ ∴=,设球心为O ,半径为R ,则在直角AQO ∆中,222OA AQ OQ =+, 即2221(4)R R =+-,178R ∴=则这个球的表面积为:2172894()816S ππ==故选:A . 11、如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,AD BP ⊥,PA AC =,若三棱锥P ABC -外接球的表面积为8π,则三棱锥P ACD -体积的最大值为( )A .23B .12C .34D .24答案: A解析:详解:设AB a ,BC b =,由三棱锥P ABC -外接球的表面积为8π,得外接球的半径2R =.又PA ⊥平面ABC ,AB BC ⊥,所以()2222222228AB BC AP AC AP AP R ++=+===,所以2AP =,所以224a b +=.因为PA ⊥平面ABC ,AD PB ⊥,所以24PB a =+,224a BD a=+,过D 作DE AB ⊥,垂足为E ,则DE ⊥平面ABC ,所以DE PA ∥,所以DE BD PA BP =,所以2224a DE a=+,所以()()()222221124423643432P ABC D ABCACD P ACD a ab abV V S PA DE ab V a a a b ---⎛⎫-=-=-== ⎪++⎝=+⎭△44223623a b b a =≤=⎛⎫+ ⎪⎝⎭,当且仅当2a b b a =,即233a =,263b =时,“=”成立,所以三棱锥P ACD -体积的最大值为23.故选A.12、已知直三棱柱111ABC A B C ﹣中,AB AC ⊥,11AB AC AA ===,若点M 在线段1AA 上运动,则四棱锥11M BCC B -外接球半径的取值范围为( )A .252,28⎡⎤⎢⎥⎣⎦ B .232,24⎡⎤⎢⎥⎣⎦ C .352,28⎡⎤⎢⎥⎣⎦D .332,24⎡⎤⎢⎥⎣⎦ 答案: C解析: 首先把三棱柱体转换为正方体,利用B 、C 、1C 、1B 在球面上,球心G 在线段2OO上,整理出关系式222 R x y=+,且2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,然后利用勾股定理的应用建立二次函数的关系式,再利用二次函数的最值的应用求出结果.详解:将三棱柱111ABC A B C-补成一个正方体1111ABDC A B D C-.设四棱锥体11M BCC B-外接球的球心为G,1AA的中点为1O,1DD的中点为2O,12O O的中点为O,如图所示,则122OO=,32OB=,由于B、C、1C、1B在球面上,所以球心G在线段2OO上,设GM GB R==,1O M x=,1O G y=,则22OG y=-,在1Rt O MG△中,222R x y=+①在1Rt O BG中,2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭②,联立①②得2524x y=-,由于12x≤≤,故25228y≤≤,故222225233252,424432R x y y y y⎛⎫⎡⎤=+=-+=+∈⎪⎢⎥⎪⎣⎦⎝⎭所以352,28R⎡⎤∈⎢⎥⎣⎦.故选:C .13、在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 折起,使二面角B AC D --的大小为60,则所得三棱锥A BCD -的外接球表面积为( )A .4πB .529πC .6πD .203π 答案: B解析: 由已知可得ABC 、ACD 都是边长为2的等边三角形,由菱形的对角线互相垂直,可得BED ∠为二面角B AC D --的平面角,即60BED ∠=,作出图形,找出三棱锥A BCD -的外接球球心,利用四点共圆结合正弦定理求解三棱锥A BCD -的外接球的半径,代入球的表面积公式可得结果. 详解:由于四边形ABCD 是边长为2的菱形,且23BD =,则22222AC CE AB BE ==-=,所以,ABC 、ACD 都是边长为2的等边三角形,由于菱形的对角线互相垂直,则BE AC ⊥,DE AC ⊥,所以,BED ∠为二面角B AC D --的平面角,即60BED ∠=,过点B 作平面ACD 的垂线BM ,垂足为点M ,则点M 在线段DE 上,由3BE DE ==,60BED ∠=,可得1322ME MD DE ===, 且BDE 是等边三角形,所以,3BD BE ==,设ACD 的外心为点G ,BD 的中点H ,在平面BED 内,过点G 、H 分别作平面ACD 、BD 的垂线交于点O ,则点O 为三棱锥B ACD -的外接球的球心, 60BDE ∠=,则136012=由于O 、G 、D 、H 四点共圆,可得13603= 所以,三棱锥B ACD -的外接球的表面积为13⎫故选:B.。
9.2 外接球与内切球(原卷版)(新高考专用)-高考数学一轮复习
![9.2 外接球与内切球(原卷版)(新高考专用)-高考数学一轮复习](https://img.taocdn.com/s3/m/2a75bdc9a1116c175f0e7cd184254b35eefd1aa2.png)
第9章立体几何与空间向量9.2 外接球与内切球题型一.外接球问题考点1.长方体模型1.如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=√3,则球O的体积等于.2.四面体A﹣BCD中,AB=CD=5,AC=BD=√34,AD=BC=√41,则四面体A﹣BCD 外接球的表面积为.考点2.柱体模型1.直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于()A.20πB.10πC.5πD.5√5π2.三棱锥P﹣ABC中,已知P A⊥底面ABC,∠BAC=60°,P A=43,AB=AC=2,若三棱锥的所有顶点都在同一个球面上,则该球的体积为考点3.正棱锥模型1.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D﹣ABC体积的最大值为.2.如图,ABCD﹣A1B1C1D1是棱长为1的正方体,S﹣ABCD是高为1的正四棱锥,若点S,A1,B1,C1,D1在同一个球面上,则该球的表面积为.考点4.一般椎体的外接球——找球心的万能方法1.四面体P ABC的四个顶点都在球O的球面上,P A=8,BC=4,PB=PC=AB=AC,且平面PBC ⊥平面ABC ,则球O 的表面积为( )A .64πB .65πC .66πD .128π2.在菱形ABCD 中,A =60°,AB =√3,将△ABD 沿BD 折起到△PBD 的位置,若二面角P ﹣BD ﹣C 的大小为2π3,则三棱锥P ﹣BCD 的外接球体积为( ) A .43π B .√32π C .7√76π D .7√72π题型二.内切球问题1.将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的体积为( ) A .√2π3 B .√3π3 C .4π3 D .2π2.正三棱锥P ﹣ABC 的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为( )A .1:3B .1:(3+√3)C .(√3+1):3D .(√3−1):33.如图是棱长为2的正八面体(八个面都是全等的等边三角形),球O 是该正八面体的内切球,则球O 的表面积为( )A .8π3 B .4π3 C .8√6π27 D .4√6π27题型三.与球有关的综合问题1.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P ﹣AOB 的外接球的体积是 .2.四棱锥P ﹣ABCD 中,底面ABCD 是边长为2的正方形,P A ⊥底面ABCD ,异面直线AC 与PD 所成的角的余弦值为√105,则四棱锥外接球的表面积为( )A .48πB .12πC .36πD .9π3.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =√3,∠ASC =∠BSC =30°,则棱锥S ﹣ABC 的体积为( )A .3√3B .2√3C .√3D .14.在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,∠BAC =2π3,AP =3,AB =2√3,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为π3,则三棱锥P ﹣ABC 的外接球的表面积为 ;则三棱锥P ﹣ABC 的内切球的半径为 .1.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,AB =AC =3,∠BAC =120°,则球O 的表面积为( )A .48πB .16πC .64πD .36π2.某圆台的母线长为2,母线与轴所在直线的夹角是60°,且上、下底面的面积之比为1:4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128π3.已知等边△ABC 的顶点都在球O 的表面上,若AB =√3,直线OA 和平面ABC 所成角的正切值为√2,则球O 的表面积为( )A .8πB .12πC .16πD .20π4.在三棱锥P ﹣ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,AB =BC =AC =4,则该三棱锥外接球的表面积是( )A .256π9B .64π3C .16πD .12π5.已知A ,B ,C ,D 是半径为R 的球O 的球面上的四个点,△ABC 为等边三角形且它的外接圆O 1的面积为12π,三棱锥D ﹣ABC 体积的最大值为18√3,则R 的值为( )A .4√3B .2√3C .4D .66.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,∠ABC =90°,且SA =3,AB =4,AC =5,若球O 在三棱锥S ﹣ABC 的内部且与四个面都相切(称球O 为三棱锥S ﹣ABC 的内切球),则球O 的表面积为( )A .32π27 B .4π9 C .16π9 D .16π81。
内切圆与外接球专题含答案
![内切圆与外接球专题含答案](https://img.taocdn.com/s3/m/94e6f1bbde80d4d8d05a4f6a.png)
内切球与外接球专题(1)1.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=√2,求球O的表面积.2.已知四棱锥S−ABCD的底面是等腰梯形,AB//CD,AD=DC=BC=1,AB=SA=2且SA⊥平面ABCD,则四棱锥S−ABCD的外接球的体积为_________.3.正三棱锥的高为1,底面边长为2√6,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.4.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为√3,底面周长为3,求这个球的体积.5.如图,正四棱锥P−ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,如果V P−ABCD=16,则球O的表面积是______.36.将边长为2的正△ABC沿BC边上的高AD折成直二面角B—AD—C,则三棱锥B—ACD的外接球的表面积为________.7.四棱锥P−ABCD中,底面ABCD为正方形,PD⊥底面ABCD,AB=1,PD=√2,若点E为PB的中点,则四面体EPCD外接球的体积是_______.8.直三棱柱ABC−A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=60°,则此球的表面积等于________.9.三棱锥D−ABC内接于球O,DC⊥平面ABC,∠ACB=30°,AB=2,DC=4,则三棱锥D−ABC外接球的体积为________.10.直角△ABC的三个顶点都在球O的球面上,且AB=AC=2,若三棱锥O—ABC的体积为2,则该球的表面积为________.11.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),圆锥的高为2,底面半径为1,则球O的表面积为________.12.“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.答案和解析1.【答案】解:∵SA⊥平面ABC,AB⊥BC,∴四面体S−ABC的外接球半径等于以长宽高分别SA,AB,BC三边长的长方体的外接球的半径,∵SA=AB=1,BC=√2,∴2R=√SA2+AB2+BC2=2,∴球O的表面积S=4πR2=4π.2.【答案】【解析】【分析】本题考查了几何体的外接球、几何体外接球的体积计算.【解答】过点A,B,C,D作球O的截面如图1,设AB中点为O1,连接O1C,O1D,则CD=//O1A,所以四边形ADCO1平行四边形,所以O1C=1,同理O1D=1,所以O1A=O1B=O1C=O1D,所以O1是等腰梯形ABCD的外心,过S,A,B作球O的截面如图2,设BS的中点为O,连接O1O,OA,则O1O//SA,所以O1O⊥平面ABCD,所以OA=OB=OC=OD,又SA⊥AB,所以OA=OS,所以点O是四棱锥S−ABCD的外接球球心,OA为四棱锥S−ABCD外接球的半径,在中,AB=SA=2,∴OA=12BS=√2.3.【答案】解:(1)底面正三角形的中心到一边的距离为13×√32×2√6=√2,则正棱锥侧面的斜高为√12+(√2)2=√3,所以S侧=3×12×2√6×√3=9√2,所以S表=S侧+S底=9√2+12×√32×(2√6)2=9√2+6√3.(2)如图,设正三棱锥P−ABC的内切球球心为O,连结OP,OA,OB,OC,则O点到三棱锥的四个面的距离都为球的半径r,所以V P−ABC=V O−PAB+V O−PBC+V O−PAC+V O−ABC=13S侧·r+13S△ABC·r=13S表·r=(3√2+2√3)r.又V P−ABC=13×12×√32×(2√6)2×1=2√3,所以(3√2+2√3)r=2√3,即,所以,.4.【答案】解:∵正六边形的周长为3,得边长为12,故其主对角线为1,从而球的直径2R=√(√3)2+12=2,∴R=1,∴球的体积.5.【答案】16π【解析】解:如图,正四棱锥P−ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,∴PO⊥底面ABCD,PO=R,S ABCD=2R2,VP−ABCD=163,所以13⋅2R2⋅R =163,解得:R =2,球O 的表面积:S =4πR 2=16π,故答案为:16π6.【答案】5π解:根据题意可知三棱锥B −ACD 的三条侧棱BD ,DC ,DA 两两互相垂直, 所以它的外接球就是它扩展为长方体的外接球,因为长方体的对角线的长为√1+1+√32=√5,所以球的半径为√52,所以三棱锥B −ACD 的外接球的表面积为4π×(√52)2=5π.故答案为5π.7.【答案】4π3解在四棱锥EPCD 中外接球球心为O , ∵已知PC =√CD 2+PD 2=√2+12=√3, 设外接球半径为x 则O 到P 、E 距离相等 可得:(x −12)2+(√32)2=x 2解得:x =1∴四棱锥P −ABCD 外接球的体积是43πx 3=4π38.【答案】28π3解:直三棱ABC −A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =60°,如图,连接上下底面中心,O 为PQ 的中点,OP ⊥平面ABC ,则球的半径为OA ,由题意OP =1,AP =2√33,∴OA =√1+43=√73,所以球的表面积为:4πR 2=283π9.【答案】64√23π解:将三棱锥补全成三棱柱,则球心到底面的距离为DC2=2,又在△ABC 中,由正弦定理可知,2sin30°=2R =4,所以外接圆半径R =2, 所以由圆的截面性质可知,球的半径R′=√22+22=2√2,所以三棱锥S −ABC 外接球的体积,故答案为64√2π3. 10.【答案】44π解:设球心到平面ABC 的距离为d ,球的半径为r ,由题意得,V O−ABC =13×12×2×2×d =2,解得d =3,∵直角△ABC ,AB =AC =2,∴BC =2√2,∴r =√d 2+(BC2)2=√32+(√2)2=√11, ∴球的表面积为4πr 2=44π.故答案为44π.11.【答案】25π4解:设球的半径为R ,则OA =2−R ,则R 2=(2−R )2+1,解得R =54,则球O 的表面积为4πR 2=4π×(54)2=25π412.【答案】解:如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4−r)2+(√2)2=r 2,解得r =94, 则球O 的体积V 球=43πr 3=43π×(94)3=243π16.。
专题——几何体的外接球和内切球问题
![专题——几何体的外接球和内切球问题](https://img.taocdn.com/s3/m/bd7ca781998fcc22bcd10dcc.png)
B.112π
C.1 000π 9
D.5 000 10π 81
※内切球问题 1.正棱锥的内切球.
第一步:先现出内切球的截面图, E, H 分别是两个三角形的外心; 第二步:由 POE 相似于 PDH ,建立等式: OE PO ,解出 r
DH PD
2.任意多面体的内切球:等体积法,
例 3 非直二面角类型
点,则三棱锥 P ABC 体积的最大值为
。
例 3 含有线面垂直关系的棱锥
(1)已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,
则该三棱锥的外接球体积为
.
(2)半径为 5 的球面上有四点 A, B, C, D ,且 BC CD DB 3 3 ,当四面体 ABCD 的体积最大
A.1: 3
B.1: 3
C.1: 3 3
D.1: 9
(2)正三棱锥的高为 1,底面边长为 2 6 ,正三棱锥内有一个球与其四个面相切.求球的表面积与体
积.
(2)在 三 棱 锥 P ABC 中 , ABC 是 边 长 为 3 的 等 边 三 角 形 , D 线 段 AB 的 中 点 ,
DE PB E, DE AB ,若 EDC 120, PA 3 , PB 3 3 ,则三棱锥 P ABC 的外接球的
墙角模型1若三棱锥的三个侧面两垂直且侧棱长均为分别是棱scbc的中点且mnam则正三棱锥abc4已知某几何体的三视图如图所示三视图是腰长为1的等腰直角三角形和边长为1的正方形则该几何体外接球的体积为对棱相等的三棱锥1在三棱锥bcdbdacbcadcdab则三棱锥bcd外接球的表面积为含有线面垂直关系的棱锥1已知一个三棱锥的三视图如图所示其中俯视图是等腰直角三角形则该三棱锥的外接球体积为2已知eabaebadebea则多面体abcd2利用球的性质确定球心利用球心o与截面圆的圆心的连线垂直于截面圆以及球心o与弦中点的连线垂直于弦的性质确定球心o二面角模型两个三角形拼在一起一般为两等腰三角形或直角三角形1
高三专题复习内切球与外接球PDF
![高三专题复习内切球与外接球PDF](https://img.taocdn.com/s3/m/5bc722e7bb4cf7ec4bfed01d.png)
第二步:设出长方体的长宽高分别为 a, b, c , AD BC x , AB CD y , AC BD z ,列方程组,
a 2 b 2 x 2 2 2 x2 y 2 z 2 2 2 2 2 2 , b c y (2 R) a b c 2 c 2 a 2 z 2
2 2 之和为 4 ( R r ) 4 (3 3 2 2) 24 8 2
6. (2018 山西一模) 《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直 三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底 面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵 ABC A1 B1C1 中,
2 2 2 2
24 47 1 , 23 23
3, S D 2 3
S
S
A
C
A
C
B
B
3. (2018 广州调研)如图,网格纸上正方形小格的边长为 1,图中粗线画出的是某三棱锥 的三视图,则该三棱锥的外接球的表面积为________.
3.答案: 11 解析:该三棱锥的直观图为如图所示的三棱锥 P ABC ,该三棱锥的外接球也是三棱柱 ABP CDQ 的
1 2 a sin 60 9 3 a 6 ,此时 △ ABC 外接圆的半径为 2
r
1 a 1 6 2 3 ,故球心 O 到面 ABC 的距离为 R 2 r 2 16 12 2 ,故点 D 到面 2 sin 60 2 3 2
1 1 ABC 的最大距离为 2 R 6 ,此时 VD ABC S△ ABC d D ABC 9 3 6 18 3 ,故选 B. 3 3
专题12 多面体的外接球和内切球
![专题12 多面体的外接球和内切球](https://img.taocdn.com/s3/m/caf3d5d0900ef12d2af90242a8956bec0975a5f1.png)
专题12 多面体的外接球和内切球一、结论1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
类型一 球的内切问题(等体积法)例如:在四棱锥P ABCD −中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V −−−−−−=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r −=⋅+⋅+⋅+⋅+⋅,可求出r .类型二 球的外接问题 1、公式法正方体或长方体的外接球的球心为其体对角线的中点 2、补形法(补长方体或正方体) ①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC −中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=); 图2图3②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .4、双面定球心法(两次单面定球心) 如图:在三棱锥P ABC −中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .二、典型例题1.(2022·山西吕梁·一模(文))在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为( ) A .3π B.(3π− C .12π D.(3π+【答案】B 【解析】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S −−−−=+++=+++△△△△内,所以3ABCDVr S =内, 因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==−球, 故选:B【反思】本例中涉及到求内切球问题,典型的等体积法.2.(2021·四川省南充高级中学高二期中(文))在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为( )A .494π B .56πC D .14π【答案】D【解析】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .【反思】由题意PA ,PB ,PC 两两垂直,可直接用补形法,补成长方体,利用长方体求外接球.3.(2021·全国·高一课时练习)已知三棱锥P ABC −,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA = )A .163πB .C .323πD .16π【答案】D 【解析】设ABC 的外接圆半径为R ,因为30A =,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设ABC 的外接圆圆心为D ,过点D 做PA 的平行线,则球心一定在该直线上,设为O ,因为PA ⊥面ABC ,PA =由于OP OA R ==,故12OD PA =2OA =,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D【反思】此题典型的单面定球心求外接球的问题,先确定ABC 的外接圆圆心D ,再过D 做PA 的平行线,则可确定球心O 在该直线上,进而通过计算求出外接球半径R . 4.三棱锥ABC P −中,平面PAB ⊥平面ABC ,PAB ∆和ABC ∆均为边长为2的正三角形,则三棱锥ABC P −外接球的半径为 .【解析】:由于ABC ∆是正三角形,并且边长为2,所以ABC ∆的外接圆圆心为1O ,则1HO =,1O C =同理可得PAB ∆的外接圆圆心为2O,可得到23HO =,23O P =,分别过1O 做面ABC 的垂线,过2O 做面PAB 的垂线交于O ,因为平面PAB ⊥平面ABC ,所以四边形12HO OO 为正方形,且OC R =,利用勾股定理:2222221153OC OO OC R =+⇒=+=,所以R =【反思】此题典型的双面定球心,由于选定的面ABC ∆,PAB ∆都是正三角形,故其外心都是中心,如果是普通三角形,可以采用正弦定理定外心.三、针对训练 举一反三一、单选题1.(2021·湖北黄冈·高一期末)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为( ) A .2 B .4CD.2.(2021·青海·海南藏族自治州高级中学高三开学考试(理))如图正四棱柱1111ABCD A B C D −中,底面面积为36,11A BC V 的面积为111B A B C −的外接球的表面积为( )A .68πB .C .172πD .3.(2022·全国·高三专题练习)已知四面体P ABC −中,PA ⊥平面ABC ,2PA AB ==,BC 3tan 2ABC ∠=,则四面体P ABC −的外接球的表面积为( ) A .15πB .17πC .18πD .20π4.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π5.(2021·云南·弥勒市一中高二阶段练习)设直三棱柱111ABC A B C −的所有顶点都在一1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是( )A .1B .2C .D .46.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE −的体积最大时,该三棱锥外接球的表面积为( ) A .525π48B .5π4C .25π4D .25π7.(2021·广西·柳铁一中高三阶段练习(理))在三棱锥A BCD −中,3AB AD BC ===,5CD =,4BD =,AC =( ) A .63π10B .64π5C .128π5D .126π58.(2021·江西省南丰县第二中学高一学业考试)已知四棱锥S ABCD −,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A −−的大小为3π.若四面体S ACD −的四个顶点都在同一球面上,则该球的体积为( )A B .C .10πD .323π 二、填空题9.(2022·河南焦作·一模(理))已知三棱锥P ABC −的每条侧棱与它所对的底面边长相等,且ABC 是底边长为积为___________.10.(2022·河南驻马店·高三期末(文))在三棱锥P ABC −中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ==P ABC −外接球的表面积为______.11.(2022·全国·模拟预测(理))已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD −体积最大时,其外接球的表面积为______.12.(2022·安徽马鞍山·一模(理))三棱锥-P ABC 中,PAC △是边长为角形,2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______13.(2021·湖北荆州·高一期中)如图,在一个底面边长为2锥P ABCD −中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.。
外接球内切球的9大类题型梳理
![外接球内切球的9大类题型梳理](https://img.taocdn.com/s3/m/5ef0f15a83d049649a6658c5.png)
外接球内切球的9大类题型梳理与球有关的组合体问题,一种是内切,一种是外接,解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.例如:球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 1. 球的表面积为S=4πR 2 2. 球的体积为V =43πR 3多面体、旋转体与球接、切问题的求解策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题. (2)利用平面几何知识寻找几何体元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. (3)若球面上4点P ,A ,B ,C 构成的3条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,用4R 2=a 2+b 2+c 2求解.一.球的性质应用例题1 已知三棱锥S ABC -的顶点都在球O 的球面上,ABC 是边长为6的正三角形,SC 为球O 的直径,且8SC =,则此三棱锥的体积为( )A .43B .63C .123D .163【解析】因为△ABC 是边长为6的正三角形,所以△ABC 外接圆的半径r =23,SC 为球O 的直径,且8SC =,球O 半径R =4,所以点O 到平面ABC 的距离()22224232d R r =-=-=,SC 为球O 的直径,点S 到平面ABC 的距离为2d =4, 此棱锥的体积为111326641233322ABCV S d =⨯=⨯⨯⨯⨯⨯=,选C .巩固1 已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -的体积为3,则球O 表面积为( ) A .323πB .16πC .52πD .64π【解析】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=, 1333O ABC ABC V S h h -∆==∴=.又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===因此球O 的半径222313R =+=球的表面积:2452S R ππ==,选C巩固2 已知三棱锥P-ABC 中,PA=4,AB=AC=23,BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为() A .16πB .32πC .64πD .128π【解析】∵底面ABC 中,2AB AC ==,6BC =,∴1cos 2BAC ∠=- ∴3sin BAC ∠=,∴ABC 的外接圆半径1 2323r =⨯= PA ⊥面ABC ,∴三棱锥外接球的半径()22222232162PA R r ⎛⎫=+=+= ⎪⎝⎭,所以三棱锥P ABC -外接球的表面积2464S R ππ==,选C .二.最值问题例题2 已知三棱锥P ABC -的顶点都在半径为53的球面上,1AB =,3BC =,2AC =,则三棱锥P ABC -体积的最大值为( )A .3 B .1 C .3D .53【解析】如图,设球心为O ,由1AB =,3BC =,2AC =可得ABC ∆为直角三角形,斜边AC 的中点O '为球小圆的圆心,接OO ',OA ,则OO '⊥平面ABC ,由53OA =,1O A '=可得43OO '=,故三棱锥P ABC -最大体积为113453()3333ABC S O P ∆⨯⨯'=+=,选A .巩固1 在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =,连接1O A ,则15O A =,∴2225R x =+.在ABC 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==, 所以113O D =在1Rt OO D 中,213OD x =+ 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 选C.巩固2 已知ABC ∆的三个顶点落在半径为R 的球O 的表面上,三角形有一个角为3π且其对边长为3,球心O 到ABC ∆所在的平面的距离恰好等于半径R 的一半,点P 为球面上任意一点,则P ABC -三棱锥的体积的最大值为( ) A .83B .73C .93D .73【解析】设ABC ∆外接圆的圆心为1O ,则1OO ⊥平面ABC ,所以12R OO =设ABC ∆外接圆的半径为r ,3AB c ==,3C π∠=由正弦定理可得:32sin3rπ=,解得:3r =由球的截面圆性质可得:2222132R R OO r ⎛⎫=+=+ ⎪⎝⎭,解得:2R =所以点P 到平面ABC 的距离的最大值为:13R OO +=.在ABC ∆中,由余弦定理可得:2222232cos 2a b ab C a b ab ab ab ab =+-=+-≥-= 当且仅当3a b ==时,等号成立,所以()max 9ab =. 所以193sin 23ABCS ab π∆,当且仅当3a b ==时,等号成立. 当三棱锥P ABC -的底面面积最大,高最大时,其体积最大. 所以三棱锥P ABC -的体积的最大值为1939333P ABC V -==选C三.球直径灵活应用例题3 已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A .26B .3 C .23D .22【解析】作出图形,设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC , 延长CO 1交球于点D ,则SD ⊥平面ABC ∵CO 1=233323⨯=, ∴11613OO =-=SD=2OO 126, ∵△ABC 是边长为1的正三角形, ∴S △ABC =34,∴132623436S ABC V -=⨯⨯=三棱锥.四.球与其它几何体的综合例题4 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3866cm 3πC .31372cm 3πD .32048cm 3π【解析】设球的半径为R cm ,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm ,球心到截面圆的距离为()2R -cm 所以由()22242R R +-=,得5R = 所以球的体积为()333445005cm 333V R πππ==⨯= 选A巩固1 四面体ABCD 中,已知1DA DB DC ===,且DA DB DC 、、两两相互垂直,在该四面体表面上与点A 距离为23的点形成一条曲线,则这条曲线的长度是( ) A .3π B .3π C .53π D .3π【解析】在四面体表面上与点A 距离为33的点形成一条曲线 曲线分别与,,,AB BD AC CD 交于,,,E H F G3,cos 223AD Rt ADH DAH AH ∆∠===13,62DAH DH AH π∴∠===,4612HAE πππ∠=-=,同理12GAF π∠=, 23312318FG HE ππ∴==⨯=,232333,339236EF GH ππππ=⨯==⨯=, EF FG GH HE ∴+++323332ππππ==. 选B.五.球定义的灵活应用例题5 如图,在底面为矩形的四棱锥E ABCD -中,DE ⊥平面ABCD ,F ,G 分别为棱DE ,AB 上一点,已知3CD DE ==,4BC =,1DF =,且FG ∥平面BCE ,四面体ADFG 的每个顶点都在球O 的表面上,则球O 的表面积为( )A .12πB .16πC .18πD .20π【解析】在棱CD 上取一点H,使得HD=1////CD DE FH CE FH =∴,,则平面BCE又//FG 平面BCE ,FG FH F ⋂=,∴平面//FGH 平面BCE , 又平面FGH ⋂平面ABCD=GH ,平面BCE ⋂平面ABCD=BC,//BC GH ∴,AG ∴= HD=1,故四面体ADFG 可以补成一个长方体,且长,宽,高分别为4,1,1所以球O 的表面积为2222114418.ππ++=选C巩固1 如图所示,在三棱锥P ABC -中,AB BC ⊥,3AB =,2BC =,点P 在平面ABC 内的投影D 恰好落在AB 上,且1AD =,2PD =,则三棱锥P ABC -外接球的表面积为( )A .9πB .10πC .12πD .14π【解析】由已知可知PD ⊥平面ABC ,∴平面PAB ⊥平面ABC , 又因为AB BC ⊥,BC ∴⊥平面PAB ,∴可构造直三棱柱PAB MNC -, 直三棱柱PAB MNC -的外接球就是三棱锥P ABC -的外接球, 且球心O 为直三棱柱上下底面三角形外接圆圆心连线的中点.在PAB △5102sin4π=,∴外接球半径为2101412⎛⎫+= ⎪⎝⎭,∴三棱锥P ABC -外接球的表面积为214414ππ⎛⎫= ⎪⎝⎭,选D .六.多面体放球中的解题策略例题6 已知二面角P ﹣AB ﹣C 的大小为120°,且∠P AB =∠ABC =90°,AB =AP ,AB +BC =6.若点P ,A ,B ,C 都在同一个球面上,则该球的表面积的最小值为( ) A .45πB .2887πC .1447πD .727π【解析】设AB =x ,(0<x <6),则6BC x =-,由题意知三棱锥外接球的球心是过△P AB 和△ABC 的外心E ,H , 且分别垂直这两个三角形所在平面的垂线的交点O , OB 为三棱锥外接球半径,取AB 的中点为G ,如图, 由条件知,3,222x x xEG GH GB ==-= 在△EGH 中,由余弦定理得222223323cos 92222342x x x x x EH x π⎛⎫⎛⎫⎛⎫=+--⨯⨯-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴△EGH 的外接圆直径2392423sin3EH x OG x π==-+2222224371272934221277x x OB OG GB x x ⎛⎫⎛⎫⎛⎫=+=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当127x =时,OB 2的最小值为727, ∴该球的表面积的最小值为228847OB ππ⨯=. 选B .巩固1 等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B ADC --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC .19196π D .287π【解析】由题意,设BCD ∆所在的小圆为1O ,半径为r , 又因为二面角B AD C --为060, 即060BDC ∠=,所以BCD ∆为边长为3的等边三角形, 又正弦定理可得,03223sin 60r ==即23BE =设球的半径为R ,且4=AD ,在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=, 所以7R =,所以球的体积为3344287(7)33V R ππ==⨯=, 选D .巩固2 在三棱锥S ABC -中,AB BC ⊥,2AB BC ==,22SA SC ==,二面角S AC B --的余弦值是33-,若S A B C ,,,都在同一球面上,则该球的表面积是( ) A .6πB .8πC .12πD .18π【解析】取AC 的中点D ,连接SD BD ,.因为SA SC AB BC ==,,所以SD AC BD AC ⊥⊥,, 可得SDB ∠即为二面角S AC B --的平面角,故3cos SDB ∠=. 在直角SDC △中,226SD SC CD -=2BD =,由余弦定理得22232cos 26226()SB BD SD BD SD BDS =+-⋅⋅∠=+- 解得123SB ==在SCB 中,22228412)SC CB SB +=+==, 所以SCB 为直角三角形,同理可得SAB 为直角三角形,取SB 中点E , 则3SE EB ==,在Rt SCB △与Rt SAB 中,32SBEA ==,32EC SB == 所以点E 3243)12S ππ=⨯⨯=. 选C巩固3 已知三棱锥S ABC -中,23AB AC BC ===,SB SC ⊥,平面SBC ⊥平面ABC ,则三棱锥的外接球的表面积为()A .8πB .12πC .16πD .18π【解析】如图,取BC 的中点D ,连接AD ,SD ,则AD BC ⊥, 又平面SBC ⊥平面ABC ,平面SBC平面ABC AD =,AD ⊂平面ABC ,所以AD ⊥面SBC ,又SD ⊂平面SBC , 所以AD SD ⊥,在AD 上取一点O ,使得OA OS =,则O 为球心, 设球的半径为R , 因为SB SC ⊥,所以SBC ∆为直角三角形, 又D 为BC 的中点, 所以132SD BC ==3233AD ==, 又在Rt SOD ∆中,222SO DO DS =+,即()2223+3R R =-,解得2R =.所以外接球表面积为2416S R ππ==. 选C.巩固4表面积为的球面上有四点,且是边长为的等边三角形,若平面平面,则三棱锥体积的最大值是【解析】∵,故当到面的距离最大时,三棱锥的体积最大,由图可知即当,为中点时,三棱锥的体积最大,作,面,连接,由,得,由于,得,故,,故,,,,故答案为七.球的截面问题例题7 如图,正四面体A ﹣BCD 的棱长为a ,点E 、F 分别是棱BD 、BC 的中点,则平面AEF 截该正四面体的内切球所得截面的面积为_____.【解析】根据题意知,平面AEF 截该正四面体的内切球所得截面一定是圆,设圆心为P ,内切球的球心为O ,作AN ⊥平面BCD ,则N 为底面三角形的中心 在等边三角形BCD 中,2333BN == 在Rt ABN ∆中,由勾股定理知,2222363aAN AB BN a a ⎛⎫=-=-= ⎪ ⎪⎝⎭由图可知,AO 为四面体外接球的半径,设AO BO R ==在Rt BON ∆中,由勾股定理可得,2223633R a a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得6R = 所以正四面体A ﹣BCD 的内切球半径为r =666ON AN OA =-==, 因为OP ⊥AM ,AN MN ⊥,所以~AOP AMN ∆∆,又因为113366212MN BH a a ==⨯= 由AM 2=NM 2+AN 2可得AM 114a =,∴OP AO MN AM =,64311a a a =,解得OP 1811a = ∴平面AEF 截该正四面体的内切球所得截面圆半径r 12233r OP =-=平面AEF 截该正四面体的内切球所得截面的面积为22(3333a ππ⨯=巩固1 已知三棱锥S ABC -的所有顶点在球O 的球面上,SA ⊥平面ABC ,ABC ∆是等腰直角三角形,2SA AB AC ===,D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是______.【解析】点D 是Rt ABC ∆的外心,过点D 作DO ⊥平面ABC 使112DO SA == O 是外接球球心,半径设为R ,OA OS R ==在直角梯形SADO 中,2SA =,1OD =,2AD =3R =过点D 作球O 的截面当OD ⊥222R OD -=∴截面面积的最小值是2π八.内切球问题例题8 图(1)为棱长为1的正方体,若正方体内有两个球相外切且又分别与正方体的三个面相切,则两球半径之和为________.【解析】如图(2)作出正方体的体对角面,易知球心1O 和2O 在AC 上 过点1O ,2O 分别作AD ,BC 的垂线,垂足分别为E ,F 设球1O 的半径为r ,球2O 的半径为R 由1AB =,3AC =13AO r =,23O C R =∴3()3r R r R +++=333231R r +==+九.翻折问题与球例题9 在平行四边形ABCD 中,22AB =,3BC =,且2cos 3A =,以BD 为折痕,将BDC 折起,使点C 到达点E 处,且满足AE AD =,则三棱锥E ABD -的外接球的表面积为__________.【解析】解:在ABD △中,22AB =3BC =,且2cos A = 由余弦定理,得2222cos BD AB AD AB AD A =+-⋅ 即:(2222223222393BD =+-⨯⨯=,解得:3BD = 在四面体ABED 中,3AE BD ==,3AD BE ==,22AB ED ==三组对棱长相等,可将四面体ABED 放在长方体中设长方体的相邻三棱长分别为x ,y ,z ,设外接球半径为R 则229x y +=,229y z +=,228z x += 则22213x y z ++=,即213R =13R =所以,四面体E ABD -外接球的表面积为:2134413π4R ππ=⨯=巩固1 在矩形ABCD 中,4BC =,M 为BC 的中点,将ABM 和DCM △分别沿AM ,DM 翻折,使点B 与C 重合于点P .若150APD ∠︒=,则三棱锥M PAD ﹣的外接球的表面积为_____.【解析】由题意可知,MP PA MP PD PD PA P ⊥⊥⋂,,=, 所以可得PM ⊥面PAD , 设ADP △外接圆的半径为r , 由正弦定理可得AD 2sin APDr =∠,即42sin150r =︒,4r =, 设三棱锥M PAD ﹣外接球的半径R ,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则222PM 116172R r ⎛⎫=+=+= ⎪⎝⎭,所以外接球的表面积为2468S R ππ==.巩固2 在平面五边形ABCDE 中,60A ︒∠=,63AB AE ==,BC CD ⊥,DE CD ⊥,且6BC DE ==.将五边形ABCDE 沿对角线BE 折起,使平面ABE 与平面BCDE 所成的二面角为120︒,则沿对角线BE 折起后所得几何体的外接球的表面积是________.【解析】由题意知,ABE △是正三角形,BCDE 是矩形设ABE △的中心为1O ,矩形BCDE 的中心为2O过1O 作垂直于平面ABE 的直线1l ,过2O 作垂直于平面BCDE 的直线2l由球的性质可知,直线1l 与2l 的交点O 为几何体ABCDE 的外接球的球心取BE 的中点F ,连接12,O F O F易得1313323O F ==,21632O F =⨯=,12120O FO ︒∠= 连接OF ,显然1OFO 与2OFO 全等,从而160O FO ︒∠=,133OO =,连接OA ,则OA 为所求几何体外接球的半径,又13263623O A ==, 则22211273663OA OO O A =+=+=, 故所得几何体外接球的表面积为24π252πS OA =⋅=.。
高考数学中的内切球和外接球问题---专题复习
![高考数学中的内切球和外接球问题---专题复习](https://img.taocdn.com/s3/m/f0dd2c1a4a73f242336c1eb91a37f111f1850d83.png)
高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。
多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。
解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。
多面体外接球半径的求法在解题中往往起到至关重要的作用。
一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。
解析:要求球的表面积,只需知道球的半径。
由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。
故表面积为27π。
例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。
由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。
2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为√14,故球的表面积为14π。
例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。
3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。
由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。
高三文科数学培优资料——外接球内切球问题
![高三文科数学培优资料——外接球内切球问题](https://img.taocdn.com/s3/m/2a526328f111f18582d05a0f.png)
广州市第八十九中学2019届高三文科数学培优资料(2018.10.8)内切球、外接球专题 刘雨老师一、棱柱的内切球、外接球问题:1、正方体的内切球与外接球:设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径;(3)外接球半径(1)截面图为正方形EFGH 的内切圆,得2a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==例1:在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,求这个球的表面积是_________;球心O 到截面ABC 的距离是 . 23a π 2、直棱柱外接球问题:例:已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 . 24π【构造直三角形,巧解正棱柱与球的组合问题】正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。
例2:已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。
二、棱锥的内切球、外接球问题1、正四面体的内切球和外接球的半径比是多少? 与正四面体的边长关系是?分析:根据推理或者证明得到:1:3r R =,然后运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。
解:如图所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .构造法 222R r ⎫=+⎪⎪⎝⎭等积法 4'V V =补形法 补成正方体2、三棱锥的外接球问题例3:一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 .3π (补形法)2、正三棱锥的内切球问题球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R ,这样求球的半径可转化为求球心到三棱锥面的距离,而点面距离常可以用等体积法解决。
专题 与球有关的内切、外接问题
![专题 与球有关的内切、外接问题](https://img.taocdn.com/s3/m/b3ea5ac15901020206409c09.png)
专题 与球有关的内切、外接问题一 、内切球问题1.将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为________.2.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.二 、外接球问题3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A .3πB .4πC .33πD .6π4.一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为________.5.若三棱锥的三个侧面两两垂直,且三条侧棱长分别为1,2,3,则其外接球的表面积是________.6.正四棱锥S -ABCD 的底面边长和各侧棱长都为2,点S ,A ,B ,C ,D 都在同一球面上,则此球的体积为________.7.已知三棱锥P -ABC 的四个顶点都在球O 的球面上,AB ⊥BC 且P A =7,PB =5,PC =51,AC =10,则球O 的体积为________. 专题练习一、选择题1.设正方体的表面积为24,那么其外接球的体积是( )A. 43πB. 8π3C .43πD .323π2.一个正方体的八个顶点都在半径为1的球面上,则正方体的表面积为( )A .8B .8 2C .8 3D .4 23.在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合于点P ,则三棱锥P -DCE 的外接球的体积为( ) A. 4327π B. 62π C. 68π D. 624π 4.设正方体的表面积为24 cm 2,一个球内切于该正方体,那么这个球的体积是( )A.6π cm 3B.323π cm 3 C.83π cm 3 D.43π cm 3 5.正方体、等边圆柱与球它们的体积相等,它们的表面积分别为S 正,S 柱,S 球,下面关系中成立的是( )A .S 球>S 柱>S 正B .S 正>S 球>S 柱C .S 正>S 柱>S 球D .S 柱>S 正>S 球二、填空题6.已知三个球的表面积之比是1︰2︰3,则这三个球的体积之比为________________.7.(开放题)正四棱锥P -ABCD 的底面边长为2,外接球的表面积为24π,则正四棱锥P -ABCD 的高可能是________.8.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点.设这三个球的表面积依次为S 1,S 2,S 3,若正方体的棱长为a ,则S 1=________,S 2=________,S 3=________.三、解答题9.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的表面积与体积.。
外接球与内切球专题
![外接球与内切球专题](https://img.taocdn.com/s3/m/d0f4022bcd7931b765ce0508763231126edb7796.png)
查答案,下无水印专题,学数学公式编辑,关注微信公众号《觅宁参考》觅宁参考出品【主要内容】一、L 三棱柱的外接球二、L有条侧棱垂直底面的棱锥三、长方体模型1.L 侧棱两两垂直2.L对棱相等3.L 正方体与正四面体四、L 正棱锥的外接球五、L 两个直角三角形的外接球六、L 外接球思想七、L内切球一、三棱柱的外接球例1已知三棱柱ABC −A 1B 1C 1,底面△ABC 为边长为a 的正三角形,侧棱AA 1=a ,且侧棱垂直于底面,则其外接球的半径为.练1已知三棱柱ABC −A 1B 1C 1,△ABC 中,BC =a ,∠A =150◦,侧棱AA 1=2a ,且侧棱垂直于底面,则其外接球半径为.二、类棱柱棱锥(有条侧棱垂直底面)例2已知四棱锥S −ABCD ,SA ⊥平面ABCD ,底面ABCD 是矩形,SA =AB =1,BC =2,则其外接球半径为.练2已知A,B,C,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =2AB =6,则该球的体积为()A.32√3πB.48πC.24πD.16π三、长方体模型1、三棱锥:三条棱两两垂直例3已知三棱锥S −ABC ,三条侧棱两两垂直,SA =1,SB =2,SC =3,则其外接球半径为.练3P,A,B,C 是球O 球面上的四个点,且P A ⊥P B ,P B ⊥P C ,P C ⊥P A ,且P A =P B =P C =1,则球O 的表面积为()A.2πB.3πC.6πD.12π2、三棱锥:对棱相等例4三棱锥P −ABC 中,P A =BC =5,P B =AC =√34,P C =AB =√41,则其外接球半径为.练4在三棱锥A −BCD 中,AB =CD =√2,AD =BC =AC =BD =√5,则三棱锥A −BCD 外接球的半径为.3、正方体与正四面体例5若三棱锥的三个侧面两两垂直,且侧棱长均为√3,则其外接球的表面积是.练5一个各条棱都相等的四面体,其外接球半径为R ,则此四面体的棱长为()A.√63RB.2√63RC.√6RD.√3R四、正棱锥的外接球例6已知正三棱锥S −ABC ,底面是边长为a 的正三角形,侧棱长与底边相等,则其外接球半径为.第1页共2页查答案,下无水印专题,学数学公式编辑,关注微信公众号《觅宁参考》练6已知正四棱锥S −ABCD ,底面ABCD 为边长为a 的正方形,侧棱长为2a ,则其外接球半径为.五、两个直角三角形的外接球例7已知矩形ABCD 中,AB =1,BD =5,将△ABD 沿BD 折起,使二面角A −BD −C 的大小为105◦,则此时四面体ABCD 的外接球的表面积为.练7已知三棱锥A −BCD ,AB ⊥AC ,DB ⊥DC ,且AB =6,AC =8,则该三棱锥的外接球半径为.六、圆柱的外接球例8已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π4练8一圆锥底面半径为4,高为9,则其外接球表面积为()A.60πB.72πC.80πD.100π七、外接球思想例9已知三棱锥S −ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为()A.√26B.√36C.√23D.√33练9如图,是一个空间几何体的三视图,则该几何体的外接球的表面积为.11中点√3例10已知半径为4√2的球面上有两点A,B ,且AB =8,球心为O ,若C 是球面上的动点,且二面角C −AB −O 的大小为60◦,则四面体OABC 的外接球表面积为.练10在平面四边形ABCD 中,AB =AD =CD =1,BD =√2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′−BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′−BCD 的顶点在同一个球面上,则该球的体积为()A.√32πB.3πC.√23πD.2π八、内切球例11已知正三棱锥S −ABC ,底面是边长为a 的正三角形,侧棱长与底边相等,则其内切球半径为.练11若一个正三棱柱存在外接球与内切球,则它的外接球与内切球表面积之比为()A.2:1B.3:1C.4:1D.5:1第2页共2页。
专题15 空间几何体外接球和内切球(解析版)
![专题15 空间几何体外接球和内切球(解析版)](https://img.taocdn.com/s3/m/559650149ec3d5bbfc0a7463.png)
2
1.例题
【例 1】(1)长方体 芰ᑯ䦘 ʂ 芰 ᑯ 䦘 的 8 个顶点在同一个球面上,且 芰 ᐱ , 䦘 ᐱ , 则球的表面积为______.
ᐱ,
安老师高三玩转数学研讨群(721144129)旨在打造课外辅导专用讲义,更多资料关注公众号玩转高中数学研讨 2
球 O 的体积:V 4 R3 64 2 本题正确选项: A
3
3
2.巩固提升综合练习
【练习
1】已知三棱柱
ABC
A1B1C1
的侧棱与底面垂直,
AA1
BC
2, BAC
4
,则三棱柱
ABC A1B1C1 外接球的体积为( )
A.12 3
B. 8 3
C. 6 3
D. 4 3
【答案】D
【解析】设 ABC 的外接圆圆心为 O1 , A1B1C1 的外接圆圆心为 O2 ,
A. 64 2 3
B. 16 2 3
C.16 2
D.16
【答案】(1)
(2)D (3)A
【解析】(1)因为长方体 芰ᑯ䦘 ʂ 芰 ᑯ 䦘 的 8 个顶点在同一个球面上,
所以球的直径等于长方体的对角线长,
设球的半径为 ,因为 芰 ᐱ , 䦘 ᐱ , ᐱ ,
所以 ᐱ
ᐱ ,球的表面积为
ᐱ ,故答案 π.
(2)正三棱柱
1)第一步:求底面外接圆的半径: r 1 a ( a 为角 A 的对边); 2 sin A
2)第二步:由勾股定理得外接球半径: R r 2 ( h )2 ( h 为直棱柱侧棱高度) 2
1.例题 【例 1】直三棱柱 芰ᑯ ʂ 芰 ᑯ 中,已知 芰 芰ᑯ, 芰 ᐱ ,芰ᑯ ᐱ , 在同一球面上,则该球的表面积为__________.
2024高考数学专项立体几何系统班7、外接球与内切球
![2024高考数学专项立体几何系统班7、外接球与内切球](https://img.taocdn.com/s3/m/a02221bbafaad1f34693daef5ef7ba0d4b736d17.png)
第7讲外接球与内切球知识与方法1.外接球与内切球是全国高考常考题型,模型杂、方法多,但归纳起来不外乎两大类处理方法.(1)补形:将几何体补全成长方体、正方体、直棱柱等常见几何体,计算外接球半径.(2)构建平面截球模型:寻找截面圆心以及球心到截面的距离,通过222R r d =+计算外接球半径.2.设球的半径为R ,有5个常用计算公式.(1)正方体外接球半径:R =,其中a 为正方体棱长,如图1.(2)长方体外接球半径:R =a ,b ,c 分别为长方体的长、宽、高,如图2.(3)正四面体外接球半径,4R a =,其中a 为正四面体棱长,如图3.(4)直三棱柱外接球半径:R =,其中r 为底面外接圆半径,h 为直三棱柱的高,如图4.(5)圆柱外接球半径:R =,其中r 为底面圆半径,h 为圆柱的母线长,如图5.提醒:①上面列出了一些简单模型的外接球半径计算公式,需结合图形将其记住,还有一些其他模型可以通过补形的方法转化为上述模型处理;②一些不能通过简单补形求解的模型,如球内接正棱锥,球内接圆锥等,可以通过分析几何关系,转化为平面截球模型计算外接球的半径.题组一1.(★★)已知一个正方体的所有顶点在一个球面上.若这个正方体的表面积为18,则这个球的体积为_______.【解析】设正方体的棱长为a ,则2618a =,故a =3322R a ==,其体积34932V R ππ==.【答案】92π2024高考数学专项立体几何系统班7、外接球与内切球【提炼】正方体棱长a 与其外接球半径R 之间的关系为32R =.2.(★★★)如图,在等腰梯形ABCD 中,22AB DC ==,60DAB ∠=︒,E 为AB 中点,将ADE 与BEC 分别沿ED ,EC 向上折起,使点A ,B 重合于点P ,则三棱锥P DCE -的外接球的体积为()【解析】由题意,可将平面图形等腰梯形ABCD 补全为正三角形FAB ,如图,那么在完成题干所描述的翻折后,还可将CDF △沿着CD 翻折,使得点F 也与点P 重合,显然此时得到的是一个棱长为1的正四面体,即三棱锥P DCE -是棱长为1的正四面体,其外接球半径R =343V R π==.【答案】C【提炼】正四面体的棱长为a ,则其外接球半径为64a ,内切球半径为612a ,证明方法可参考附赠的小册子《高考数学常用二级结论》.3.(★★)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.【解析】长方体的外接球半径R =,其中a ,b ,c 分别为长、宽、高,故R =O 的表面积2414S R ππ==.【答案】14π【提炼】设长方体的长、宽、高分别为a ,b ,c ,则其外接球半径2R =4.(★★)已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323π B.4π C.2π D.43π【解析】首先得知道什么是正四棱柱,它指的是底面为正方形、侧棱与底面垂直的四棱柱,也是一种特殊的长方体,高考这种名词都是直接给,必须清楚其结构特征.外接球半径1R ==,故该球的体积34433V R ππ==.【答案】D5.(★★)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】设正四棱柱底面边长为a ,则2416a =,即2a =,其外接球的半径2242R ==,故所求球的表面积2424S R ππ==.【答案】C 6.(★★★)一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为______cm 2.【解析】设正四棱柱的高为h cm ,则1112=,故h =,即该棱柱的表面积(2S =+cm 2.【答案】2+题组二7.(★★★)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()B. C.132D.【解析】这道题可能不少同学会有这么一个困惑,就是题干没给出三棱柱111ABC A B C -为直三棱柱,是不是题干有问题呢?当然不是,事实上,斜棱柱是没有外接球的,所以题干的说法本身就隐含了三棱柱111ABC A B C -为直三棱柱这一条件.本题的直三棱柱可通过补形为长方体来计算外接球半径,如图,三棱柱111ABC A B C -与长方体有相同的外接球,该球的半径为34121322R ==.【答案】C 8.(★★★)3______.【解析】本模型一般称为墙角三棱锥,可补形为正方体(或长方体)来处理.如图,将三棱锥B ACD -补全为正方体,并放到了球体之中,可以看到二者有相同的外接球,正方体棱332R =,故外接球表面积249S R ππ==.【答案】9π【提炼】三条侧棱两两垂直的三棱锥(墙角三棱锥)可补形为长方体或正方体来计算外接球半径.题组三9.(★★★)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为()A.2a π B.273a π C.2113a π D.25a π【解析】如图,设G 为ABC △的中心,ABC △外接圆半径233323r AG ==⨯=,1122a OG AA ==,球的半径22712R r OG a =+,故球的表面积22743S R a ππ==.【答案】B【提炼】①设直三棱柱底面外接圆半径为r ,高为h ,则其外接球半径222h R r ⎛⎫=+ ⎪⎝⎭;②关键是计算底面三角形外接圆半径,对于直角三角形,外接圆半径等于斜边长的一半,若是倍,等于高的23倍;若是普通的三角形,则可利用正弦定理计算外接圆半径.10.(★★★)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA -==,120BAC ∠=︒,则此球的表面积等于______.【解析】如图,在ABC △中,由余弦定理得222122222122BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得BC =.由正弦定理得42sin BC r BAC ==∠,解得2r =,故1112OG AA ==,所以球的半径R ==,故球的表面积2420S R ππ==.【答案】20π题组四11.(★★★)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A. B. C. D.【解析】如图,先计算ABC △外接圆的半径r ,设ABC △边长为a .则2122a ⋅⋅=,解得6a =,所以62sin 60r =︒,解得r =,所以2OG ==,当D 点位于GO 延长线上时,三棱锥D ABC -的高最大,底面积不变,此时体积最大,最大值为()1243V =⨯+=【答案】B【提炼】本题三棱锥D ABC -的体积最大时,D ABC -是正三棱锥,正三棱锥外接球的计算问题,解题的关键是构建AOG △,在这个三角形中,满足222OA AG OG =+,即222R r d =+,其实这就是前一小节的平面截球模型,只要是正棱锥,都可以采用这个办法处理.12.(★★★)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16πC.9πD.274π【解析】如图,由题意,得14PO =,1AO =设外接球的半径为R ,则OA OP R ==,故14OO R =-.在1OO A △中,22211AO OO AO +=,即()2224R R +-=,解得94R =,故该球的表面积28144S R ππ==.【答案】A【提炼】正四棱锥外接球的有关计算,关键是构建1AOO ,在这个三角形中,利用22211OA AO OO =+建立等量关系,其实就是平面截球模型的处理方法.13.(★★★)正四棱锥S ABCD -点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_____.【解析】解法1:如图1,设正方形ABCD 的中心为1O ,由题意,11AO =,11SO =.设正四棱锥外接球球心为O ,半径为R ,则OA R =,11OO R =-,在1AOO 中,22211OO AO AO +=,故()2211R R -+=,解得1R =,即外接球体积为34433V R ππ==.解法2:设正方形ABCD 的中心为1O ,由题意,11AO =,11SO ==,因为11SO AO =,所以1O 即为球心,球的半径为1,体积34433V R ππ==,本题实际的图形是图2.【答案】43π14.(2021·全国甲卷·理·11·★★★)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC BC ⊥,1AC BC ==,则三棱锥O ABC -的体积为()A.212B.312C.24D.34【解析】如图,由题意,2AB =,设D 为ABC △的外心,则1222AD AB ==,2222OD OA AD =-=,所以1112211332212O ABC ABC V S OD -=⋅=⨯⨯⨯⨯ .【答案】A题组五15.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.34πC.2π D.4π【解析】如图,由题意得1OA =,112OO =,故132O A =,圆柱体积233124V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.【答案】B【提炼】圆柱外接球半径222h R r ⎛⎫=+ ⎪⎝⎭,其中r 为底面圆半径,h 为圆柱的高.16.(★★★★)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.【解析】设圆柱的底面半径为r ,高为h ,则2224h r R rh +=≥,当且仅当2h r =时等号成立,故圆柱的侧面积2S rh π=的最大值为22R π,此时球的表面积与圆柱的侧面积之差为222422R R R πππ-=.【答案】22R π题组六17.(★★)正方体的内切球与其外接球的体积之比为()A. B.1:3C.1:D.1:9【解析】设正方体的棱长为a ,则其内切球、外接球的半径分别为12aR =,2R =,故正方体的内切球与其外接球的体积之比3113224343R V V R ππ==.【答案】C【提炼】设正方体的棱长为a ,则其内切球的半径2a R =.18.(★★)如图,圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是______.【解析】如图,设球的半径为R ,则213223423V R R V R ππ⋅==.【答案】3219.(2020·新课标Ⅲ卷·理·15·★★★)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______.【解析】如图,该圆锥内半径最大的球即圆锥的内切球,设其半径为R ,则OB OG R ==,1AB AG ==.由题意得PG =OP R =-,2PB PA AB =-=.在POB 中,222OB PB OP =+,故()224R R +=,解得22R =,即球的体积3433V R π==.【答案】2320.(★★★★)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是()A.4π B.92π C.6π D.323π【解析】要解决这道题,得先搞清楚一件事,那就是最大的球到底是和棱柱的侧面相切,还是与底面相切?如图,可求得底面直角三角形的斜边10AC =,将底面Rt ABC △单独拿出来分析其内切圆半径r ,图中BP NQ r ==,故8PC r =-,即8CM PC r ==-,PN BQ r ==,故6AQ r =-,即6AM AQ r ==-,所以8614210AC CM AM r r r =+=-+-=-=,解得2r =,由123r AA >=知最大球的半径为32,体积3439322V ππ⎛⎫=⨯=⎪⎝⎭.【答案】B题组七21.(★★★)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点.若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解析】设球O的半径为R,当点C位于如图所示位置(OC⊥平面AOB)时,三棱锥O ABC-的体积最大,最大值为321136326RR R⨯⨯==,即6R=,故球O的表面积24144S Rππ==.【答案】C22.(★★★)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.【解析】如图,由题意知,SAC△,SBC△都是以SC为斜边的等腰直角三角形,设球O的半径为R,故31129323S ABCRV R R R-=⋅⋅⋅⋅==,即3R=,故球O的表面积2436S Rππ==.【答案】36π第8讲经典模型之对棱相等知识与方法四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类四面体的外接球问题.如图,设长方体的长宽高分别为a 、b 、c ,则222222222a b t b c n a c m ⎧+=⎪+=⎨⎪+=⎩,三式相加可得2222222m n t a b c ++++=,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R ++=,所以R =.典型例题【例题】四面体ABCD中,AB CD ==AC BD ==,5AD BC ==,则该四面体外接球的体积为_______.【解析】由题意,四面体ABCD是对棱相等模型3464233R V R π⇒===.【答案】3变式1三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥外接球表面积为()C.432π D.43π【解析】由题意,四面体ABCD是对棱相等模型24432R S R ππ⇒====.【答案】D 变式2A 、B 、C 、D四点在半径为2的球面上,且5AC BD ==,AD BC ==,AB CD =,则四面体ABCD 的体积为______.【解析】由题意,四面体ABCD 是对棱相等模型,设AB CD x ==,则R x ==ABCD补全为如图所示的长方体,设长方体的长、宽、高分别为a 、b 、c ,则222222413425a b b c a c ⎧+=⎪+=⎨⎪+=⎩,解得:453a b c =⎧⎪=⎨⎪=⎩,所以四面体ABCD 的体积1134543452032V =⨯⨯-⨯⨯⨯⨯⨯=.【答案】20强化训练1.(★★★)四面体ABCD中,AB CD ==AC BD ==,AD BC ==,则四面体ABCD 外接球的表面积为()A.25πB.45πC.50πD.100π【解析】由题意,四面体ABCD是对棱相等模型,2524502R S R ππ====.【答案】C2.(★★★)半径为1的球面上有不共面的A 、B 、C 、D 四点,且AB CD x ==,BC AD y ==,AC BD z ==,则222x y z ++=()A.16B.8C.4D.2【解析】由题意,四面体ABCD是对棱相等模型,22218R x y z =⇒++=【答案】B3.(★★★)四面体ABCD 中,5AB CD ==,AC BD ==,AD BC ==接球的半径为()A.2B. C.132 D.13【解析】由题意,四面体ABCD是对棱相等模型,132R =【答案】C4.(★★★)在四面体ABCD 中,2AB CD ==,AC BD AD BC ====接球的表面积为_______.【解析】由题意,四面体ABCD是对棱相等模型,2144R S R ππ==⇒==【答案】4π5.(★★★★)在三棱锥P ABC -中,2PA BC ==,PB AC =,PC AB =,且4PB PC ⋅=,则三棱锥P ABC -的外接球的表面积的最小值为________.【解析】设PB AC x ==,PC AB y ==,则4xy =,所以三棱锥P ABC -的外接球半径62R =≥,当且仅当2x y ==时取等号,所以三棱锥P ABC -的外接球的表面积的最小值为246ππ⨯=⎝⎭.【答案】6π6.(★★★★)四面体ABCD 的顶点都在球O 的表面上,4AB BC CD DA ====,AC BD ==,E 为AC 中点,过点E 作球O 的截面,则截面面积的最大值与最小值之比为()A.5:42D.5:2【解析】四面体ABCD是对棱相等模型,所以R =,将四面体ABCD 放入长方体如图,截面面积的最大值为215S R ππ==,当截面面积最小时,截面与OE 垂直,其中O 为球心,设FA a =,FB b =,FC c =,则222222216182216a a b a c b OE b r c b c =⎧⎧+=⎪⎪+=⇒=⇒=⇒=⎨⎨⎪⎪=+=⎩⎩,即截面面积的最小值为222S r ππ==,故12:5:2S S =.【答案】D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内切球和外接球问题一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,233.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是43π.故该球的体积为2、求长方体的外接球的有关问题例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三1,2,3,则此球的表面积为.条棱长分别为解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
1414π.例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C.3.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x,高为h,则有263,1,296,84xxx hh=⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r=,球心到底面的距离2d=.∴外接球的半径1R==.43Vπ∴=球.小结本题是运用公式222R r d=+求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 (2008外接球的表面积是_______________.解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则AC=BC=CD=表面积是9π.(如图1)例3.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有()222229R=++=.∴294R=.故其外接球的表面积249S Rππ==.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R=.出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,几何体的外接球直径为体对角线长 即【例题】:在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为的长 即:所以球的表面积为例 6 (2003年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. 33πD. 6π解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体A BDE -满足条件,即AB=AD=AE=BD=DE 2BE ==133 A. (如图2)例7(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AD图AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A.B.C.D.解析:(如图3) 因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,这与例6就完全相同了,故选C.例8 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为体,所以CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.(如图4)2、构造长方体例9(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则球的体积是 .解析:首先可联想到例8,构造下面的长方体,于是AD 为球的直径,O 为球心,OB=OC=4为半径,要求B 、C 两点间的球面距离,只要求出BOC ∠即可,在Rt ABC ∆中,CDCE图3求出=4BC ,所以0C=60BO ∠,故B 、C 两点间的球面距离是43π.(如图5)本文章在给出图形的情况下解决球心位置、半径大小的问题。
三.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.四.寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.五 .确定球心位置法CD ABSO 1图3例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球的球面上,且,,,,求球的体积。
解:且,,,,因为 所以知所以 所以可得图形为: 在中斜边为 在中斜边为取斜边的中点,在中 在中 C AO DB图4所以在几何体中,即为该四面体的外接球的球心所以该外接球的体积为【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
1. (陕西•)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .433 B .33 C . 43 D .1232.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱 柱的体积为 .4.表面积为3的正八面体的各个顶点都在同一个球面上,则此球的体积为A 2B .13πC .23π D 22 5.已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.334 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶9 7.(2008海南、宁夏)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .8. (2007天津)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 .9.(2007全国Ⅱ)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。
如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱 锥的侧面积是________.11.(辽宁省抚顺一中2009届高三数学上学期第一次月考) 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是 .12.(2009枣庄一模)( ) A .π3 B .π2 C .316πD .以上都不对13.(吉林省吉林市2008届上期末)设正方体的棱长为233,则它的外接球的表面积为( )A .π38 B .2π C .4π D .π34答案C1、答案 B2、解:在ABC ∆中2AB AC ==,120BAC ∠=︒,可得BC =由正弦定理,可得ABC ∆ 外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径R =故此球的表面积为2420R ππ=.3、答案 84、答案 A 【解析】此正八面体是每个面的边长均为a 的正三角形,所以由284⨯=知,1a =,故选A 。