电机与拖动三相异步电动机电力拖动运行
55三相异步电动机电力拖动的应用案例
55三相异步电动机电力拖动的应用案例三相异步电动机是一种常见的电力拖动设备,主要用于转动机械设备。
它具有结构简单、可靠性高、维护方便等优点,被广泛应用于各个领域。
以下是一些三相异步电动机电力拖动的应用案例。
1.工业制造领域:在工业制造领域中,三相异步电动机被广泛应用于各种机械设备的驱动。
例如,生产线上的输送带、搅拌机、切割机、压力机、卷绕机等都使用了三相异步电动机作为动力源。
这些设备在生产过程中需要不同速度和转矩的控制,三相异步电动机通过变频器或直接启动控制系统来满足这些需求。
2.污水处理厂:污水处理是一个重要的环保工程,在处理过程中需要大量的水泵和搅拌器。
这些设备使用了三相异步电动机进行驱动,以完成搅拌、输送和排污等工作。
同时,在污水处理过程中,需要根据水流量和污水浓度的变化对设备进行调节,三相异步电动机可以根据需要进行转速调节和负载调节,提供灵活的控制手段。
3.空调和制冷设备:空调和制冷设备需要大量的压缩机来实现冷却和制冷过程。
这些压缩机通常使用三相异步电动机作为驱动力,以提供足够的运行功率。
通过控制电动机的速度和负载,可以实现对冷却剂的流量和制冷效果的调节,从而提高设备的效率和运行性能。
4.电车和轨道交通:电车和轨道交通系统使用了许多大功率的三相异步电动机来驱动车辆运行。
电动机将电能转化为机械能,通过轮胎和轨道之间的摩擦力来推动车辆前进。
三相异步电动机通过其高转矩和可靠性,可以满足电车和轨道交通系统对动力输出的需求。
5.矿山和采石场:矿山和采石场需要大型起重设备和运输设备来处理土石料。
这些设备通常使用三相异步电动机驱动,以提供足够的力量。
异步电动机可以应对重负荷和恶劣环境的要求,具有很强的抗干扰能力和可靠性。
电机与拖动基础教学课件第五章异步电动机的原理和仿真
5.1 异步电动机的基本结构、分类及铭牌
4. 其他部件
(1)端盖。端盖安装在机座的两端,它的材料加工方法与机座 相同,一般为铸铁件。端盖上的轴承室里安装了轴承来支撑转子,以 使定子和转子得到较好的同心度,保证转子在定子内膛里正常运转。
(2)轴承。轴承用于连接转动部分与不动部分,目前都采用滚
(3)轴承端盖。轴承端盖用于保护轴承,使轴承内的润滑油不
5.2
交流绕组
6)槽距角 槽距角(α)是指相邻的两个槽之间的电角度,可
α
360 p Z1
7)极相组
极相组是指一个磁极下属于同一相的线圈按一定 方式串联成的线圈组。
5.2
交流绕组
2. 交流绕组的基本要求
(1)在一定的导体数下,绕组的合成电势和磁势在波形上 应尽可能为正弦波,在数值上尽可能大,而绕组的损耗要小,用
5.1 异步电动机的基本结构、分类及铭牌
3. 气隙
异步电动机的气隙是很小的,中小型电动机的气隙一般为 0.2~2 mm。气隙越大,磁阻越大,要产生同样大小的磁场,就 需要较大的励磁电流。由于气隙的存在,异步电动机的磁路磁阻 远比变压器大,因而异步电动机的励磁电流也比变压器的大得多。 变压器的励磁电流约为额定电流的3%,异步电动机的励磁电流约 为额定电流的30%。励磁电流是无功电流,因而励磁电流越大, 功率因数越低。为提高异步电动机的功率因数,必须减小它的励 磁电流,最有效的方法是尽可能缩短气隙长度。但是,气隙过小 会使装配困难,还有可能使定子、转子在运行时发生摩擦或碰撞, 因此,气隙的最小值由制造工艺及运行安全可靠等因素来决定。
图5-1 三相笼型异步电动机的组成部件
5.1 异步电动机的基本结构、分类及铭牌
1. 定子
定子由定子三相绕组、定子铁心和
电机及电力拖动-三相异步电动机的空载运行;负载运行
n1 - n n1
pn1 60
= sf1
转子不转时,n 0, s 1, f2 f1 . 理想空载时, n n1 , s 0, f2 0.
2. 转子绕组的感应电势 转子旋转时的感应电动势: 转子不转时的感应电动势:
E2s 4.44 f2 N2kw2 E2 4.44 f1N2kw2
二者关系为:
二是转子回路的功率不变。
I2
=
E2 s Z2s
=
E2 s R2 + jX 2s
=
sE2 R2 + jsX 2
=
R2 +
E2
jX
2
+
1
s
s
R2
结论:用一个不转的转子并且在转子绕组中串联一个电阻1
s
s
r2
,
就可以将转子频率折算为定子频率
4.6三相异步电动机的负载运行
2. 绕组折算
绕组折算就是用一个和定子
功分量I0 p.
I0 Iop Ioq.
由于 I 0 q
I
0
p
,
所以I
基本为一无功性质电流
0
, 即I 0
I0q.
2.空载电流的大小--------约为额定电流的20%~50%
与变压器相比较, 异步电动机的主磁路中有气隙存在
3.空载磁势----励磁磁势 空载运行时,转子转速很高,接近同步转速,定、 转子之间相对速度几 乎为零, 于是E2 0, I2 0, F2 0.磁场完全由空载磁势产生,空
E2s = sE2
4.6三相异步电动机的负载运行
3. 转子绕组的漏抗
转子旋时转子漏电抗:
X 2s 2 πf 2 L2
第5章 三相异步电动机的基本原理(电机及拖动基础)
第五章三相异步电动机的基本原理主要讲授内容:三相异步电动机的工作原理、结构、运行特性、等效电路、参数测量、转矩转差的关系等,是必须掌握的内容,使本课程的重点。
是在现代工业中正被大量应用的机电能量转换装置,是后续课程《电力拖动》课程的基础。
讨论:三相异步电动机What?三相异步电动机的用途、结构?How?三相异步电动机的工作原理?第一节三相异步电动机的结构及额定参数一、异步电动机的主要用途和分类用途:异步电机主要用作电动机,拖动各种生产机械。
异步电动机的优点:结构简单、容易制造、价格低廉、运行可靠、坚固耐用、运行效率较高和具有适用的工作特性。
采用现代电力电子功率器件和计算机技术可得到良好的调速性能。
已经取代直流电动机,成为应用广泛的调速系统。
异步电动机的缺点:功率体积比较小。
功率因数较差。
直接接电网运行时,必须从电网里吸收滞后的励磁电流,使它的功率因数总是小于1。
通过控制器可以使这一缺点得到改善。
异步电动机运行时,定子绕组接到交流电源上,转子绕组自身短路,由于电磁感应的关系,在转子绕组中产生电动势、电流,从而产生电磁转矩。
所以,异步电机又叫感应电机。
二、异步电动机的分类从不同角度看,有不同的分类法:(1)按定子相数分有①单相;②三相异步电动机。
(2)按转子结构分有①绕线式;②鼠笼式。
后者又包括单鼠笼、双鼠笼和深槽式异步电动机。
此外,根据电机定子绕组上所加电压的大小,又有高压、低压异步电动机之分。
从其它角度看,还有高起动转矩、高转差率、高转速异步电机等等。
异步电机也可作为异步发电机使用。
单机使用时,常用于电网尚未到达的地区,又没有同步发电机的情况,或用于风力发电等特殊场合上。
在异步电动机的电力拖动中,异步电机回馈制动时,即运行在异步发电机状态。
风叶铁心绕组轴承滑环绕线电动机转子笼型绕组导条端环1、异步电动机的定子:异步电动机的定子是由机座、定子铁心和定子绕组三个部分组成的。
(1)定子铁心:是电动机磁路的一部分,装在机座里。
电机与拖动课程设计
电机与拖动课程设计1.前言电机与拖动是一门理论性和实践性都较强的课程,是自动化专业必修的核心课程,电机与拖动课程理论讲授完后,结合专业特点和现有设备条件开展该课程的课程设计,增强学生对课程理论知识的理解和实践运用,加强学生电机与拖动课程综合性工程训练。
2. 异步电动机的起制动和调速设计关于异步电动机的起制动和调速设计,其主要根据电机与拖动实验中的继电器(接触器,时间继电器)控制知识,完成电路图的绘制,实现对异步电动机起动、调速、制动、停止等功能。
异步电动机控制动作流程:低速启动→高速正转运行→运行一段时间→减速运行→运行一段时间→反转低速运行→运行一段时间→反转高速运行→运行一段时间→能耗制动→停止。
此设计题目要求对异步电机的起动、调速、制动方法的设计,以确定异步电机的最佳起、制动和调速方案,且达到最优配合。
2.1 异步电动机的起动2.1.1 电机起动方法的介绍电机在起动时应使启动转矩足够大,确保生产机械正常起动;起动电流足够小,避免因起动对电网造成的冲击;起动时间你尽量短;启动设备简单,操作方便;起动过程中能耗消耗少,经济适用。
通过综合考虑,一般选择起动电流I st=(4~7)I N,而起动转矩T st=T N。
本次课程设计中电机为鼠笼式异步电机,其主要起动方法有直接起动,定子串电阻或电抗的降压起动,自耦变压器的降压起动,星-三角降压起动,软起动以及特殊鼠笼式异步电机的起动。
2.1.2 起动方法的比较在上述这几种起动方法中,每一种方法都有各自的优点与缺点以及各自的适用范围。
对于直接起动方案:需要电机满足自身容量不大或者轻载情况,亦或者满足特殊要求的情况;对于定子串电阻或电抗的降压起动这种方法:这种方法相当于降低定子绕组的外加电压,而由上面公式可知,起动电流正比于定子绕组上的电压,因而在一定程度上,这种定子串电阻或电抗的降压起动方法可以到达降低起动电流的目的,但因为起动转矩与定子绕组电压的平方成正比,起动转矩将会降低更多,因此这种方法仅适合轻载起动;对于自耦变压器的降压起动方法:与直接起动方法相比较,采用自耦变压器的降压起动时,电压降低(N2/N1)倍,但电网所承担的起动电流和起动转矩均降低【(N2/N1)*(N2/N1)】倍,可以拖动较大的负载,但同时设备体积庞大、价格高;对于星-三角降压起动方法:电机采用星-三角降压起动时,电网所承担的起动电流只有三角起动时的1/3,而起动转矩也将为三角起动的1/3,相当于自耦变压器的降压起动抽头为(1/)的情况,而与自耦变压器的降压起动相比,星-三角降压起动方法简单,只需要星-三角转换开关,价格便宜、重量轻;对于软起动以及特殊鼠笼式异步电机的起动都具有一定的特殊性,更适合与一些特殊场合,因而在本次课程中不适用。
5 三相异步电动机的电力拖动
西安电子科技大学机电工程学院
3
《电机与拖动》多媒体交互式教学课件
2、参数表达式
2 PM m1 I 2
I2
r2 S
U1
2
T
PM 1
U1
I1
Im
' r 1 r 2
' x1 x2
r 1
x1
I2
1 S ' r2 S
'
x r r2 x x 2 1 2 1 S 2 r2 2 r2 U pm U 1 1 1 m S S T 1 2 2 1 2 2 r2 r 2 r x x 1 2 2 f1 r1 S x1 x2 1 S
15
《电机与拖动》多媒体交互式教学课件 2、转子回路串对称三相电阻的人为机械特性
• 绕线型三相感应电动机通过电刷、集电环,可以把三相对称电 阻串入转子回路,而后三相再短路,所得的人为特性为转子回 路串对称三相电阻的人为特性。 特点: – n1不变(电源 f1决定) ,所以不同电阻的人为特性都通过固有 特性的理想空载点 ; – 最大电磁转矩Tm(不变) 2 pm U 1 1 Tm Tm 4 f1 x1 x2
n
S
B
n1
② ③
0
C
D Sm
1
B A
TN
T
Tm
0
TQ
Tm
机械特性曲线在S>0和S<0两个 范围内近似对称
n1 2
西安电子科技大学机电工程学院
12
《电机与拖动》多媒体交互式教学课件
三、感应电动机的人为机械特性
电机及拖动基础第三章
第二节 生产机械的负载转矩特性
生产机械运行时常用负载转矩标志其负载的大小。不同的生产机 械转矩随转速变化规律不同,用负载转矩特性来表征,即生产机械的 转速n与负载转矩TL之间的关系n=f(TL)。各种生产机械特性大致可分 为以下三种类型。 一、恒转矩负载特性
恒转矩负载是指负载转矩TL的大小不随转速变化,TL=常数,这 种特性称为恒转矩负载特性。它有反抗性和位能性两种: 1.反抗性恒转矩负载
为恒定值,即
就是说,负载转矩与转速成反比。例如,一些机床切削加工, 车床粗加工时,切削量大(TL大),用低速档;精加工时,切削量小 (TL小),用高速档。恒功率负载特性曲线如图3-7所示。
三、通风机型负载特性 通风机型负载的特点是负载转矩的大小与转速n的二次方成正比,
即
式中K——比例常数。 常见的这类负载如鼓风机、水泵、液压泵等,通风机型负载特性
本章中首先介绍电力拖动系统的运动方程式,然后介绍生产机械 的转矩特性和三相异步电动机的机械特性,最后主要研究三相异步电 动机拖动应用的三大问题——起动、制动、调速。
第一节 电力拖动系统的运动方程式
电力拖动系统中所用的电动机种类很多,生产机械的性质也各不 相同。因此,需要找出它们普遍的运动规律,予以分析。从动力学的 角度看,它们都服从动力学的统一规律。所以,我们首先研究电力拖 动系统的动力学,建立电力拖动系统的运动方程式。 一、单轴电力拖动系统的运动方程式
曲线如图3-8所示。 必须指出,以上三类是典型的负载特性,实际生产机械的负载特
性常为几种类型负载的综合。例如起重机提升重物时,电动机所受到 的除位能性负载转矩外,还要克服系统机械摩擦所造成的反抗性负载 转矩,所以电动机轴上的负载转矩TL应是上述两个转矩之和。
电机与拖动基础试题库及答案
《电机与拖动基础》试题库及答案第一部分直流电机一、填空题:1、并励直流发电机自励建压的条件是_______;_______;_______。
(主磁路存在剩磁;并联在电枢两端的励磁绕组极性要正确,使励磁电流产生的补充磁通方向与剩磁磁通方向相同;励磁回路的总电阻必须小于临界电阻)2、可用下列关系来判断直流电机的运行状态,当_______时为电动机状态,当_______时为发电机状态。
(E a〈U;E a〉U)3、直流发电机的绕组常用的有_______和_______两种形式,若要产生大电流,绕组常采用_______绕组。
(叠绕组;波绕组;叠)4、直流发电机电磁转矩的方向和电枢旋转方向_______,直流电动机电磁转矩的方向和电枢旋转方向_______。
(相反;相同)5、单迭和单波绕组,极对数均为p时,并联支路数分别是_______,_______。
(2p;2)6、直流电机的电磁转矩是由_______和_______共同作用产生的。
(每极气隙磁通量;电枢电流)7、直流电机电枢反应的定义是_______,当电刷在几何中线时,电动机产生_______性质的电枢反应,其结果使_______和_______,物理中性线朝_______方向偏移。
(电枢磁动势对励磁磁动势的作用;交磁;气隙磁场产生畸变;对主磁场起附加去磁作用)二、判断题1、一台并励直流发电机,正转能自励,若反转也能自励。
()(F)2、一台直流发电机,若把电枢固定,而电刷与磁极同时旋转,则在电刷两端仍能得到直流电压。
()(T)3、一台并励直流电动机,若改变电源极性,则电机转向也改变。
(F)4、直流电动机的电磁转矩是驱动性质的,因此稳定运行时,大的电磁转矩对应的转速就高。
()(F)三、选择题1、直流发电机主磁极磁通产生感应电动势存在于()中。
(1)(1)电枢绕组;(2)励磁绕组;(3)电枢绕组和励磁绕组2、直流发电机电刷在几何中线上,如果磁路不饱和,这时电械反应是()(3)(1)去磁;(2)助磁;(3)不去磁也不助磁。
刘锦波_电机与拖动_第7章_三相异步电机的电力拖动
图7.15
/YY接变极调速的机械特性
B、变频调速
对变频调速的要求: (1)主磁通 m N ,以防止定子铁心过饱和; (2)电动机的过载能力(或最大电磁转矩 Te max)尽可能保持不变。
a、基频以下的变频调速
U 1 U 1N const 由 U1 E1 4.44 f1 N1k w1 m 可知,要想确保主磁通 m不变,可满足 f1 f 1N
Tx (
N2 2 ) Tst N1
(7-7)
结论: 与直接起动相比较,采用自耦变压器降压起动时,电压 减低 N / N 倍,则起动电流和起动转矩均降低 ( N / N ) 倍。
2 1
2
2
1
c、星-三角(Y / )降压起动
概念: 对于正常运行采用 形联结的三相鼠笼式异步电动机,起动时 可改接成 Y 形联结,则定子每相电压可降为电源电压的 1 / 3 ,从 而实现降压起动,这种方法被称为 Y / 起动。
A、变极调速
概念: 变极调速是一种通过改变定子绕组极对数来实现转子转速调节的 调速方式。在一定电源频率下,由于同步速 n1
60 f1 p 与极对数成反
比,因此,改变定子绕组极对数便可以改变转子转速。
图7.11 三相异步电动机变极前后定子绕组的接线图
图7.11a、b、c分别为三相异步电动机变极前后定子绕组的接线图。其中,a1 x1 代表A相 的半相绕组, a2 x2 代表A相的另一半相绕组。
c、双图7.7所示。上笼采用电阻率较大的材料如黄铜, 且截面积较小;下笼采用电阻率较小的材料如紫铜,且截面积较大。利用集肤效应,确保 起动时,因转子频率较高,使得转子电流主要集中在电阻较大的上笼(或起动笼);正 常运行时,转子频率较低,转子电流主要集中在电阻较小的下笼(或运行笼)。
三相异步电动机的各种运行状态
8.5三相异步电动机的各种运行状态
8.5.1电动运行状态
T与n方向一致, n<n1,0<s<1, T 为拖动转矩,特性 在第Ⅰ、Ⅲ象限。
2
8.5.2 能耗制动
1能耗制动基本原理
• 三相异步电动机处于电动运 行状态的转速为n,如果突然 切断电动机的三相交流电源, 同时把直流电通入它的定子 绕组,例如开关K1打开、K2 闭合,结果,电源切换后的 瞬间,三相异步电动机内形 成了一个不旋转的空间固定 磁动势,用F=表示。
• 磁通势与转子相对转速为-n
• •
F~的转速,即同步转速为
能耗制动转差率 n
n1
60 f1 p
n1
• 转子绕组感应电动势的大小与频率则为:
E2 E2
f2 f1
7
三相异步电动机能耗制动的等值电路
8
4、能耗制动的机械特性
能耗制动时,铁损耗很小,可以 忽略。这样一来,根据等值电路画出电 动机定子电流、励磁电流及转子电流之 间的相量关系如右图所示。
14
机械功率为 从定子到转子的电磁功率为
转子的铜耗为
说明两部分能量全部消耗在电阻上,一部分消 耗在转子本身的内阻R2上,因R2很小,故能量 大部分消耗在外串电阻RS上。这样可以减小转 子发热程度
15
特点和应用
特点: s>1 ,运行过程中能量消耗多,改变
转子串接电阻,可变速度。 应用:
适用于位能性负载下放重物。
鼠笼式电机转子回路无法串电阻,因此反接制动不能过于 频繁
13
8.5.4 倒拉反转运行
拖动位能性恒转矩负载运行 的三相绕线式异步电动机, 若在转子回路内串入一定值 的电阻,电动机转速可以降 低。如果所串的电阻超过某 一数值后,电动机还要反转, 称之为倒拉反转制动运行状 态。倒拉反转运行时负载向 电动机送入的机械功率是靠 着负载贮存的位能的减少, 是位能性负载倒过来拉着电 动机反转
电机与电力拖动(第三版)习题参考答案
《电机与电力拖动》(第三版)习题参考答案第1章思考题和习题一、填空题1.直流电动机主磁极的作用是产生,它由和两大部分组成。
气隙磁场、主磁极铁心和主磁极绕组2.直流电动机的电刷装置主要由、、、和等部件组成。
电刷、刷握、刷杆、刷杆架、弹簧、铜辫3.电枢绕组的作用是产生或流过而产生电磁转矩实现机电能量转换。
感应电动势、电枢电流4.电动机按励磁方式分类,有、、和等。
他励、并励、串励、复励5.在直流电动机中产生的电枢电动势Ea方向与外加电源电压及电流方向,称为,用来与外加电压相平衡。
相反、反电势6.直流电动机吸取电能在电动机内部产生的电磁转矩,一小部分用来克服摩擦及铁耗所引起的转矩,主要部分就是轴上的有效转矩,它们之间的平衡关系可用表示。
输出、电磁转矩=损耗转矩+输出转矩二、判断题(在括号内打“√”或打“×”)1.直流发电机和直流电动机作用不同,所以其基本结构也不同。
(×)2.直流电动机励磁绕组和电枢绕组中流过的都是直流电流。
(×)3.串励直流电动机和并励直流电动机都具有很大的启动转矩,所以它们具有相似的机械特性曲线。
(×)4.电枢反应不仅使合成磁场发生畸变,还使得合成磁场减小。
(√)5.直流电机的电枢电动势的大小与电机结构、磁场强弱、转速有关。
(×)6.直流电动机的换向是指电枢绕组中电流方向的改变。
(√)三、选择题(将正确答案的序号填入括号内)1.直流电动机在旋转一周的过程中,某一个绕组元件(线圈)中通过的电流是( B )。
A.直流电流B.交流电流C.互相抵消,正好为零2.在并励直流电动机中,为改善电动机换向而装设的换向极,其换向绕组( B )。
A.应与主极绕组串联B.应与电枢绕组串联C.应由两组绕组组成,一组与电枢绕组串联,另一组与电枢绕组并联3.直流电动机的额定功率P N是指电动机在额定工况下长期运行所允许的( A )。
A.从转轴上输出的机械功率B.输入电功率C.电磁功率4.直流电动机铭牌上的额定电流是。
第6章三相异步电动机的电力拖动
若回路串电阻,则有
简化等效电路图
若回路串电抗,则有
线图
(2) Y-D降压启动 正常运行时D接,启动时接成Y形 启动时电网供给电动机的启动电流为
若改为D形接法:
Y-D启动接线图
(3) 自耦变压器降压启动 由自耦变压器原理可知:
,自耦变压器启动时,
,
的电流:
启动接线图
启动一相电路图
的三相交流电产生的旋转磁动势等效。若定子绕组采用D形接法,
。
磁动势等效变换前后的相对转速
定子绕组通入直流电时的磁动势
3) 能耗制动----机械特性
能耗制动转差率:
由等效电路可知:
机械特性表达式:
能耗制动机械特性 能耗制动等效电路
4) 能耗制动——制动过程 反抗性负载——实现快速、准确停车。 能耗制动切换瞬间,转速不会突变,工作点AB O,电动机转速降为零。 位能性负载——实现稳速下放。 原点O工作点C,位能性负载稳速下放。电动机轴上输入的机械功率靠重物 下降减少的位能提供,转换为电功率后消耗在转子回路中。
反接制动接线图
电动机既从电网吸收电功率, 又从轴上输入机械功率(由拖动系统转动 部分减少的动能提供)。都转变为转差 功率,消耗在转子回路电阻中。
反接制动机械特性
2)反接制动——定子两相反接制动(制动过程)
反接制动机械特性
3)反接制动——转速反向的反接制动(参照P186) 绕线型异步电动机转子回路串入大电阻,电动机被位能性负 载拖动反转,工作点进入第Ⅳ象限,如图所示工作点G。
6.三相异步电动机的电力拖动
本章主要教学内容 1. 三相异步电动机的机械特性 2. 三相异步电动机的启动 3. 三相异步电动机的制动 4. 三相异步电动机的调速
《2011年10月电机与拖动基础》习题选
《电机与拖动基础》习题选电力拖动(1)5-1他励直流电动机的铭牌数据:P N=1.75千瓦,U N=110伏,I N=20.1安,n N=1450转/分,试计算:(1)固有特性曲线,并用坐标纸画出;(2)50%额定负载时的转速;(3)转速为1500转/分时的电枢电流值。
5-2 他励直流电动机的铭牌数据同上,试计算磁通为80%额定值、电枢电压为50%U N时的人为特性,并用坐标纸画出。
5-3他励直流电动机的数据:P N=10千瓦;U N=220伏;I N=53.7安,n N=3000转/分;试计算:(1)固有特性;(2)当电枢电路总电阻为50% R N ()时的人为特性;R N=U N/I N(3)当电枢电路总电阻为150% R N时的人为特性;(4)当电枢电路端电压U=50% U N时的人为特性;(5)当磁通为80%额定值时的人为特性。
并作出其机械特性图。
5-4 一台他励电动机数据如下:P N=21千瓦,U N=220伏,I N=112安,n N=950转/分(1)若负载转矩为0.8T N时,求电动机转速;(2)若负载转矩为0.8T N时,在电枢电路中串联30%R N附加电阻,求电阻接入瞬间和转入新的稳态时的转速、电枢电流和电磁转矩;(3)若将电枢电压降低至额定电压的20%,磁通为额定磁通的70%,求额定负载时电机的转速。
5-5一直流电动机有下列数据:U N=220伏,I N=40安,n N=1000转/分,电枢电路总电阻R a=0.5欧,当电压降到180伏,负载为额定负载时,求:(1)电机接成他励时(励磁电流不变)的转速和电枢电流;(2)电机接成并励时(励磁电流随电压正比变化)的转速和电枢电流(设铁心不饱和)。
5-6他励电动机铭牌数据:P N=2.5千瓦,U N=220伏,I N=12.5安,n N=1500转/分,R a=0.8欧。
(1)运行中在n=1200转/分时使系统转入能耗制动停车,问保证起始制动电流为2I N时,电枢应串入多大电阻?如电枢不接入制动电阻,则制动电流为多大?(2)若负载转矩为位能转矩,要求在T2=0.9T N时保证电机以120转/分的转速能耗制动稳速下放重物,问所需制动电阻为多大?(3)绘出上述两种情况的机械特性。
《电机与拖动》部分作业题解答
第一章 直流电机1-3 直流发电机和直流电动机中的电磁转矩T 有何区别?它们是怎样产生的?而直流发电机和直流电动机中的电枢电动势,a E 又有何区别?它们又是怎样产生的?解:直流发电机的电磁转矩T 是制动性质的,直流电动机的电磁转矩T 是驱(拖)动性质的,它们都是由载流导体在磁场中受到的电磁力,形成了电磁转矩;直流发电机的电枢电动势E a 大于电枢端电压U ,直流电动机的电枢电动势E a 小于电枢端电压U ,电枢电动势E a 都是运动导体切割磁场感应产生的。
1-4 直流电机有哪些主要部件?各起什么作用?解:直流电机的主要部件有定子:主磁极(产生主极磁场)、机座(机械支撑和导磁作用)、换向极(改善换向)、电刷(导入或导出电量);转子:电枢铁心(磁路的一部分,外圆槽中安放电枢绕组)、电枢绕组(感应电动势,流过电流,产生电磁转矩,实现机电能量转换)、换向器(与电刷一起,整流或逆变)1-5 直流电机里的换向器在发电机和电动机中各起什么作用?解:换向器与电刷滑动接触,在直流发电机中起整流作用,即把线圈(元件)内的交变电整流成为电刷间方向不变的直流电。
在直流电动机中起逆变作用,即把电刷间的直流电逆变成线圈(元件)内的交变电,以保证电动机能向一个方向旋转。
1-6 一台Z2型直流发电机,min,/1450,230,145r n V U kW P N N N ==-求该发电机额定电流。
解: A U P I N N N 43.630230101453=⨯== 1-7 一台Z2型直流发电机,min,/1500%,90,220,160r n V U kW P N N N N ===-η求该额定电流是多少?解: A U P I N N NN 08.8089.022*******=⨯⨯==η1-10 电枢反应对气隙磁场有何影响?解:电枢反应使合成磁场发生畸变,磁路饱和时有去磁作用。
1-11 有一台四极直流电机,电枢绕组为单叠整距绕组,每极磁通为3.5×10-2Wb ,电枢总导线数N=152,转速min /1200r n =。
《电机与电力拖动》课程标准(含课程思政)
《电机与电力拖动》课程标准一、基本信息二、课程设计思路本课程依据“铁道供电技术专业典型工作任务与职业能力分析表”中的电机及电气控制技术、工厂供电技术等工作项目而设置。
随着时代的进步以及科技的不断发展,电气自动化技术正在得到不断的完善,随着电气自动化技术的发展以及完善。
社会各行业对于电气工程自动化技术的需求也越来越大,也就迫切需要自动化技术的技能人才,为适应未来科技发展对本专业技术技能人才的新需求,本课程着力培养学生能够使用电机与电气控制技术对机床和工业生产设备进行控制,并具备对各种电气控制系统的设计、安装、调试和排除故障的基本能力,使学生了解电机与电气控制在机电一体化领域的发展动态和趋势。
增强自主学习能力和创新意识,从而使学生在未来的工作实践中能够把握该项技术的发展和应用趋势,更好地服务其专业工作。
课程内容的编排和组织以本专业主要就业岗位(接触网工、变电工、电力线路工、调度员等)的能力需求、高职学生的学习特点与认知规律等为依据,坚持课程内容与职业标准对接,经深入调研分析,确定本课程以下八个学习项目:电机及电力拖动概述、直流电机的结构及工作原理、三相异步电动机的结构及工作原理、低压电器的认识与使用、三相异步电动机典型的控制电路设计与安装、典型机床电气控制电路分析与故障排除。
把实际岗位工作任务(行动领域)转化为学习情境,每一堂课均采用项目导向、任务驱动、工学交替的教学模式,充分利用现代化教学手段,从知识、能力、素质等方面明确课程任务。
以学生为中心完成项目规定的任务。
混合式学习是一种个性化的学习方式,故其应采用多元化的评价方式。
既包括形成性评价,还包括总结性评价。
形成性评价主要包括学生在线上自主学习时的讨论情况、在面对面课堂中小组合作学习的参与度、课堂表现情况、师生讨论反思等,并将学生的课堂出勤、课堂行为及职业素养等思政元素纳入职业素质评价中,总结性评价包括小组提交的团队项目作品以及期末的作业等。
通过全方位的评价可以使学习者更清楚的到自己的学习效果并不断进行自我完善,为下一步的学习做准备。
《电机与拖动》教学大纲
《电机与拖动》教学大纲课程名称:电机与拖动英文名称:Motors and Electric Drives课程性质:专业教育必修课程课程编号:O131009所属院部:机电工程学院周学时:4学时总学时:75学时(理论学时60;实验学时15)学分:4学分教学对象(本课程适合的专业和年级):机械设计制造及其自动化专业(专升本)2011级学生预备知识:高等数学、物理学、电工学、电子技术、工程力学、机械制图等。
课程在教学计划中的地位和作用:本课程为专业基础课,其作用是承前启后,为后续课程打基础,培养学生的动手能力、分析问题和解决问题的能力。
教学方法:讲授、讨论、实验教学的目的和要求:使学生掌握变压器与各种电机的基本结构、工作原理和运行性能,独立分析电力拖动系统各种运行状态,掌握有关计算方法,合理地选择和使用电动机,为毕业后从事专业技术工作做好基本培养和锻炼。
要求重点掌握变压器、异步电机、电动机的选择和电力拖动系统的动力学部分,同步电机、直流电机和控制电机部分作为一般掌握内容。
课程教材:唐介主编.电机与拖动(第二版). 北京:高等教育出版社,2007参考书目:[1]彭鸿才主编.电机原理及拖动. 北京:机械工业出版社,2007年.[2]周顺荣编著.电机学.北京:科学出版社,2002年.[3]电机及电气技术实验装置实验指导书.杭州:浙江天煌科技实业有限公司考核形式:闭卷考试编写时间:2012年1月制定课程内容及学时分配:注:根据需要,课时可作适当调整。
绪论(2学时)学习要求:了解本课程的性质与特点,掌握学好这门课的方法。
教学重点:学习方法第1章磁路(4学时)学习要求:掌握常用基本物理量和基本定律,为学好本课程打好基础。
教学重点:铁磁材料与磁路。
第2章变压器(8学时)学习要求:1.了解变压器的主要结构、基本工作原理及主要额定值的意义。
2.掌握变压器负载运行时的等值电路、相量图、基本方程式以及运行性能。
3.熟悉三相变压器的联接组别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S Tm Tem
1. 稳定运行区域
工作段
稳定运行条件:
dTem dn
<
dTL dn
n
硬特性
n1 TL N
nM
M
额定运行点 N :
n = nN , s = sN , Tem = TN ,P2 = PN。 • 额定状态说明了电动机
O
S
Tem
长期运行的能力:
TL≤TN,P2≤PN,I1≤IN。 sN = 0.01 ~ 0.06 很小,
Tem 增加时,n 下降很少 —— 硬特性。
2. 固有机械特性的实用表达式
忽略 R1 的影响,则
Tem =
m1p 2f1
R2
s
U12
R2
s
2
+(X1+X2)2
Tm =
pm1U12
4f1 (X1+X2)
sm =
R2 X1+X2
将 Tem 与 Tm 相除得:
Tem(X1+X2)
=
R2
6.1 三相异步电动机的机械特性
6.1.1 固有机械特性
当 U1L = U1N 、f1 = fN,且绕线型转子中不外串 任何电路参数时的机械特性。
同步点:
n
n = n1,s = 0,Tem = 0
n1
起动点:
(1-sm) n1
M
n = 0,s = 1,Tem = Tst
临界工作点:
O
s = sm,n = (1-sm) n1,Tem = Tm
③ Tm与 R2 无关,而 sm与R2 成正比。
如 R2 变大时,Tm不变,但 sm 则随之增大。
④ 如忽略 R1,Tm与
U1 f1
2
成正比。
过载倍数 (最大转矩倍数) KT :
KT =
Tm TN
2. 起动转矩 Tst
s = 1 时:
Tst =
m1p 2f1
结论:
U12 R2 ( R1+ R2)2 +(X1+X2)2
用公式;(2) 当转速 n = 1 487 r/min 时的电磁转矩;
(3) 当负载转矩 TL= 450 Nm 时的转速。
解:(1) 额定转差率为
sN =
n1-nN
n1
=
1 500-1480
1 500
= 0.0133
额定转矩为
TN = 9.55
PN nN
= 9.55×
90 000 1 480 N·m = 580.7 N·m
s=
n1-n
n1
1 500-1487
= 1 500 = 0.0087
电磁转矩为 2 555
Tem = 0.0553 0.0087 0.0087 +0.0553
N·m = 392.3 N·m
(3) 当 TL = Tem = 450 N·m 时的转差率为
( ) s = sm TTemm-
Tm Tem
2 -1
6.1 三相异步电动机的机械特性 6.2 三相异步电动机的起动 6.3 三相异步电动机的调速 6.4 三相异步电动机的制动 6.5 异步电动机的各种运行状态
三相异步电机电磁转矩物理表达式
Pem = m2 E2 I2 cos2 E2 = 4.44 f1 kW2N2m
Tem =
Pem
1
=
60Pem 2n1
( ) = 0.0553×
1277.5 - 450
1277.5 2-1 = 0.0101 450
转速为
n = ( 1-s ) n1 = ( 1-0.0101 )×1 500 r/min = 1 485 r/min
m1p 2f1
R1+
R2
s
U12
R2
s
2
+(X1+X2)2
Tem ~ s 曲线
Tem
发电机
电动机
制动
M
-1
s0
nn1
S
O
s=0 n= n1
n0
1
s
n= 0
n0
1. 最大(临界)转矩 Tm
临界转差率: sm =±
R2 R12 +(X1+X2 )2
Tm =±
m1p 4f1
±R1+
U12
R12+(X1+X2 )2
s
2
+(X1+X2)2
2
sm s
+
s sm
即
Tem =
2Tm
sm s
+
s sm
解上述方程,可得
( ) s
sm
=
Tm Tem
±
Tm Tem
2 -1
=
sm s
※ 根据 s 和 sm 的相对大小,取“+”或取“-”。
若忽略 T0,则在额定负载时
sN = sm ( kT- kT2-1 )
sm = sN ( kT + kT2-1 )
1. 额定效率 N N = 72.5% ~ 96.2 % (Y 系列)
2. 额定功率因数 cosN cosN = 0.7 ~ 0.9 (Y 系列)
3. 最大转矩倍数 km kT = 1.8 ~ 2.2 (Y 系列)
4. 堵转转矩倍数 kst kst = 1.6 ~ 2.2 (Y 系列)
5. 堵转电流倍数 kI kI = 5 ~ 7 (Y 系列)
最大转矩为
Tm = kTTN = 2.2×580.7 Nm = 1 277.5 N·m
临界转差率为 sm = sN ( km + km2-1 )
= 0.0133×( 2.2 + 2.22-1 ) = 0.0553
实用电磁转矩公式为
2 555
Tem =
0.0553 s
+
s 0.0553
(2) 当转速 n = 1 487 r/min 时转差率为
※ 实用公式计算简单、使用方便, 但只适用于一定的范围内,即 0 < s < sm 。
【例6-1】 Y280M-4 型三相异步电动机,额定功率 PN = 90 kW,额定频率 fN= 50 Hz,额定转速nN= 1480 r/min, 最大转矩倍数KT= 2.2。试求:(1) 该电动机的电磁转矩实
=
p Pem 2 f1
Tem = CTm I2 cos2
※ 电磁转矩常数:
CT =
4.44
pm2kw2N2 2
=
1 2
pm2kW2N2
三相异步电机转矩-转差特性(参数表达式)
I2 =
U1
R1+
R2
s
2
+(X1+X2)2
根据:
Pem = m1Rs2
I22 ,Tem =
Pem
1
, 1 =
2πf1 p
Tem =
① 当 f1 和电机参数不变时,异步电机的 Tst 与电源相电压
U1 的平方成正比。
② 当 U1 和 f1 一定时,Tst 近似与定转子漏抗之和成反比。
③ 在一定的范围内增加 R2 时,可增大 Tst 。 当sm= 1 时,Tst = Tm,Tst 最大。
起动转矩倍数
Kst =
Tst TN
三相异步电动机的主要性能指标
电动状态取 “+ ”,发电状态取 “-”。
当 R1 (X1+X2 ) 时:
sm≈±
R2 X1+X2
Tm≈±
pm1U12
4f1 (X1+X2)
结论:
①当 f1 和电机参数不变时,异步电机的 Tm 与 电源相电压 U1 的平方成正比。
②当 U1 和 f1 一定时, Tm 近似与定、转子漏抗 之和成反比。