多级放大电路
多级放大电路
3.1 多级放大电路
3.1.1 多级放大电路的组成
1. 多级放大电路的组成 将两级或两级以上的单管放大电路连接起来就组成了
多级放大电路,其组成可用图3.1.1所示的框图来表示。
信号源
~
输入级
电压 放大级
电压 放大级
推动级
负 载 功率 输出级
图3.1.1 多级放大电路的组成方框图
3.1.1 多级放大电路的组成
3.3.2 乙类互补对称功率放大电路
3.乙类功放的交越失真
交越失真产生+U的CC 原因:
在线于性T1 晶,体ui <i管cu1 T特时性晶存体在管非截
止。
+
iL
因会此出T在现2 正一、些ic2负非半线R周性L 交失u-o替真过,零这处种
失真称为交越失真。如图所示。 —UCC
温度漂移是直接耦合放大器存在的最主要问题。一般来说,直 接耦合放大器的级数愈多,放大倍数愈高,则零点漂移问题愈严重。 而控制第一级的漂移问题是最为重要的。
3.2.1 基本差分放大电路
1. 差分放大电路的结构
+ UCC
RC
RB T1 + ui1 -
+ uo -
+
+
u01
uo2
-
-
RC
T2 RB +
ui2
- UEE
-
图3.2.1 基本差分放大电路
该电路采用两 个相同参数的 BJT,其外围电 路完全相同,即 电路两边完全对 称。
ui ui1 ui2
uo uo1 uo2
3.3 功率放大电路
3.3.1 功率放大器的特点和分类
什么是多级放大电路如何设计一个多级放大器
什么是多级放大电路如何设计一个多级放大器多级放大电路是指由多个放大器级联组成的电路,用于提高输入信号的幅度,并有较大增益的电子设备。
在设计一个多级放大器之前,我们需要了解多级放大器的基本原理以及设计要点。
一、多级放大器的原理多级放大器是通过将多个放大器级联连接起来,以便连续放大信号的电压或功率。
它由输入级、中级和输出级组成。
1. 输入级:输入级负责接收输入信号并将其转化为电压或电流信号。
它通常包含一个低噪声放大器,其作用是增加输入信号的幅度,并将它传递给中级放大器。
2. 中级:中级放大器是多级放大器的核心部分,它的作用是增加电压或功率的增益。
中级通常包含多个级别的放大器,其中每个级别都提供一定的增益。
3. 输出级:输出级负责将信号放大到所需的幅度,并驱动负载电阻或其他负载。
输出级通常包含高功率放大器,以确保输出信号具有足够的驱动能力。
二、多级放大器的设计要点在设计一个多级放大器时,需要考虑以下几个要点:1. 增益和带宽:多级放大器的设计目标之一是在实现所需增益的同时保持足够的带宽。
增益与带宽的折衷是设计的关键考虑因素之一。
2. 输入和输出阻抗匹配:为了最大限度地传递信号并减少反射,需要确保输入和输出阻抗与信号源和负载的阻抗相匹配。
3. 稳定性:多级放大器必须具有良好的稳定性,以确保不会出现自激振荡或非线性失真。
这可以通过使用稳定的放大器设计和适当的负反馈技术来实现。
4. 噪声:多级放大器的设计应尽可能减少噪声的引入,并提供清晰的信号放大。
5. 功率供应:多级放大器需要合适的功率供应以保证其正常工作。
供应电压和电流必须满足放大器的工作要求,并且应提供稳定和纹波较小的电源。
三、一个多级放大器的示例设计以下是一个四级放大器的示例设计,以演示多级放大器的设计过程:1. 输入级:- 使用低噪声MOSFET放大器作为输入级,以提供高增益和低噪声。
- 输入级的增益设置为10倍,输入阻抗为50欧姆。
2. 中级:- 选择两个通用增益放大器级别级联,每个级别的增益为5倍。
多级放大电路
若求Aus:
Aus
=
ri1 Rs + ri1
Au
ri1 =rbe1 // Rb1 // Rb2 =2.88//51//20=2.4k
Aus
=
ri1 Rs + ri1
Au
2.4 9891 1 2.4
6982
11
26 I E2
200 101 26 1.1
2.6 kΩ
Au1
=
(Rc1 //
rbe1
ri2 )
100 (5.1 // 2.6) 2.88
59.8
式中 ri2 rbe2
10
Au2
=
(Rc2 //
rbe2
RL )
100 4.3 2.6
165.4
Au Au1Au2 59.8(165.4) 9891
放大电路中第一级对整个放大电路的零漂影响 最大,且级数越多,零漂越严重。
抑制零漂的措施: 1)引入直流负反馈稳定工作点; 2)利用热敏元件补偿放大电路的零漂; 3)采用差分放大结构,使输出端的零漂相互抵消。5
2.7.2 多级放大电路的分析
1、多级放大电路的增益
Au
uo ui
uo1 ui
uo2 uo
共发射极放大电路 (NPN管)
共发射极放大电
路(PNP管)
7
(1)求静态工作点
UB1
Rb2 Rb1 Rb2
VCC
20 12 3.38V
51 20
IBQ
1
=
UB (1 +
UBE
) Re1
e2
e1
c2
=
3.38 0.7 (1 + 100) 2.7
模电3-多级放大电路
)U BE5
动态时:ub1 ub3 ui
§3.5 直接耦合多级放大电路读图
一、放大电路的读图方法 二、例题
一、放大电路的读图方法
1. 化整为零:按信号流通顺序将N级放大电路分
为N个基本放大电路。
2. 识别电路:分析每级电路属于哪种基本电路,
有何特点。
3. 统观总体:分析整个电路的性能特点。 4. 定量估算:必要时需估算主要动态参数。
解决方法:采用电流源取代Re!
具有恒流源差分放大电路的组成
等效电阻 为无穷大
近似为 恒流
I2
IB3,IE3
R2 R1 R2
VEE UBEQ R3
六、差分放大电路的改进
1. 加调零电位器 RW
1) RW取值应大些?还是小些? 2) RW对动态参数的影响? 3) 若RW滑动端在中点,写出Ad、 Ri的表达式。
输入差模信号的同时总是伴随着共模信号输入:
uId uI,uIc uI / 2
2. 单端输入双端输出
问题讨论: (1)UOQ产生的原因? (2)如何减小共模输出 电压?
静态时的值
测试:
uO
Ad
uI
Ac
uI 2
U OQ
差模输出 共模输出
3. 四种接法的比较:电路参数理想对称条件下
输入方式: Ri均为2(Rb+rbe);双端输入时无共模信号输入, 单端输入时有共模信号输入。
共模信号:大小相等,极性相同。
差模信号:大小相等,极性相反.
典型电路
在理想对称的情况下: 1. 克服零点漂移; 2. 零输入零输出; 3. 抑制共模信号; 4. 放大差模信号。
I BQ1 I BQ2 I BQ ICQ1 ICQ2 ICQ I EQ1 I EQ2 I EQ U CQ1 U CQ2 U CQ uO U CQ1 U CQ2 0
第三章 多级放大电路
当 f >> fH 时,
f = 100 f H | AU |≈ 0.01
| AU |=
1 1 + ( f / fH )
2
≈ fH / f
斜率为 -20dB/十倍频程 的直线 十倍频程
f = f H | AU |=
1 ≈ 0.707 20 lg | AU |= 3dB 2
20 lg | AU |= 20 lg( f H / f )
)
2
0 -20 -40
f
当 f << f H 时,
| AU |=
1 1 + ( f / fH )
2
≈1
20 lg | AU |= 20 lg 1 ≈ 0 dB
f = 10 f H
| AU |≈ 0 .1
0分贝水平线 分贝水平线
20 lg | AU |= 20 dB 20 lg | AU |= 40 dB
+
- 20k
Re1
2.7k Ce1
Rc2
4.3k u o
-
+
I B1 = I C1 / β = 9 .9 uA
UC1 = UB2 = Vcc IC1Rc1 = 12 0.99× 5.1 = 7.2 V
UCE1 ≈ Vcc IC1(Rc1 + Re1) = 12 0.99× 7.8 = 4.6 V
R e2 T2
+ V CC + uo
- V EE
3. 变压器耦合
级与级之间利用变压器传递交流信号。 (1)优点:匹配好、耗能少、Q点独立、可阻抗转换
' β RL Au = rbe
(2)缺点:频带窄、体积大、笨重、非线性失真大、只传 递交流、无法集 成
模拟电路课件第三章多级放大电路
直接耦合多级放大电路的调试与优化
01
调整偏置电路,减小静态工作点 漂移。
02
引入负反馈,改善电路的稳定性 。
阻容耦合多级放大电路的调试与优化
阻容耦合多级放大电路的调试 检查各级放大器的输入和输出阻抗,确保匹配。
调整耦合电容和旁路电容,避免信号失真。
阻容耦合多级放大电路的调试与优化
检查反馈电路,避免自激振荡。 阻容耦合多级放大电路的优化
分析时需要计算各级的电压增益和总 电压增益,并考虑信号的相位和频率 响应。
变压器耦合多级放大电路的分析方法
变压器耦合多级放大电路中,各级通过变压器进行耦合,可以实现阻抗变换和电平 移动。
分析时需要计算各级的电压增益和总电压增益,并考虑变压器的匝数比和信号的相 位和频率响应。
变压器耦合多级放大电路的优点是具有阻抗变换和电平移动功能,缺点是结构复杂、 体积较大。
04
多级放大电路的设计与实现
直接耦合多级放大电路的设计与实现
设计要点
选择合适的晶体管、电阻和电容元件,以实现信号的放大和 传输。同时,需要考虑零点漂移和噪声干扰等问题,采取相 应的措施进行抑制。
实现难点
直接耦合多级放大电路的零点漂移问题较为突出,需要采取 有效的措施进行抑制,以保证电路的稳定性和可靠性。
模拟电路课件第三章多级 放大电路
• 多级放大电路概述 • 多级放大电路的工作原理 • 多级放大电路的分析方法 • 多级放大电路的设计与实现 • 多级放大电路的调试与优化
01
多级放大电路概述
多级放大电路的定义与组成
定义
多级放大电路是由两个或两个以 上的单级放大电路按照一定的拓 扑结构组合而成的电路系统。
益和带宽。
直接耦合多级放大电路的优点是 结构简单、易于集成,缺点是级 间耦合较复杂,容易产生零点漂
多级放大电路
§2、5 多级放大电路
单级放大电路的放大倍数有时不能满足我们的需要,为此我们需要把若干个基本的放大电路连接起来,组成多级放大电路。
多级放大电路之间的连接称为耦合,它的方式由多种。
一:多级放大电路的耦合方式
实际中我们常用的耦合方式有三种,即阻容耦合、直接耦合和变压器耦合。
1.阻容耦合
它的连接方法是:通过电容和电阻把前级输出接至下一级输入。
它的特点是:各级静态工作点相对独立,便于调整.
它的缺点是:不能放大变化缓慢(直流)的信号;不便于集成。
如图(1)所示为阻容耦合接法。
2.直接耦合
为了避免电容对缓慢变化信号的影
响,我们直接把两级放大电路接在
一起,这就是直接耦合法。
它的特点是:即能放大交流信号,
也能放大直流信号,便于集成,存
在零漂现象。
(关于它的问题我们将在以后的章
节中讨论)
3.变压器耦合
变压器耦合主要用于功率放大电路,它的优点是可变化电压和实现阻抗变换,工作点相对独立。
缺点是体积大,不能实现集成化,频率特性差。
二:多级放大电路的指标计算
1.电压放大倍数 Au
多级放大电路的倍数等于各级放大电路倍数的乘积.即:
Au=A u1.A u2.A u3
.......A un 2.输入电阻和输出电阻
对于多级放大电路来说:输入级的输入电阻就是输入电阻;输出级的输出电阻就是输出电阻。
我们在设计放大电路的输入级和输出级时主要是考虑输入电阻和输出电阻的要求。
第3章 多级放大电路
+ VCC
RB1
RC1
T1
RE2
T2
ui
RC2
利用NPN型管和 型管和PNP型管进行电平移动 利用 型管和 型管进行电平移动
uo
第三章 多级放大电路
(2)直接耦合放大电路的优缺点 ) 优点: 优点: (1)电路可以放大缓慢变化的信号和直流信号 电路可以放大缓慢变化的信号和直流信号。 电路可以放大缓慢变化的信号和直流信号 由于级间是直接耦合,所以电路可以放大缓慢 变化的信号和直流信号。 (2)便于集成 便于集成。由于电路中只有晶体管和电阻, 便于集成 没有电容器和电感器,因此便于集成。 缺点: 缺点: (1)各级的静态工作点不独立,相互影响。会给设计、 计算和调试带来不便。 (2)引入了零点漂移问题。零点漂移对直接耦合放大 电路的影响比较严重。
ri2 Ⅱ
Ⅰ r o1
ɺ E S1
+ _
+ ɺ U o1 _
Ⅱ
+ ɺ Uo _
级间关系
后级的r 等效为前级的R 后级的 i等效为前级的 L 前级的ro等效为后级的RS 前级的 等效为后级的
第三章 多级放大电路
RB1
C1
RC1
C2 +
′ RB1
RC2 + T C3 2
+ U CC
+ RB2
RE 1
RS
2)变压器耦合多级放大电路基本上没有温漂现象。 变压器耦合多级放大电路基本上没有温漂现象。
3)变压器在传送交流信号的同时,可以实现电流、 )变压器在传送交流信号的同时,可以实现电流、 电压以及阻抗变换。 电压以及阻抗变换。 缺点: )高频和低频性能都很差; 缺点: 1)高频和低频性能都很差; 2)体积大,成本高,无法集成。 )体积大,成本高,无法集成。
多级放大电路
多级放大电路的输入电阻ri等于从第一级放大电路的输入 端所看到的等效电阻,也就是第一级的输入电阻,即
ri ri1
多级放大器的输出电阻ro等于从最后一级放大电路的负载 两端(不含负载)所看到的等效电阻,也就是最后一级的输
出电阻,即
ro ron
多
级放
放大
大倍
电 路
数 的 分
贝
表
示
法
1.4
第9页
当多级放大电路级数较多时,电压放大倍数的计算和表示都很不方便。 在实际工程中,电压放大倍数常用分贝(dB)表示,称为增益,即
•
Au
20 lg
Uo
•
(dB)
Ui
用增益表示多级放大电路的总电压放大倍数时,总增益应为各级增益之 和,即
Au (dB) Au1(dB) Au2 (dB) Aun (dB)
图10-14 直接耦合两级放大电路
第5页
多多
级级
放放
大大
电 路
电 路 的
耦
合
方
式
1.2
1 直接耦合
但直接耦合电路中存在以下两个问题: ① 级与级之间的直接相连导致静态工作点之间相互影响,不利于电路的 设计、调试和维修。抑制措施主要有两个:抬高后级发射极电位、用PNP和 NPN管配合实现电平移动。 ② 直接耦合电路中存在零点漂移现象。零点漂移现象是指输入电压为零 时,输出电压偏离零值变化的现象。产生零点漂移现象的主要原因是晶体管 的参数随温度的变化而变化,从而引起各级静态工作点发生变动,因此,零 点漂移又称为温度漂移。直接耦合电路中,第一级的漂移对输出的影响最大, 所以,零点漂移的抑制着重在第一级。
采用分贝表示法的好处是它能从分贝的数值上直观表示出放大电路对信 号增益的增加或衰减,给计算和使用带来很多方便。
《多级放大电路》课件
电压放大倍数等于输出电压与输入电压的比值,即A=Uo/Ui。
03
影响因素
影响电压放大倍数的因素包括晶体管的参数、电路元件的参数以及电路
的连接方式等。
输入输出电阻
输入电阻
输入电阻是指多级放大电路对信号源所呈现的电阻,反映 了电路对信号源的负载能力。输入电阻越大,信号源的有 效功率越大,电路的性能越好。
稳定性问题
总结词
稳定性问题是指多级放大电路在工作过程中,由于各种原因导致电路性能的不稳定,出现波形失真、增益下降等 现象。
详细描述
稳定性问题可能是由于电路中元器件的参数变化、温度和湿度等环境因素的影响、电源电压的波动等原因引起的。 解决稳定性问题需要采取一系列措施,如改善电路的散热条件、减小环境因素的影响、稳定电源电压等,以保证 多级放大电路的稳定可靠运行。
音频放大器性能指标
音频放大器的性能指标包括频率响应、失真度、信噪比和输出功率 等。
功率放大器
功率放大器概述
功率放大器是一种将微弱的信号放大到足够大的功率,以驱动负 载的电子设备。
功率放大器电路组成
功率放大器通常由输入级、中间级和输出级等部分组成。
功率放大器性能指标
功率放大器的性能指标包括功率增益、效率、失真度和带宽等。
稳定性
稳定性
稳定性是指多级放大电路在各种工作条件下保持性能稳定的 能力。稳定性是多级放大电路的重要性能指标之一。
影响因素
影响稳定性的因素包括温度、电源电压的变化、晶体管的参 数变化以及电路元件的老化等。为了提高稳定性,可以采用 负反馈、温度补偿、选用性能稳定的晶体管等措施。
03
多级放大电路的设计与实现
带宽原则
根据信号频率范围,选 择合适的元件和电路拓 扑,保证电路具有足够
多级放大电路概述
多级放大电路概述多级放大电路是由多个放大器级联组成的电路,用来增强输入信号的幅度。
每个放大器级别在前一级输出信号的基础上继续放大,从而实现整个电路的放大功能。
多级放大电路常用于音频助听器、放大器、无线电接收器等各种电子设备中。
输入级是多级放大电路的第一级,通常采用低噪声、高增益的放大器。
其主要功能是将输入信号增大到中间级能够处理的幅度,并对输入信号进行初步处理,如去除直流偏置、滤波等。
中间级是多级放大电路的中间环节,其主要任务是逐级放大信号幅度,并对信号频率进行调整。
中间级的放大器通常具有较高的功率放大能力和较宽的频率响应范围,以确保信号能够稳定、准确地传递到输出级。
输出级是多级放大电路的最后一级,其主要功能是放大信号的幅度,并驱动输出负载。
输出级的放大器通常具有较大的输出功率和较强的驱动能力,能够将信号送达到最终需要的位置。
多级放大电路的性能受到多个因素的影响。
其中,放大器的增益、带宽和失真是影响多级放大电路性能的主要因素。
增益表示电路对输入信号的放大倍数,带宽表示电路能够传递的频率范围,失真表示信号在放大过程中产生的形变。
通过优化放大器的设计和选择合适的放大器参数,可以提高多级放大电路的性能。
此外,多级放大电路还需要考虑功耗、稳定性、噪声等因素。
功耗是指电路在工作过程中消耗的电能,需要在满足放大要求的前提下尽量减小功耗。
稳定性是指电路对输入信号变化的响应能力,需要确保电路能够稳定地工作在设计要求的范围内。
噪声是指电路输出信号中除了输入信号以外的无用信号,需要通过合理的设计和选择低噪声的放大器来降低噪声水平。
总之,多级放大电路是一种常用的电子电路结构,用于增强输入信号的幅度。
通过合理的设计和优化,可以实现高增益、宽带宽和低失真的多级放大电路,满足各种电子设备的放大需求。
模电课件-第三章多级放大电路
T2
IB
IE RE
IB
U EE U BE
RB 2(1 )RE
–UEE
+UCC
RB
IB
ui2
IC1= IC2= IC= IB
UE1= UE2 =-IBRB-UBE
UC1= UC2= UCC-ICRC UCE1= UCE2 = UC1-UE1
三、 动态分析
输入信号分类 (1)差模输入
ui1 = -ui2= ud
单端
输出端 双端 接法 单端
四种组合
前面所讲的是双端输入双端输出电路
双端输入单端输出电路
单端输入双端输出电路
单端输入单端输出电路
恒流源式差放电路
电路结构:
RC ic1 uoic2 RC
RB T1
T2
ui1 R ib1
E
+UCC RB ib2 R ui2
IC3
R1
T3
为什么要改进原
R3
R2
有的差动放大电
第三章 多级放大电路
§3.1 多级放大电路的耦合方式 §3.2 多级放大电路的动态分析 §3.3 直接耦合放大电路
§3.1 多级放大电路的耦合方式
输
第一级
入
放大电路
第二级 放大电路
……
输
第n级
出
放大电路
第 n-1 级 放大电路
单级——多级,必然存在耦合 耦合:即信号的传送。
功放级
耦合方式:级与级之间的连接方式。
差模信号通路
ui1
RC ic1 uoic2 RC
RB R ib1
T1
uod1 uod2
T2
RB ib2 R
ui2
多级放大电路
( Rc1 // Ri2 ) 100 (5.1 // 2.8) Av1 = 58.3 , rbe1 3.1
Av 2 =
式中Ri2 rbe2
( Rc2 // RL )
rbe2
100 4.3 153.6 2.8
现以图07.03的两级放大电路为例加以说明, 有关参数示于图07.05中。三极管的参数为
1=2==100,VBE1=VBE2=0.7 V。计算总电压
放大倍数。 用输入电阻法 计算。
图07.05 两级放大电路计算例
用输入电阻法求电压增益
(1)求静态工作点
V 'CC VBE 3.38 0.7 I BQ1 = mA ( Rb1 // Rb2 ) + (1+ ) Re1 (51// 20) 101 2.7 = 0.0093mA = 9.3 A
3.1.2 零点漂移
零点漂移
是三极管的工作点随时间而 逐渐偏离原有静态值的现象。 产生零点漂移的主要原因是温度的影响, 所以有时也用温度漂移或时间漂移来表示。 工作点参数的变化往往由相应的指标来衡量。 一般将在一定时间内,或一定温度变化 范围内的输出级工作点的变化值除以放大倍数, 即将输出级的漂移值归算到输入级来表示的。 例如 V/C 或 V/min 。
第3章 多级放大电路
3.1 多 级 放 大 电 路 概 述 3.2 直接耦合多级放大电路 3.3 多级放大电路电压放大倍数的计算
3.4 变压器耦合的特点
3.1 多级放大电路概述
[问题提出] 前面所述的单管放大电路,在实际运用中各 项性能指标很难满足要求,所以需要采用多级放 大电路,来满足实际要求。 多级放大器级间耦合的条件是把前级的输出 信号尽可能多地传给后级,同时要保证前后级晶 体管均处于放大状态,实现不失真的放大。 多级放大电路的放大倍数: A A1 A2 A3 An Ai
08第八讲多级放大电路
§2-4 多级放大电路
问题: 1、多级放大电路有哪些耦合方式?各有什么特点?集成运 放采用何种耦合方式? 2、什么叫零点漂移?零漂产生的原因是什么?怎样抑制零漂? 3、如何计算多级放大电路的静态工作点和动态性能指标?
RC1
R1
C2
Re4 VT4 VT7 VT9 RC9
+VCC
ui
Rb1
VT1
VT2
uo uo1 uo 2 uo( n1) uo Au Au1 Au2 Aun ui ui ui1 uo( n2) uo( n1)
多级放大器的总电压增益等于各级电压增益的乘积;
应该把后级的输入电阻作为前级的负载电阻。
*计算单级的增益时要注意负载效应:
EC
CC
Rb1 u C 1
i
RC
1
Rb2 RC2
CC EC C3
u
O
Rb1
RC1
RZ RC2 Re1
C2
ui
uO
Re2
(二)多级放大电路动态指标的估算 + ui Ri Ro1 Ri1
Auo1ui
+ + uo1 ui2 - -
Ro2 Ri2
Auo2ui2
+ + uo2 · · in ·u -
Ron Rin
(二)变压器耦合 EC Tr1 Rb11 Rb21 Tr2 RL uO Tr3
Ce2
ui
Rb12
Rb22 Cb1 Cb2 Re1 Ce1
Re2
优点:①各级工作点相互独立; ②具有阻抗变换作用,可实现阻抗匹配。 缺点:①不适合放大缓变信号;②笨重,成本高; ③不能集成化。 适用场合: 高频小信号调谐放大器,某些低频功放
多级放大电路
二、长尾式差分放大电路的组成
零点漂移 零输入 零输出 理想对称
信号特点? 能否放大?
信号特点?能否放大?
共模信号:大小相等,极性相同。 差模信号:大小相等,极性相反.
典型电路
I BQ 1 I BQ 2 I BQ I CQ 1 I CQ 2 I CQ I EQ 1 I EQ 2 I EQ U CQ 1 U CQ 2 U CQ u O U CQ 1 U CQ 2 0
U BE
B1B2
D1
动态: u b1 u b2 u i
故称之为
U BE 倍增电路
§3.2 多级放大电路的动态分析
一、动态参数分析
二、分析举例
一、动态参数分析
1.电压放大倍数
U o U o1 U o2 U o Au Ui U i U i2 U in
j 1
n
A uj
2. 输入电阻
R i R i1
§3.4 互补输出级
一、对输出级的要求 二、基本电路 三、消除交越失真的互补输出级 四、准互补输出级
一、对输出级的要求
互补输出级是直接耦合的功率放大电路。 对输出级的要求:带负载能力强;直流功耗小; 负载电阻上无直流功耗; 射极输出形式 最大不失真输出电压最大。
静态工作电流小
不符合 要求! 输入为零时输出为零 双电源供电时Uom的峰 值接近电源电压。 单电源供电Uom的峰值 接近二分之一电源电压。
二、基本电路 1. 特征:T1、T2特性理想对称。 2. 静态分析
T1的输入特性
理想化特性
静态时T1、T2均截止,UB= UE=0
3. 动态分析
ui正半周,电流通路为 +VCC→T1→RL→地, uo = ui ui负半周,电流通路为 地→ RL → T2 → -VCC, uo = ui
多级放大电路
第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。
多级放大电路内部各级之间的连接方式称为耦合方式。
常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。
1.多级放大电路的耦合方式1.1阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。
图所示电路是典型的两级阻容耦合放大电路。
优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。
1.2直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。
直接耦合放大电路存在的最突出的问题是零点漂移问题。
所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
1.3变压器耦合变压器耦合放大电路如图所示。
这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。
1.4级间耦合的优、缺点及应用比较2.直接耦合放大电路的特殊问题——零点漂移2.1零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
产生零点漂移的原因很多。
如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。
在多级放大电路中,又已第一、第二级的漂移影响最为严重。
因此,抑制零点漂移着重点在第一、第二级。
2.2差分式放大电路(观看视频)在直接耦合多级放大电路中抑制零点漂移最有效的电路结构是差动放大电路。
第三章多级放大电路
RC2
RL
Uo
R11 R12
R21 R22
Au=
Uo Ui
= Uo1 Ui
Uo Ui2
= Au1Au2
总放大倍数等于各级 放大倍数的乘积
=1
RC1//ri2 rbe1
2
RC2//RL rbe2
Au为正,输入输出同相
注意:
当共集放大电路作为输入级(第一级)时, 它的输入电阻与其负载,及第二级的输入 电阻有关;而当共集放大电路作为输出级 时,他的输出电阻与信号源的内阻,即与 倒数第二级的输出电阻有关。
第三章 多级放大电路
一、多级放大电路的耦合方式 二、多级放大电路的动态分析 三、直接耦合放大电路
3.1 多级放大电路的耦合方式
为获得足够大的放大倍数,需将单级放大器串
第一级
第二级
第n-1级
输 出
第n级
耦合方式: (1)直接耦合 (3)变压器耦合
(2)阻容耦合 (4)光电耦合
ib1
RS
U i
U S
rbe1
ib1
R1
RE1
ib 2
R2 R3 rbe2
ri
ri 2
ib 2
U O
RC2 RL
ro
3. 电压放大倍数:
其中:
Au1
(1 1)RL1 rbe1 (1 1)RL1
51 1.7 2.9 511.7
0.968
ib1
RS
U i
U S
U i
U S
ri
rbe1 R1 RE1
ib 2
ib1
R2 R3 rbe2
ri 2
ib 2
多级放大电路
逻辑题
一个小岛上住着说谎的和说真话的两种人,说谎 话的人句句说谎,说真话的人句句是实话。假想 某一天你去小岛探险,碰到了岛上的三个人 A , B , C,相互交谈中,有这样一段对话:
A说:B和C两人都说谎
B说:我没有说谎 C说:B确实在说谎。 请问,三人中,有几人在说谎,几个人说真话?
Au=Au1Au2Au3…Aun
【输入电阻Ri】多级放大电路的输入电阻Ri 等于从第一级放大电路的输入端所看到的等效 输入电阻Ri1 即:
Ri=Ri1
2.多级放大器的简单分析
【输出电阻Ro】多级放大电路的输出电 阻 R o 等于从最后一级(末级)放大电路 的输出端所看到的等效电阻Ron即:
3. 分压式偏置电路的主要作用就是稳 定静态工作点,以保证放大器不失真 的放大交流信号。 4. 多级放大电路是由两个或两个以上 的单级放大电路所组成的,电压放大 倍数等于各单级放大电路电压放大倍 数的乘积。
课堂小游戏
揪人 : 通过描述一个人的信息,让别人 才你描述的是谁。 游戏规则:首先老师确实谁第一个上台, 让该同学描述课堂里其他的同学,比如 衣服的颜色,头发的样式等等,让课堂 下的人猜他描述的是谁,然后,被猜出 来的描述的人上台,如此循环。
特点
阻容耦合:
(1)只用一只容量足够大的耦合电容, 要求耦合电容对信号的容抗接近零。信 号频率高时耦合电容容量可以小,反之 电容容量大 (2)低频特性不很好,不能用于直流 放大器中 (3)前级和后级放大器之间的直流电 路被隔离,电路设计和故障维修难度下 降
特点
变压器耦合:
(1)采用变压器耦合,成本较高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 多级放大电路的耦合方式
第 三 版 童 诗 白
3.2 多级放大电路的动态分析 3.3 直接耦合放大电路
本章重点和考点:
1、掌握多级放大电路的耦合方式,为集成电 路的学习打好基础
2、掌握直接耦合放大电路中差分放大电路的组态 及动态参数的计算 第 三 版 童 诗 白 3、了解多级放大电路中的互补输出级
本章教学时数: 4学时
本章讨论的问题:
1.单管放大电路为什么不能满足多方面性能的要求? 2.如何将多个单级放大电路连接成多级放大电路? 各种连接方式有和特点?
3.直接耦合放大电路的特殊问题是什么?如何解决?
第 三 版 童 诗 白 4.差分放大电路与其它基本放大电路有什么区别? 为什么它能抑制零点漂移? 5.直接耦合放大电路输出级的特点是什么?如何根据 要求组成多级放大电路?
.
+
U o1 _
.
_
RB1 RB 2
RE 2
_
第一级放大电路为射极输出器
(1 1 ) RL1 (1 50) 9 .22 Au1 0 .994 rbe 1 (1 1) RL1 3 (1 50) 9 .22
第三章 多级放大电路
I b1
第三章 多级放大电路
I b1
I c1
Ib2
Ic2
+
。 Ui
rbe1 RB1 RE1 +
U o1 _
.
rbe2
RB1 RB 2
+ RC2
Uo
.
_
rbe2
RE 2
_
ri 2 RB1 // RB2 //rbe2 (1 ) RE2 14 kΩ
RL1 RE1 // ri2 27 14 kΩ 9 .22 kΩ 27 14
ro ro 2
ri ri1 RB1 //rbe1 (1 ) RL1 320kΩ
ro ro2 RC2 10 kΩ
第三章 多级放大电路
求各级电压的放大倍数及总电压放大倍数
I b1
I c1
Ib2
Ic2
+
. Ui
rbe1 RB1 RE1
rbe2
+ RC2
Uo
图
利用热敏元件补偿零漂
(3) 采用差分放大电路。
第三章 多级放大电路
3.3.2
差分放大电路
差分放大电路是构成多级直接耦合放大电路的基本单元电路
一、电路的组成
uO
T
Re
Re
T
V
图 3.3.2差分放大电路的组成(a)
图 3.3.2差分放大电路的组成(b)
利用射极电阻稳定Q点 但仍存在零点漂移问题
T的UCQ变化时,直流电 源V始终与之保持一致。
+24V
+
. Ui
RB1 1M C1 + T1
RE1 27k
RC2 82k 10k
C2 +
RB1
C3 + T2
+
RB2
–
43k 7.5k
RE1 510 . Uo + RE2
CE –
第三章 多级放大电路
解: 两级放大电路的静态值可分别计算。
+24V RB1 1M C1 + T1 RE1 27k RC2 82k 10k C2 +
放大电路级数愈多,放 大倍数愈高,零点漂移问题 愈严重。
uI
O uO t
O 图 3.3.1 零点漂移现象
t
第三章 多级放大电路
二、抑制温度漂移的方法:
(1) 引入直流负反馈以稳定 Q 点;
(2) 利用热敏元件补偿放大器的零漂;
R1 R + uI
iC1 T1 Re
Rc
+VCC + uO
uB1 T2 R2
T1
Dz
+V Rc2 CC
+ T2
UO
Ui
Rb2
(c)
Rb1
Rc1
T1
Re2
T2
+VCC
i
Rc2
+ UO
(d)
图 3.1.1 直接耦合放大电路静态工作点的设置
第三章 多级放大电路
3.1.2
阻容耦合
RC1 Rb2 Rc2 C 3 + T2
Rb1 C1
第 一 级
C2 +
T1
+VCC +
Uo
+
Ui
+
RL
第 二 级
图 3.1.2
阻容耦合放大电路
特点:静态工作点相互独立,在分立元件电路中广 泛使用。 在集成电路中无法制造大容量电容,不便于 集成化,尽量不用。
第三章 多级放大电路
3.1.3
变压器耦合
(a)电路 图 3.1.3
(b)交流等效电路 变压器耦合共射放大电路
以前功率放大电路广泛采用此耦合方式。 目前基本不用。
26 26 200 (1 ) 200 51 Ω 1 .58kΩ IE 0 .96
ri 2
第三章 多级放大电路
I b1
I c1
Ib2
Ic2
+
。 Ui
rbe1
rbe2 +
U o1 _
.
+
RB1
RE1
_
RB1 RB 2
RC2
RE 2
Uo
.
_
26 26 rbe1 200 (1 β 1) 200 (1 50) 3 kΩ IE1 0 .49
I C2
UB2-UBE2 8 .26 0 .6 mA 0 .96 mA RE2 RE2 0 .51 7 .5
U CE2 U CC I C2 ( RC2 RE2 RE2 ) 24 0 .96(10 0 .51 7 .5)V 6 .71V
Au Au1 Au2 0 .994 (18) 17 .9
第三章 多级放大电路
3.3 直接耦合放大电路
3.3.1直接耦合放大电路的零点漂移现象
一、 零点漂移现象及其产生的原因 直接耦合时,输入电压为零,但输出电压离开零点, 并缓慢地发生不规则变化的现象。 原因:放大器件的参 数受温度影响而使 Q 点不 稳定。也称温度漂移。
图 3.3.2差分放大电路的组成(c)
电路以两只管子集电极电位 差为输出,可克服温度漂移。
第三章 多级放大电路
差分放大电路的改进图
典型差分放大电路
Rb1
Rb2
Rb1
Rb2
+ uI1
-
+ uI2 u I1
Re
+ -
uI2
Re -VEE
+
VBB
图 3.3.2差分放大电路的组成(d)
图 3.3.2差分放大电路的组成(e)
将发射极电阻合二为一、 对差模信号Re相当于短路。
长尾式差分放大电路 便于调节静态工作点, 电源和信号源能共地
第三章 多级放大电路
二、长尾式差分放大电路
1.
RC1 Rb1 RC2 Rb2
静态分析
由于Rb较小,其上的电压降 可忽略不计。
uI2
uI1
IE1=IE2=(UEE―UBE)∕2Re ;
IB1=IB2 =IE1/(1+ β )
Re
-VEE
图 3.3.3
长尾式差分放大电路
UCE1=UCE2≈UCC+UEE―(RC+2Re)IE1 Uo=0;
(动画avi\6-1.avi)
第三章 多级放大电路
2.对共模信号的抑制作用
共模信号的输入使两管集 电极电压有相同的变化。 所以
Rb1 + uI1
-
uoc uoc1 uoc2 0
第三章 多级放大电路
3.1 多级放大电路的耦合方式
将多个单级基本放大电路合理联接,构成多级放大电路
组成多级放大电路的每一个基本电路称为一级, 级与级之间的连接称为级间耦合。 四种常见的耦合方式:
直接耦合
阻容耦合
变压器耦合 光电耦合
第三章 多级放大电路
3.1.1
直接耦合
Rb1 +
Ui
Rc1
T1
第三章 多级放大电路
采用与图(a)所示电路参数完 全相同,管子特性也相同的电路 共模信号 输入信号uI1和uI2大小相等,
Rb1 + uI1
-
Rb2 + uI2
-
极性相同。 差模信号 输入信号uI1和uI2大小相等, 极性相反。 差分放大电路也称为 差动放大电路
动画avi\6-2.avi
VBB
VBB
I c1
Ib2
Ic2
+
. Ui
rbe1 RB1 RE1 +
U o1 _
.
rbe2
RB 1 RB 2
+ RC2
Uo
.
_
RE 2
_
第二级放大电路为共发射极放大电路 RC2 10 Au 2 - -50 18 rbe2 (1 2) RE2 1 .79 (1 50) 0 .51 总电压放大倍数
其中, n 为多级放大电路的级数。
二、 输入电阻和输出电阻
通常,多级放大电路的输入电阻就是输入级的输入电 阻;输出电阻就是输出级的输出电阻。 具体计算时,有时它们不仅仅决定于本级参数,也与 后级或前级的参数有关。