pwm逆变电路的应用.

合集下载

单相桥式pwm逆变电路实验报告

单相桥式pwm逆变电路实验报告

单相桥式PWM逆变电路实验报告1. 引言在现代电力系统中,逆变器是一种重要的电力电子设备。

逆变器可以将直流电能转换为交流电能,广泛应用于太阳能发电、风力发电、电动车等领域。

本实验旨在通过搭建单相桥式PWM逆变电路,深入了解逆变器的工作原理和性能。

2. 实验原理2.1 单相桥式PWM逆变电路单相桥式PWM逆变电路是一种常见的逆变器拓扑结构。

它由四个开关管和一个负载组成,如图1所示。

其中,开关管可以通过PWM信号控制开关状态,从而实现对输出电压的控制。

2.2 工作原理在单相桥式PWM逆变电路中,通过控制开关管的导通和截止,可以实现对输出电压的控制。

具体工作原理如下:1.当开关管S1和S4导通,S2和S3截止时,电流流经D1和D4,负载得到正半周电压。

2.当开关管S2和S3导通,S1和S4截止时,电流流经D2和D3,负载得到负半周电压。

3.通过调节开关管的导通时间比例,可以实现对输出电压的调节。

2.3 PWM调制技术PWM调制技术是实现对逆变器输出电压调节的关键。

PWM调制技术通过改变开关管的导通时间比例,将输入直流电压转换为一系列脉冲信号,从而实现对输出电压的控制。

常用的PWM调制技术有脉宽调制(PWM)和正弦PWM调制(SPWM)。

3. 实验步骤3.1 实验器材•单相桥式PWM逆变电路实验板•示波器•直流电源•变压器3.2 实验步骤1.搭建实验电路:根据实验板上的连接图,连接单相桥式PWM逆变电路。

2.调节直流电源:将直流电源的输出电压调节为逆变器的输入电压。

3.设置PWM信号:使用示波器生成PWM信号,并通过控制开关管的导通时间比例,调节输出电压的大小。

4.连接负载:将负载接到逆变器的输出端,观察负载的输出情况。

5.调节PWM信号:通过改变PWM信号的频率和占空比,进一步调节输出电压的稳定性和波形质量。

6.记录实验数据:记录不同PWM信号参数下的输出电压和负载情况。

4. 实验结果与分析4.1 输出电压调节根据实验步骤中的操作,我们可以通过调节PWM信号的占空比,实现对输出电压的调节。

pwm逆变电路的应用

pwm逆变电路的应用

.WORD.格式.《电力电子技术》课程大作业设计题目: PWM电路的应用学生所在系部:电子工程系学生所在专业:自动化学生所在班级:学生姓名: ####学生学号: #####任课教师姓名:大作业成绩:.专业资料.整理分享.PWM逆变电路的应用一、摘要随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。

如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。

因此,高质量的逆变电路已成为电源技术的重要研究对象。

采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。

PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。

现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。

可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。

二、基本设计指标:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

pwm逆变电路的控制方法

pwm逆变电路的控制方法

pwm逆变电路的控制方法
PWM(脉宽调制)逆变电路是将直流电转换为交流电的一种常用电路,其控制方法主要分为以下几种:
1. 三相全桥PWM逆变控制方法:该方法采用三相全桥电路进行控制,通过改变脉冲的宽度和频率来控制输出电压的大小和波形,从而实现对直流电的转换。

2. 三相半桥PWM逆变控制方法:该方法利用三相半桥电路进行控制,具有体积小、效率高等优点,但需要较高的开关功率器件,应用范围较窄。

3. 单相PWM逆变控制方法:该方法适用于小功率电源转换,其控制方法与三相全桥PWM逆变控制方法类似,但只需使用单相电路即可。

控制方法一般采用微处理器等芯片进行控制,通过控制芯片输出PWM信号的占空比和频率来控制输出电压。

在具体控制过程中,需要注意电路参数的选择和设置,以及保护措施的实施,确保电路稳定、安全地工作。

总之,PWM逆变电路的控制方法多种多样,具体选择何种方法取决于具体的应用场景和要求,需要根据实际情况进行选择和优化。

pwm逆变电路原理

pwm逆变电路原理

pwm逆变电路原理
PWM逆变电路是一种经典的功率电子变换电路,用于将直流
电源转换为可控的交流电源。

其原理基于脉宽调制(Pulse Width Modulation)技术,通过控制开关器件的导通时间与断
开时间的比例,可以实现对输出电压的调节。

PWM逆变电路的核心部分是一个全桥逆变器,由4个可控开
关器件组成。

通常,这些开关器件是MOSFET或IGBT,用于控制电流的通断。

在正半周中,两个对角的开关器件同时导通,使得直流电源的正负极与交流负载的两个端点相连接;而在负半周中,另外两个对角开关器件引导电流,实现相反的连接。

通过频繁切换开关状态,可以在负载中产生高频的脉冲信号。

PWM逆变电路的输出电压由导通时间与断开时间的比例决定。

当导通时间较长时,输出电压会接近正电压;反之,断开时间长,则输出电压近似为负电压。

通过调节导通与断开时间的比例,可以实现对输出电压幅值的控制。

此外,通过改变开关频率,还可以调节输出电压的频率。

为了实现精确的输出电压调节,PWM逆变电路通常配备一个
控制电路。

该控制电路可以监测输出电压,并与参考电压进行比较,以生成适当的控制信号。

控制信号通过适当驱动开关器件的导通与断开,从而实现输出电压的稳定调节。

总之,PWM逆变电路利用脉宽调制技术和全桥逆变器构成,
通过控制开关器件的导通与断开时间,实现对直流电源转换为可控的交流电源,并通过控制电路实现对输出电压的精确调节。

PWM波的原理和应用

PWM波的原理和应用

PWM波的原理和应用1. 原理概述脉冲宽度调制(PWM)是一种调制技术,通过调整脉冲信号的宽度来控制输出信号的平均功率。

PWM波的形式类似于脉冲信号,但它的周期固定,只有脉冲宽度发生变化。

PWM波能够利用数字信号来模拟连续的模拟信号,被广泛应用在电力电子领域、自动化控制系统等领域。

2. PWM波的生成方式在数字电路中,PWM波通常通过计数器和比较器来生成。

生成PWM波的基本步骤如下: 1. 设置计数器的初始值。

2. 计数器不断递增,当计数器的值小于比较器的值时,输出逻辑高电平;当计数器的值大于或等于比较器的值时,输出逻辑低电平。

3. 当计数器的值达到设定的周期时,重新设置计数器的初始值。

3. PWM波的应用3.1 电力电子领域PWM波在电力电子领域发挥着重要的作用,常见应用有: - 变频调速控制:将PWM波直接应用在交流电动机上,可以通过改变PWM波的占空比控制电机转速,实现变频调速。

- 逆变器:逆变器中利用PWM波控制电路的开关状态,将直流电源输出转换为交流电源输出。

- 电力转换器:PWM波可以应用在各种电力转换器中,如交流电压调节器、直流电源和电焊机等。

3.2 自动化控制系统PWM波在自动化控制系统中也有广泛的应用,例如: - 数字-模拟转换器(DAC):PWM波可以通过滤波电路转换为模拟信号,用于输出到模拟设备。

- 舵机控制:舵机通常使用PWM波进行控制,通过改变PWM波的占空比控制舵机转角。

- LED调光:PWM波可以用于控制LED的亮度,通过改变PWM波的占空比来实现亮度调节。

3.3 在音频和视频领域的应用•音频信号处理:PWM波可以模拟模拟音频信号,通过改变PWM波的占空比来实现音频信号的调节,例如音量控制。

•音频放大器:PWM波可以应用在音频放大器中,将输入音频信号转换为PWM波,再通过滤波电路得到模拟音频信号输出。

•数字电视和显示器:PWM波可以用于控制LED背光的亮度,通过改变PWM波的占空比来实现灰度调制。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。

它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。

本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。

PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。

其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。

逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。

PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。

固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。

固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。

固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。

多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。

1.电力电子逆变器:将直流电能转换为交流电能。

通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。

现代电力电子技术第五讲

现代电力电子技术第五讲
电感的存在,使全控型器件关断时电流突变产 生很大的电流变化率,严重威胁器件的安全 新的措施:
反并联二极管为其提供释放能量的通道
反并联二极管后,只要负载两端电压
(直流侧)低于交流侧两端电压值,则二 极管导通(正半周期VD1、VD4导通,负半 周期VD2、VD3导通),全控型器件被旁路, 整流工作状态与二极管整流电路完全相同, 对全控型器件进行PWM控制失去作用。只 有在直流侧电压Ud 大于交流侧电压时,二 极管才不会导通,全控型器件组成的桥式 电路才可以正常工作,故为升压整流。
矩阵式变频电路拓扑
Ua
Ub
UC
Sau
Sbu
SCU
UU
Sav
Sbv
Scv Uv
Saw
Sbw
SCW
UW
图5.38 三相矩阵式变频电路
图5.39 一种双向开关单元
在任一时刻,输出三相中的任一相都可以通 过交流开关与三相电源的任一相连接 。以U相为 例,可以通过Sau、Sbu 、SCU的通断控制使UU等 于Ua 、Ub 或者UC,但三个开关同时只能有一个 导通,否则会造成电源短路。这样输出UU 就是由 输入电源Ua 、Ub 、UC三相电压的片段组合而成, 只要开关频率足够高。选择合适的导通时刻与合 适的导通时间,UU就可以为预期所希望输出频率 的交流电了。
现代电力电子技术 第五讲
PWM变流电路
基本的PWM变流电路: PWM逆变电路 直流斩波电路 PWM整流电路 矩阵式变频电路
5.1 PWM逆变电路 应用PWM控制技术的逆变电路
5.1.1 单相桥式PWM逆变电路 单极性控制、双极性控制
电路结构
+
VT1
VD1 VT3
VD3
RL

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计介绍单相桥式PWM逆变电路的背景和重要性单相桥式PWM逆变电路是一种常见的电力电子技术应用,广泛用于交流电能转换为直流电能的场合。

由于其高效、可靠的特点,被广泛运用于电力系统中的UPS(不间断电源)、电机驱动和太阳能逆变器等领域。

在现代电力系统中,交流电能的应用日益增多,而很多电子设备却需要使用直流电能。

因此,采用桥式PWM逆变电路来实现交流电与直流电的转换是非常必要和重要的。

本文将详细讨论单相桥式PWM逆变电路的设计原理和关键技术。

首先,将介绍PWM技术的基本原理,并解释为什么选择桥式逆变器。

其次,将详细讲解桥式逆变器的工作原理和电路结构。

最后,将给出一种基于控制策略的桥式逆变器设计方案。

通过本文的研究,读者将能够深入了解单相桥式PWM逆变电路的设计原理和实践应用,为电力系统和电子设备的设计提供有益的参考。

单相桥式PWM逆变电路是一种常用的电力电子变换器。

它通过控制开关器件的开关周期和占空比,将直流电源转换为交流电源,实现电能的变换和调节。

该逆变电路的基本组成包括:单相桥式整流电路:它由四个可控开关器件组成,通常使用MOSFET或IGBT等器件,用于将交流电源转换为直流电源。

PWM调制电路:PWM调制电路通过控制开关器件的开关周期和工作占空比,可以实现输出电压的调节和波形控制。

滤波电路:滤波电路用于平滑输出电压,去除输出电压中的高频噪声和谐波。

输出变压器:输出变压器用于将逆变电路的输出电压变换为所需的电压等级。

单相桥式PWM逆变电路的工作原理是:首先,经过单相桥式整流电路的整流,将交流电源转换为直流电源;然后,通过PWM 调制电路控制开关器件的开关周期和工作占空比,将直流电源转换为交流电源;最后,经过滤波电路的处理,输出平滑的交流电压。

这样,单相桥式PWM逆变电路实现了将直流电源转换为交流电源的功能,可以广泛应用于电力电子变换器、逆变电源、变频调速等领域。

本文讨论了单相桥式PWM逆变电路的设计步骤和注意事项。

pwm逆变原理

pwm逆变原理

pwm逆变原理
PWM(Pulse Width Modulation)逆变原理是一种常见的控制技术,广泛应用于电力电子领域。

它通过周期性地改变波形的脉冲宽度来控制电力输出。

PWM逆变的基本原理是将直流电源通过开关器件(如MOSFET或IGBT)进行高频切换,从而产生一个接近正弦波形的交流电压输出。

这种高频切换的脉冲信号可以通过改变脉冲的占空比来调节输出电压和电流的大小。

在PWM逆变电路中,一个重要的元件是PWM控制器。

PWM控制器通过测量输出信号的电压或电流,并与设定值进行比较,然后调整开关器件的工作状态,以使输出保持在设定值附近。

常用的PWM控制策略有基于单脉冲宽度调制(SPWM)和三角波调制(TPWM)。

在SPWM控制策略中,PWM控制器根据输出信号与设定值的差异来调整脉冲宽度,以维持输出电压的稳定性。

具体来说,PWM控制器会比较输出信号与参考信号(通常为一个正弦波形)之间的差异,并通过调整脉冲的宽度来控制开关器件的开关时间,以调节输出电压。

TPWM控制策略则是基于一个三角波形和一个参考信号的比较。

PWM控制器会通过比较三角波形和参考信号的相对位置,来决定开关器件何时进行切换。

通过调整三角波的周期和幅值,可以实现输出电压的调节。

PWM逆变器广泛应用于各种领域,包括交流电机驱动、太阳能发电系统、UPS电源以及电力调制等。

它具有高效率、快速响应、输出电压可调、输出电流可控等优点。

总之,PWM逆变原理通过脉冲宽度的调制来实现电力输出的控制。

它是一种有效的电力电子技术,在现代工业和电子设备中扮演着重要的角色。

第章PWM逆变器控制技术

第章PWM逆变器控制技术

PWM逆变器控制技术简介PWM逆变器是一种基于现代电力电子技术的调制器,它用直流电源来驱动交流电机等交流负载。

PWM逆变器的基本原理是采用可逆变器将直流电能转换成交流电能,并通过强制控制逆变电压和电流波形实现输出交流电能的调节。

PWM逆变器控制技术是实现PWM逆变器中电压和电流波形控制的关键。

其主要包括基于模拟电路的控制技术和基于数字信号处理器(DSP)的控制技术两种。

基于模拟电路的控制技术基于模拟电路的PWM逆变器控制技术主要是设计PWM逆变器模块的控制电路。

该模块包括直流母线电压检测模块、三相桥式逆变器驱动模块、输出滤波器模块和逆变保护模块等。

其中,直流母线电压检测模块用来检测逆变器所需的直流母线电压;三相桥式逆变器驱动模块负责将直流母线电压转换成交流电压;输出滤波器模块用于对交流电压进行滤波处理,降低输出电压的噪声和杂波;逆变保护模块用于对逆变器进行过流、过温、过压、欠压等的保护。

基于模拟电路的PWM逆变器控制技术具有控制精度高、反应速度快等优点,但是电路复杂度高,稳定性较差。

基于数字信号处理器的控制技术基于数字信号处理器的PWM逆变器控制技术主要是基于现代信息技术和数字信号处理器的技术来实现PWM逆变器的电压和电流波形控制。

它可以通过控制DSP硬件平台或通过软件仿真实现。

该技术的优点是:可通过数字控制实现高度准确的波形控制和滤波功能,提高了逆变器的控制精度;DSP系统具有灵活性,可以实现各种传感器和控制策略的接口控制;DSP系统可通过程序算法进行修正,提高了系统稳定性和抗干扰性。

基于数字信号处理器的PWM逆变器控制技术已经得到广泛应用,尤其是在高档电力电子产品中,如交流电机驱动器、UPS电源、变频空调等。

PWM逆变器控制技术的应用PWM逆变器控制技术已广泛应用于各种电力电子产品中。

以下是其主要应用领域:交流电机驱动器交流电机驱动器是目前应用最广泛的PWM逆变器控制技术之一。

它是通过PWM逆变器实现对电机控制电压、频率等参数的调节,可以实现电机转速的可控,使得电动机具有更好的动态响应和启动能力。

基于PWM的逆变电路分析

基于PWM的逆变电路分析

基于PWM的逆变电路分析逆变电路是一种将直流电转换为交流电的电子电路。

其中,基于PWM (脉宽调制)的逆变电路是最常见的一种类型。

PWM逆变电路基于逆变器和PWM控制器的组合,实现将直流电转换为交流电的功能。

逆变器通常由开关元件(如二极管或场效应管)、滤波电路和输出变压器组成。

PWM控制器通常由比较器、误差放大器和PWM调制电路组成。

PWM调制电路通过调整开关元件的通断时间比例来控制输出电压的幅值和频率。

调制电路通常根据输入的控制信号和参考信号来生成调制信号,控制开关元件的通断时间。

在PWM逆变电路中,主要有两种控制策略,即基频脉宽调制和多谐波脉宽调制。

基频脉宽调制是将输入直流电的基波分解为多个谐波分量,通过调整各分量的幅值和相位来控制输出电压。

多谐波脉宽调制是在基频脉宽调制的基础上,增加了更多的谐波分量,以提高输出电压的质量。

在PWM逆变电路中,输出电压的质量受到多种因素的影响。

例如,开关元件的损耗、输出电压的纹波、输出电压的失真等。

通过优化电路设计和控制算法,可以减小这些影响因素,提高输出电压的质量。

此外,PWM逆变电路还可以通过改变控制信号和参考信号的频率和幅值来实现输出电压的调整。

通过增大或减小频率和幅值,可以实现输出电压的升降调节。

在实际应用中,PWM逆变电路被广泛应用于交流电源、变频器、UPS等领域。

它具有输出电压质量高、效率高、稳定性好等优点,并可以根据需要进行灵活的控制和调整。

总结起来,基于PWM的逆变电路是一种高效、稳定和可控制的直流到交流转换电路。

通过优化电路设计和控制策略,可以提高输出电压的质量和效率,并实现输出电压的调整。

它在实际应用中具有广泛的应用前景。

电力电子技术中的PWM变换器设计与应用

电力电子技术中的PWM变换器设计与应用

电力电子技术中的PWM变换器设计与应用电力电子技术作为一门重要的学科,近年来在能源转换和电力控制领域发挥着越来越重要的作用。

其中,PWM(脉宽调制)变换器作为一种常见的电力电子装置,具有广泛的应用范围。

本文将就PWM变换器的设计原理以及在电力电子技术中的应用进行探讨。

一、PWM变换器的设计原理PWM变换器是指能够将一个高频脉冲信号转换为模拟电压或电流信号的电路。

其设计原理基于脉宽调制技术,通过调节脉冲信号的高电平时间与低电平时间之比,来实现对输出信号的精确控制。

PWM变换器通常由一个比较器、一个参考信号源和一个可变的调制信号源组成。

在PWM变换器的设计过程中,首先需要确定输出信号的频率和波形要求。

然后选择适当的比较器和参考信号源。

比较器用来比较参考信号与可变调制信号的大小,输出高电平或低电平。

参考信号源则决定了脉冲信号的频率和基准。

最后,根据输出信号的要求选择适当的滤波器进行处理,以消除脉冲信号中的高频成分,得到所需的模拟电压或电流信号。

二、PWM变换器在电力电子技术中的应用1. 无线电频率调制解调器:PWM变换器可以将低频音频信号转换为高频调制信号,用于无线电频率调制解调器中。

例如,在调幅广播系统中,通过PWM变换器将音频信号转换为高频调制信号,从而实现广播信号的传输。

2. 数字电源控制器:PWM变换器在数字电源控制器中广泛应用。

数字电源控制器是一种通过数字信号控制输出电压或电流的器件,通过PWM变换器可以实现输出信号的精确调节。

例如,可将输入电压进行适当的处理,得到符合要求的输出电压,以供给数字设备的正常工作。

3. 交流电机驱动:PWM变换器在交流电机驱动系统中被广泛应用。

通过PWM变换器可以将直流电源转换为交流电源,并对其进行控制。

这种交流电机驱动系统不仅能提高电机的控制精度,还能降低能量损耗和噪声,提高系统的效率。

4. 可逆变换器:PWM变换器在可逆变换器中扮演着重要的角色。

可逆变换器是指将直流电能转换为交流电能,或将交流电能转换为直流电能的装置。

PWM基本原理及其应用实例

PWM基本原理及其应用实例

PWM基本原理及其应用实例PWM基本原理及其应用实例2009-06-26 14:12:02| 分类:嵌入式技术探索| 标签:|字号大中小订阅~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~理论篇(一)原理介绍~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

面积等效原理:分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L 电路)上,如图2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。

pwm逆变电路工作原理

pwm逆变电路工作原理

pwm逆变电路工作原理PWM逆变电路是一种将直流电转换为交流电的电路,被广泛应用于变频器、UPS等领域。

它的工作原理是通过控制开关管的导通和关断时间,将直流电源上的电压转化为一组周期性的矩形脉冲,然后通过滤波电路将矩形波转换为近似于正弦波的交流电。

PWM逆变电路一般由直流输入电源、逆变器桥、控制电路和滤波电路组成,下面将对其工作原理进行详细介绍。

首先,PWM逆变电路的输入为直流电源,如电池或直流稳压电源,它提供了固定的直流电压供给整个电路系统。

逆变器桥是电路的核心部分,由四个开关管(晶体管或IGBT)和四个用于平衡电流的传感器电阻组成。

开关管被连接成一个H桥电路,分为上半桥和下半桥。

上半桥由两个被称为高侧开关管的管子和两个传感器电阻构成,下半桥也是相同的组成。

通过控制开关管的导通和关断状态,可以改变输出波形的频率和占空比。

控制电路是指用于控制开关管的导通和关断的驱动电路。

它一般由微控制器或单片机组成,通过读取输入信号和执行特定算法来对开关管进行精确的控制。

控制电路还包括供电电路和保护电路,用于确保逆变器的安全和可靠性。

滤波电路用于转换逆变器输出的脉冲信号为近似于正弦波的交流电。

它由电感和电容组成,并与负载并联连接。

滤波电路可以过滤掉逆变器输出信号中的高频噪声和谐波成分,使输出电压更加平稳和纯净。

PWM逆变电路的工作原理如下:首先,在每个周期内,控制电路通过输出控制信号使上下半桥的开关管按照特定的顺序进行导通和关断。

高侧开关管与低侧开关管相互搭配,通过改变它们导通和关断的时间,可以实现不同频率和占空比的输出波形。

其次,当高侧开关管导通时,直流电源输出电压的正半周通过它传递到负载,并存储在电感中。

当高侧开关管关断时,电感中存储的能量转移到负载,使得负载上的电压继续保持。

最后,由于开关管的导通和关断,直流电压经过滤波电路转换为近似于正弦波的交流电。

滤波电路中的电感和电容可以减小电压的纹波和谐波成分,使输出电压更接近纯正弦波形。

pwm的逆变原理

pwm的逆变原理

pwm的逆变原理
PWM逆变原理
PWM逆变原理是指通过对PWM信号进行逆变操作,将直流
电源转换为交流电源的一种技术。

在实际应用中,逆变器常被用于太阳能发电系统、电动汽车、UPS电源等领域。

PWM逆变原理的基本思想是利用高频开关管将直流电源的电
量分时段快速开关,通过改变开关管导通比例及时序来控制输出电压的波形。

具体实现时,需要先将直流电源经过整流电路获得稳定的直流电压,然后经过PWM控制电路控制开关管的
导通与断开。

在逆变过程中,PWM信号的高电平和低电平分别控制了开关
管的导通和断开。

高电平时,开关管导通,直流电源输出给负载;低电平时,开关管断开,直流电源不与负载相连接。

通过调整PWM信号的高电平和低电平的占空比,可以控制输出电
压的大小以及频率。

逆变器的输出电压可以是单相交流电、三相交流电,甚至是多相交流电,具体配置根据不同应用场景而定。

逆变器不仅可以将直流电源转变为交流电源,还可以实现对输出电压的调节,满足不同负载要求。

总而言之,PWM逆变原理是通过对PWM信号进行逆变操作,将直流电源转换为交流电源。

通过对PWM信号的高电平和低
电平进行控制,可以实现对输出电压的调节。

PWM控制技术 PWM逆变电路及其控制方法

PWM控制技术 PWM逆变电路及其控制方法

☞在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,因 此通常可以考虑消去5次和7次谐波,根据需要确定基波分量a1的值,
再令a5和a7等于0,就可以建立三个方程,联立可求得1、2和3。
a1
2U d
(1
2 cos 1
2 cos 2
2cos3 )
a5
2U d
5
(1
2cos 51
2cos 52
☞负载电流比电压滞后,在电压正半周,电流有
一段区间为正,一段区间为负。
√在负载电流为正的区间,V1和V4导通时,
uo=Байду номын сангаасd。
√V4关断时,负载电流通过V1和VD3续流,uo=0。
√在负载电流为负的区间,仍为V1和V4导通时,
因io为负,故io实际上从VD1和VD4流过,仍有uo=Ud。
√V4关断,V3开通后,io从V3和VD1续流,uo=0。
u(wt) an sin nwt
(7-3)
n1,3,5,
式中,an为
an
4
2 u(wt)sin nwtdwt
0
13/60
7.2.1 计算法和调制法
图7-9 特定谐波消去法的输出PWM波形
☞因为图7-9的波形是四分之一周期对称的,所以在一个周期内的12个开关时
刻(不包括0和时刻)中,能够独立控制的只有1、2和3共3个时刻,该波
图7-3 用PWM波代替正弦半波 4/60
7.2.1 计算法和调制法
■计算法 ◆根据逆变电路的正弦波输出频率、幅值和半个周期内
的脉冲数,将PWM波形中各脉冲的宽度和间隔准确计算 出来,按照计算结果控制逆变电路中各开关器件的通断, 就可以得到所需要的PWM波形,这种方法称之为计算法。

PWM控制的基本原理与逆变电路控制-精品

PWM控制的基本原理与逆变电路控制-精品

☞在ur的正半周,V1保持通态,V2保持
断态。
√当ur>uc时使V4导通,V3关断, uo=Ud。
图8-4 单相桥式PWM逆变电路 u uc ur
√当ur<uc时使V4关断,V3导通, uo=0。
O
wt
☞在ur的负半周,V1保持断态,V2保持 通态。
uo Ud
uo uof
√当ur<uc时使V3导通,V4关断, uo=-Ud。
PWM控制技术
1 任务8.1 PWM控制的基本原理 2 任务8.2 PWM逆变电路及控制方法 3 4
【项目导读】

PWM控制技术在逆变电路中的应用最为广泛,对逆变电
路的影响也最为深刻,现大量应用的逆变电路,绝大多数都是
采用PWM控制技术,可以说PWM控制技术正是有赖于在逆变
电路中的应用,才发展得比较成熟,以至确定了它在电力电子
■用PWM波代替正弦半波
◆将正弦半波看成是由N个彼此相连的脉冲宽度
为/N,但幅值顶部是曲线且大小按正弦规律变化
的脉冲序列组成的。
◆把上述脉冲序列利用相同数量的等幅而不等宽
的矩形脉冲代替,使矩形脉冲的中点和相应正弦波
部分的中点重合,且使矩形脉冲和相应的正弦波部
分面积(冲量Βιβλιοθήκη 相等,这就是PWM波形。◆对于正弦波的负半周,也可以用同样的方法得
8.2.1计算法和调制法
■计算法 ◆根据逆变电路的正弦波输出频率、幅值和半个周
期内的脉冲数,将PWM波形中各脉冲的宽度和间隔准 确计算出来,按照计算结果控制逆变电路中各开关器 件的通断,就可以得到所需要的PWM波形,这种方法 称之为计算法。
◆计算法是很繁琐的,当需要输出的正弦波的频率、 幅值或相位变化时,结果都要变化。 ■调制法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》课程大作业设计题目: PWM电路的应用学生所在系部:电子工程系学生所在专业:自动化学生所在班级:学生姓名: #### 学生学号: #####任课教师姓名:大作业成绩:PWM逆变电路的应用一、摘要随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。

如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。

因此,高质量的逆变电路已成为电源技术的重要研究对象。

采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。

PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。

现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。

可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。

二、基本设计指标:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图1-1形状不同而冲量相同的各种窄脉冲1. 面积等效原理分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

上述原理可以称为面积等效原理,它是PWM控制技术的重要理论基础。

下面分析用一系列等幅不等宽的脉冲来代替一个正弦半波。

图1-3可以看到把半波分成N等份,就可以把正弦半波看成N个彼此相连的脉冲序列组成的波形,然后把脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使它们面积相等,就可以得到脉冲序列。

根据面积等效原理,PWM波形和正弦半波是等效的。

图1-2 冲量相同的各种窄脉冲的响应波形图1-3 用PWM 波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

2.PWM 逆变电路及其控制方法目前中小功率的逆变电路几乎都采用PWM 技术。

逆变电路是PWM 控制技术最为重要的应用场合。

PWM 逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。

2.1 计算法和调制法2.1.1 计算法根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM 波形。

缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化2.1.2 调制法输出波形作调制信号,进行调制得到期望的PWM 波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM 的要求。

调制信号波为正弦波时,得到的就是SPWM 波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM 波。

结合IGBT 单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V 1和V 2通断互补,V 3和V 4通断也互补。

控制规律:0u 正半周,1V 通,2V 断,3V 和4V 交替通断,负载电流比电压滞后,在电压u 正半周,电流有一段为正,一段为负,负载电流为正区间,1V 和4V 导通时,0u 等于d U ,4V 关断时,负载电流通过1V 和3D V 续流,0u =0,负载电流为负区间,0i 为负,实际上从1D V 和4D V 流过,仍有0u =d U ,4V 断,3V 通后,0i 从3V 和1D V 续流,0u =0,0u 总可得到d U 和零两种电平。

0u 负半周,让2V 保持通,1V 保持断,3V 和4V 交替通断,0u 可得-d U 和零两种电平。

图2-1单相桥式PWM 逆变电路单极性PWM 控制方式(单相桥逆变):在r u 和c u 的交点时刻控制IGBT 的通断。

r u 正半周,1V 保持通,2V 保持断,当r u >c u 时使4V 通,3V 断,0u =d U ,当r u <c u 时使4V 断,3V 通,0u =0。

r u 负半周,1V 保持断,2V 保持通,当r u <c u 时使3V 通,4V 断,0u =-d U ,当r u >c u 时使3V 断,4V 通,0u =0,虚线f u 0表示0u 的基波分量。

波形见图2-2。

图2-2 单极性PWM 控制方式波形防直通死区时间:同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施加关断信号的死区时间。

死区时间的长短主要由器件关断时间决定。

死区时间会给输出PWM 波带来影响,使其稍稍偏离正弦波。

特定谐波消去法(Selected Harmonic Elimination PWM —SHEPWM):计算法中一种较有代表性的方法,图2-3。

输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。

为减少谐波并简化控制,要尽量使波形对称。

首先,为消除偶次谐波,使波形正负两半周期镜对称,即:)()(πωω+-=t u t u(2-1) 其次,为消除谐波中余弦项,使波形在半周期内前后1/4周期以π/2为轴线对称。

)()(t u t u ωπω-= (2-2) 四分之一周期对称波形,用傅里叶级数表示为:∑∞==,...5,3,1n sin )(n t n a t u ωω图2-3 特定谐波消去法的输出PWM 波形式中,a n 为 ⎰=20n sin )(4πωωωπt td n t u a图2-3,能独立控制1a 、2a 和3a 共3个时刻。

该波形的n a 为 )cos 2cos 2cos 21(2])sin 2(sin 2)sin 2(sin 2[4321d23d 0n 32211αααπωωωωωωωωππn n n n U t d t n U t td n U t d t n Ut td n U a a d a a da a a d -+-=-++-+=⎰⎰⎰⎰ 式中n=1,3,5,…确定1a 的值,再令两个不同的n a =0,就可建三个方程,求得1a 、2a 和3a 。

(2-4)消去两种特定频率的谐波:在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,可考虑消去5次和7次谐波,得如下联立方程:)cos 2cos 2cos 21(2321d 1αααπ-+-=U a (2-5) 0)5cos 25cos 25cos 21(52321d 5=-+-=αααπU a (2-6) 0)7cos 27cos 27cos 21(72321d 7=-+-=αααπU a (2-7) 给定1a ,解方程可得1a 、2a 和3a 。

1a 变,1a 、2a 和3a 也相应改变。

一般,在输出电压半周期内器件通、断各k 次,考虑PWM 波四分之一周期对称,k 个开关时刻可控,除用一个控制基波幅值,可消去k -1个频率的特定谐波,k 越大,开关时刻的计算越复杂。

3.调制方式载波比——载波频率c f 与调制信号频率r f 之比,N=r c f f 。

根据载波和信号波是否同步及载波比的变化情况,PWM 调制方式分为异步调制和同步调制:3.1 异步调制异步调制——载波信号和调制信号不同步的调制方式。

通常保持c f 固定不变,当r f 变化时,载波比N 是变化的。

在信号波的半周期内,PWM 波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。

当r f 较低时,N 较大,一周期内脉冲数较多,脉冲不对称的不利影响都较小,当r f 增高时,N 减小,一周期内的脉冲数减少,PWM 脉冲不对称的影响就变大。

因此,在采用异步调制方式时,希望采用较高的载波频率,以使在信号波频率较高时仍能保持较大的载波比。

3.2 同步调制同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,r f 变化时N 不变,信号波一周期内输出脉冲数固定。

三相,公用一个三角波载波,且取N 为3的整数倍,使三相输出对称。

为使一相的PWM 波正负半周镜对称,N 应取奇数。

当N =9时的同步调制三相PWM 波形如图3-1所示。

r f 很低时,c f 也很低,由调制带来的谐波不易滤除,r f 很高时,c f 会过高,使开关器难以承受。

为了克服上述缺点,可以采用分段同步调制的方法。

把r f 范围划分成若干个频段,每个频段内保持N 恒定,不同频段N 不同。

在r f 高的频段采用较低的N ,使载波频率不致过高,在r f 低的频段采用较高的N ,使载波频率不致过低。

图3-2分段同步调制一例,为防止c f 在切换点附近来回跳动,采用滞后切换的方法。

同步调制比异步调制复杂,但用微机控制时容易实现。

可在低频输出时采用异步调制方式,高频输出时切换到同步调制方式,这样把两者的优点结合起来,和分段同步方式效果接近。

图 3-1同步调制三相PWM波形图3-2分段同步调制方式举例4.PWM逆变电路的谐波分析使用载波对正弦信号波调制,产生了和载波有关的谐波分量。

谐波频率和幅值是衡量PWM逆变电路性能的重要指标之一。

分析方法:不同信号波周期的PWM波不同,无法直接以信号波周期为基准分析,以载波周期为基础,再利用贝塞尔函数推导出PWM波的傅里叶级数表达式,分析过程相当复杂,结论却简单而直观。

相关文档
最新文档