4.1.2圆的一般方程(教案)
教学设计5:4.1.2 圆的一般方程
4.1.2 圆的一般方程教学目标1.掌握圆的一般方程及其特点.2.会将圆的一般方程化为圆的标准方程,并能熟练地指出圆心的位置和半径的大小.3.能根据某些具体条件,运用待定系数法确定圆的方程.知识梳理知识点 圆的一般方程1.圆的一般方程当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0称为圆的一般方程.2.方程x 2+y 2+Dx +Ey +F =0表示的图形教学案例题型一 圆的一般方程的理解例1 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求实数m 的取值范围,并写出圆心坐标和半径.解 由表示圆的条件,得(2m )2+(-2)2-4(m 2+5m )>0,解得m <15, 即实数m 的取值范围为⎝⎛⎭⎫-∞,15. 圆心坐标为(-m ,1),半径为1-5m .反思感悟 形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法(1)由圆的一般方程的定义,令D 2+E 2-4F >0成立,则表示圆,否则不表示圆.(2)将方程配方后,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.跟踪训练1 (1)若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围是( )A.m <12B.m >12C.m <0D.m ≤12 【答案】A【解析】因为x 2+y 2-x +y +m =0表示圆,则1+1-4m >0,所以m <12. (2)圆x 2+y 2-4x +2y +4=0的半径和圆心坐标分别为( )A.r =1,(-2,1)B.r =2,(-2,1)C.r =2,(2,-1)D.r =1,(2,-1) 【答案】D【解析】x 2+y 2-4x +2y +4=0可化为(x -2)2+(y +1)2=1,所以半径和圆心分别为r =1,(2,-1).题型二 求圆的一般方程例2 已知A (2,2),B (5,3),C (3,-1).(1)求△ABC 的外接圆的一般方程;(2)若点M (a ,2)在△ABC 的外接圆上,求a 的值.解 (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,由题意,得⎩⎪⎨⎪⎧ 22+22+2D +2E +F =0,52+32+5D +3E +F =0,32+(-1)2+3D -E +F =0,解得⎩⎪⎨⎪⎧ D =-8,E =-2,F =12.即△ABC 的外接圆的方程为x 2+y 2-8x -2y +12=0.(2)由(1)知,△ABC 的外接圆的方程为x 2+y 2-8x -2y +12=0,∵点M (a ,2)在△ABC 的外接圆上,∴a 2+22-8a -2×2+12=0,即a 2-8a +12=0,解得a =2或6.反思感悟 应用待定系数法求圆的方程时应注意(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心坐标或半径列方程,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D ,E ,F .跟踪训练2 已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.解 方法一 (待定系数法)设圆的方程为x 2+y 2+Dx +Ey +F =0,将P ,Q 的坐标分别代入上式,得⎩⎪⎨⎪⎧4D -2E +F +20=0, ①D -3E -F -10=0. ② 令x =0,得y 2+Ey +F =0,③由已知得|y 1-y 2|=43,其中y 1,y 2是方程③的根,∴|y 1-y 2|2=(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.④联立①②④解得⎩⎪⎨⎪⎧ D =-2,E =0,F =-12或⎩⎪⎨⎪⎧ D =-10,E =-8,F =4.故圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.方法二 (几何法)由题意得线段PQ 的垂直平分线方程为x -y -1=0,∴所求圆的圆心C 在直线x -y -1=0上,设其坐标为(a ,a -1).又圆C 的半径长r =|CP |=(a -4)2+(a +1)2. (*)由已知得圆C 截y 轴所得的线段长为43,而圆心C 到y 轴的距离为|a |,∴r 2=a 2+⎝⎛⎭⎫4322, 代入(*)式整理得a 2-6a +5=0,解得a 1=1,a 2=5,∴r 1=13,r 2=37.故圆的方程为(x -1)2+y 2=13或(x -5)2+(y -4)2=37.求动点的轨迹方程典例 已知圆x 2+y 2=4上一定点A (2,0),点B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设线段AP 的中点M 的坐标为(x ,y ),P 的坐标为(x 0,y 0),∵⎩⎨⎧ x =2+x 02,y =0+y 02,∴⎩⎪⎨⎪⎧x 0=2x -2,y 0=2y . 又P (x 0,y 0)在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4,∴(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.[素养评析] (1)求与圆有关的轨迹问题的方程①直接法:直接根据题目提供的条件列出方程.②定义法:根据圆、直线等定义列方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.(2)理解运算对象,掌握运算法则,探究运算思路,是数学运算的数学核心素养的体现. 课堂小结圆的一般方程x 2+y 2+Dx +Ey +F =0是圆的另一种表示形式,其隐含着D 2+E 2-4F >0,同圆的标准方程类似,求圆的一般式方程也需要三个独立的条件.求轨迹的方法很多,注意合理选取,在求与圆有关的轨迹时,注意充分利用圆的性质. 达标检测1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为( )A.(4,-6),16B.(2,-3),4C.(-2,3),4D.(2,-3),16【答案】C2.已知圆的方程是x 2+y 2-2x +6y +8=0,那么经过圆心的一条直线的方程是( )A.2x -y +1=0B.2x +y +1=0C.2x -y -1=0D.2x +y -1=0【答案】B 【解析】圆心坐标为(1,-3),检验知2x +y +1=0过圆心(1,-3).3.圆x 2+y 2-2x +6y +8=0的面积为( )A.8πB.4πC.2πD.π【答案】C【解析】原方程可化为(x -1)2+(y +3)2=2,∴半径r =2,∴圆的面积为S =πr 2=2π.4.若点M (3,0)是圆x 2+y 2-8x -4y +10=0内一点,则过点M (3,0)的最长的弦所在的直线方程是( )A.x +y -3=0B.x -y -3=0C.2x -y -6=0D.2x +y -6=0 【答案】C【解析】圆x 2+y 2-8x -4y +10=0的圆心坐标为(4,2),则过点M (3,0)且过圆心(4,2)的弦最长.由k =2-04-3=2,可知C 正确. 5.如图,已知线段AB 的中点C 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的端点B 的轨迹方程.解 设B 点坐标是(x ,y ),点A 的坐标是(x 0,y 0),由于点C 的坐标是(4,3)且点C 是线段AB的中点,所以4=x 0+x 2,3=y 0+y 2, 于是有x 0=8-x ,y 0=6-y .①因为点A 在圆(x +1)2+y 2=4上运动,所以点A 的坐标满足方程(x +1)2+y 2=4,即(x 0+1)2+y 20=4,②把①代入②,得(8-x +1)2+(6-y )2=4,整理,得(x -9)2+(y -6)2=4.所以点B 的轨迹方程为(x -9)2+(y -6)2=4.。
4.1.2 圆的一般方程教案
4.1.2 圆的一般方程教案一、教学目标:(一)知识目标1.了解掌握圆的一般方程的结构特征.能熟练掌握一般方程与标准方程互化。
2.运用待定系数法,由已知条件导出圆的一般方程。
(二)能力目标1.掌握圆的一般方程,分析一般方程的特点.2.培养用配方法求圆心和半径,以及用待定系数法由已知条件导出圆的方程的能力。
(三)德育目标渗透化归与转化等数学思想方法,提高学生的整体素质激励学生创新、勇于探索。
二、教学重点及难点教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.(2)用待定系数法求圆的方程.教学难点:圆的一般方程特点的研究.三、教学方法:启发式教学法,从而使学生自己发现规律.四、教学过程:【课题导入】(5分钟)1、思考:直线方程有哪几种形式?2、回顾圆的标准方程:以(a,b)为圆心,r 为半径的圆的标准方程为222)()(r b y a x =-+-3、探究:展开下列圆的标准方程,你能发现什么规律?_________________________________________________4、思考1: 展开式为02222222=-++--+r b a by ax y x由于a,b,r 都为常数,不妨设F r b a E b D a =-+=-=-222,2,2那么它又可以化成下面的形式:022=++++F Ey Dx y x ………………①那么,是不是形如①式的方程表示的曲线也是圆呢?16)4()3)(2(9)1()1)(1(2222=-++=-+-y x y x 特点?比较,这些方程有什么式与二元二次方程一般形022=+++++F Ey Dx Cy Bxy Ax 化成统一形式:这些圆的标准方程都能这种形式吗?可以化成都)(任何一个圆的标准方程0()22222=++++=-+-F Ey Dx y x r b y a x【新课讲解】(10分钟)共同讨论分析:如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗? 配方后整理得44)2()2(2222F E D E y D x -+=+++ ………………② 显然方程②是不是圆的方程与422F E D -+是什么样的数密切相关.〔教师〕总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也下面举一些例题来加以分析(大约10分钟)例1:下列方程各表示什么图形?例2:求过三点A(5,1),B (7,-3),C(2,-8)的圆的方程。
4.1.2圆的一般方程
4.1.2 圆的一般方程教学目标1.正确理解圆的一般式方程及其特点,会求圆的一般方程;2.熟练圆的一般式方程与标准方程的互化;3.初步掌握求动点的轨迹方程的思想方法。
教学重难点重点:根据圆的一般方程,熟练地求出圆心和半径。
难点:能根据某些具体条件,运用待定系数法确定圆的方程。
复习回顾:圆的标准方程是什么?思考:若把圆的标准方程(x -a )2+(y -b )2=r 2展开后,会得出怎样的形式?探究一、圆的一般方程思考:方程x 2+y 2+Dx +Ey +F =0在什么条件下表示圆?一、圆的一般方程二元二次方程x 2+y 2+Dx +Ey +F =0,当D 2+E 2-4F >0时,该方程叫做圆的一般方程。
圆心为_⎝⎛⎭⎫-D 2,-E 2_,半径长为__D 2+E 2-4F 2__. 圆的一般方程的特点:(1)x 2,y 2项的系数相等且不为零; (2)没有xy 项; (3)D 2+E 2-4F >0.思考:给出二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0,若该方程表示圆的方程,可否根据圆的一般方程确定成立的条件?二、圆的一般方程与标准方程的关系(1)标准方程易于看出圆心与半径,一般方程突出了方程形式上的特点.(2)a =2D -,b =2E-,r =D 2+E 2-4F 2.问题:圆是否还可以用其他形式的方程来表示呢?探究二、圆的参数方程思考:如图,设⊙O 的圆心在原点,半径是r ,与x 轴正半轴的交点为P 0,在圆上任取一点P ,若将OP 0按逆时针方向旋转到OP 位置所形成的角∠P0OP =θ,求P 点的坐标.3.圆的参数方程(1)圆心在原点,半径为r 的圆的参数方程是:⎩⎨⎧==θθsin cos r y r x (θ是参数)(2)圆心在(a ,b ),半径为r 的圆的参数方程是:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数)典例讲解题型一、圆的一般方程的概念例1.圆x 2+y 2-2x +4y =0的圆心坐标为( )A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2) 例2.方程x 2+y 2+4mx -2y +5m =0表示圆的条件是( )A.14<m <1B.m >1C.m <14D.m <14或m >1 例3.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.(1)求实数m 的取值范围. (2)求该圆半径r 的取值范围; (3)求圆心的轨迹方程.题型二、求圆的方程例4.根据下列条件求圆的方程:(1)过三点A (1,12),B (7,10),C (-9,2);(2)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;(3)求与x 轴相切,圆心在直线03=-y x 上,且截直线0=-y x 的弦长为72的圆的方程.题型三、圆的参数方程 例5.已知圆O 的参数方程是⎩⎨⎧==θθsin 5cos 5y x (0≤θ<2π),如果圆上点P 所对应的参数θ=5π3,则点P 的坐标是________.例6.若直线y =x ﹣b 与曲线2cos ,sin x y θθ=+⎧⎨=⎩(θ∈[0,2π])有两个不同的公共点,则实数b 的取值范围为( )A.(2B.[2C.(,2(22,)-∞++∞D.(2例7.已知实数x ,y 满足x 2+y 2+2x ﹣23y =0.(1)求x 2+y 2的最大值; (2)求x +y 的最小值.题型三、与圆相关的轨迹问题例8.已知:一个圆的直径的两端点是A (x 1,y 1)、B (x 2,y 2),证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.例9.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的中点M的轨迹方程.变式:如图,已知点A (-1,0),与点B (1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.探究!到两定点的距离之比为定值的点的轨迹到两定点F 1、F 2的距离之比为定值λ(λ>0)的点的轨迹是圆.例10.已知一曲线是与两定点O (0,0)、A (3,0)距离的比为12的点的轨迹,求这个曲线的方程.题型四、与圆相关的最值问题(数形结合,巧解“与圆有关的最值问题”)例11.已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求yx 的最大值与最小值;(2)求y -x 的最大值与最小值;(3)求x 2+y 2的最大值和最小值.变式:实数x ,y 满足x 2+y 2+2x -4y +1=0,求下列各式的最大值和最小值:(1)4-x y;(2)2x +y .课堂小结1.本节课的主要内容是圆的一般方程,其表达式为⎪⎩⎪⎨⎧>-+=++++0402222F E D F Ey Dx y x 2.圆的一般方程与圆的标准方程的联系一般方程配方得标准方程,标准方程(圆心,半径)展开得一般方程。
圆的一般方程教案(正式)
(3)能应用代入法求一般曲线的方程。
(4)培养探索发现及分析解决问题的能力。
三、情感目标:(1)培养学生勇于探索的精神。
(2)渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质。
●教学重点
圆的一般方程的代数特征、一般方程与标准方程的互化、待定系数法求圆的一般方程
⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是
所有的方程都可以
表示圆。使得学生的认识不断加深,同时
教学基本内容
设计意图
⑵当 =0时,方程只有实数解 ,
即只表示一个点( , ).
⑶当 ﹤0时,方程没有实数解,因此它不表示任何图形.
【师生互动】学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求
⑵写出适合条件的点M的集合.
⑶列出方程 .
⑷化方程 为最简形式.
【课堂练习】
1求下列各方程表示的圆的圆心坐标和半径长
⑴ ⑵
⑶
2判断下列方程分别表示什么图形
⑴ ⑵
⑶
⑴进一步熟悉圆的一般方程.
⑵掌握运用代入法求解曲线的轨迹方程的步骤.
⑶培养学生运用知识的能力.
⑴总结归纳,把方法系统化,形成能力.
⑴让学生熟悉巩固知识,运用方法,另外还可让学生上台演习各自解题过程.
教学基本内容
设计意图
一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。
【教师讲解】设圆的方程为
∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:
4.1.2圆的一般方程教案
4.1.2 圆的一般方程(一)教学目标1.知识与技能(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x2 + y2 + Dx + Ey + F = 0表示圆的条件.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程.(3)培养学生探索发现及分析解决问题的实际能力.2.过程与方法通过对方程x2 + y2 + Dx + Ey + F = 0表示圆的条件的探究,培养学生探索发现及分析解决问题的实际能力.3.情感态度与价值观渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索.(二)教学重点、难点教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.教学难点:对圆的一般方程的认识、掌握和运用.(三)教学过程教学环节教学内容师生互动设计意图课题引入问题:求过三点A (0,0),B (1,1),C (4,2)的圆的方程.利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程.让学生带着问题进行思考设疑激趣导入课题.概念形成与深化请同学们写出圆的标准方程:(x–a)2 + (y –b)2 = r2,圆心(a,b),半径r.把圆的标准方程展开,并整理:x2 + y2 –2ax – 2by + a2 + b2 –r2=0.取D = –2a,E = –2b,F = a2 + b2–r2得x2 + y2 + Dx + Ey+F = 0①这个方程是圆的方程.反过来给出一个形如x2 + y2 + Dx+ Ey + F = 0的方程,它表示的曲线一定是圆吗?把x2 + y2 + Dx + Ey + F = 0配方得22224()()224D E D E Fx y+-+++=②(配方过程由学生去完成)这个方程是不是表示圆?(1)当D2 + E2– 4F>0时,方程②表示以(,)22D E--为圆心,整个探索过程由学生完成,教师只做引导,得出圆的一般方程后再启发学生归纳.圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.通过学生对圆的一般方程的探究,使学生亲身体会圆的一般方程的特点,及二元二次方程表示圆所满足的条件.22142D E F +-为半径的圆;(2)当D 2 + E 2 – 4F = 0时,方程只有实数解,22D Ex y =-=-,即只表示一个点(,)22D E--;(3)当D 2 + E 2 – 4F <0时,方程没有实数解,因而它不表示任何图形.综上所述,方程x 2 + y 2 + Dx + Ey + F =0表示的曲线不一定是圆.只有当D 2 + E 2 – 4F >0时,它表示的曲线才是圆,我们把形如x 2 + y 2 + Dx + Ey + F = 0的表示圆的方程称为圆的一般方程.应用举例例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2 + 4y 2 – 4x + 12y + 9 = 0(2)4x 2 + 4y 2 – 4x + 12y + 11 = 0解析:(1)将原方程变为x 2 + y 2 – x + 3y +94= 0D = –1,E =3,F =94.∵D 2 + E 2 – 4F = 1>0∴此方程表示圆,圆心(12,32-),半径r =12.(2)将原方程化为x 2 + y 2 – x + 3y +114= 0D = –1,E =3,F =114.D 2 + E 2 – 4F = –1<0∴此方程不表示圆.学生自己分析探求解决途径:①用配方法将其变形化成圆的标准形式.②运用圆的一般方程的判断方法求解.但是,要注意对于(1)4x 2 + 4y 2 – 4x + 12y + 9 = 0来说,这里的D = –1,E = 3,94F =而不是D = –4,E = 12,F = 9.通过例题讲解使学生理解圆的一般方程的代数特征及与标准方程的相互转化更进一步培养学生探索发现及分析解决问题的能力.例2 求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标.分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程.解:设所求的圆的方程为:x 2 + y 2 + Dx + Ey + F = 0∵A (0,0),B (1,1),C (4,2)在圆上,所以它们的坐标是方程的解.把它例2 讲完后学生讨论交流,归纳得出使用待定系数法的一般步骤: 1.根据题设,选择标准方程或一般方程. 2.根据条件列出关于a 、b 、r 或D 、E 、F 的方程组; 3.解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程.们的坐标代入上面的方程,可以得到关于D 、E 、F 的三元一次方程组:即02042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解此方程组,可得:D = –8,E =6,F = 0∴所求圆的方程为:x 2 + y 2 – 8x +6y = 0221452r D E F =+-=;4,322D F-=-=-.得圆心坐标为(4,–3).或将x 2 + y 2 – 8x + 6y = 0左边配方化为圆的标准方程,(x – 4)2 + (y + 3)2 = 25,从而求出圆的半径r = 5,圆心坐标为(4,–3).例3 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上(x + 1)2 + y 2 = 4运动,求线段AB 的中点M 的轨迹方程.解:设点M 的坐标是(x ,y ),点A 的坐标是(x 0,y 0)由于点B 的坐标是(4,3)且M 是线段AB 中重点,所以0043,22x y x y ++==,① 于是有x 0 = 2x – 4,y 0 = 2y – 3因为点A 在圆(x + 1)2 + y 2 = 4上运动,所以点A 的坐标满足方程(x + 1)2 + y 2 = 4,即 (x 0 + 1)2 + y 02 = 4 ② 把①代入②,得 (2x – 4 + 1)2 + (2y – 3)2 = 4, 整理得2233()()122x y -+-=所以,点M 的轨迹是以33(,)22为圆心,半径长为1的圆.课堂练习:课堂练习P130第1、2、3题.教师和学生一起分析解题思路,再由教师板书. 分析:如图点A 运动引起点M 运动,而点A 在已知圆上运动,点A 的坐标满足方程(x +1)2+ y 2 = 4.建立点M 与点A 坐标之间的关系,就可以建立点M 的坐标满足的条件,求出点M 的轨迹方程.归纳总结1.圆的一般方程的特征 2.与标准方程的互化教师和学生共同总结 让学生更进一M A x y OB3.用待定系数法求圆的方程 4.求与圆有关的点的轨迹步(回顾)体会知识的形成、发展、完善的过程.课后作业布置作业:见习案4.1的第二课时学生独立完成巩固深化备选例题例1 下列各方程表示什么图形?若表示圆,求出圆心和半径.(1)x 2 + y 2 + x + 1 = 0;(2)x 2 + y 2 + 2ac + a 2 = 0 (a ≠0); (3)2x 2 + 2y 2 + 2ax – 2ay = 0 (a ≠0).【解析】(1)因为D = 1,E = 0,F = 1, 所以D 2 + E 2 – 4F <0 方程(1)不表示任何图形;(2)因为D = 2a ,E = 0,F = a 2,所以D 2 + E 2 – 4F = 4a 2 – 4a 2 = 0, 所以方程(2)表示点(–a ,0);(3)两边同时除以2,得x 2 + y 2 + ax – ay = 0,所以D = a ,E = – a ,F = 0. 所以D 2 + E 2 – 4F >0, 所以方程(3)表示圆,圆心为(,)22a a -,半径22124||22r D E F a =+-=. 点评:也可以先将方程配方再判断.例2 已知一圆过P (4,–2)、Q (–1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.【分析】涉及与圆的弦长有关的问题时,为简化运算,则利用垂径直径定理和由半弦长、弦心距、半径所构成的三角形解之.【解析】法一:设圆的方程为: x 2 + y 2 + Dx + Ey + F = 0 ① 将P 、Q 的坐标分别代入①得4220310D E F D E F -+=-⎧⎨--=⎩令x = 0,由①,得y 2 + Ey + F = 0 ④由已知|y 1 – y 2| = 43,其中y 1,y 2是方程④的两根. ∴(y 1 – y 2)2 = (y 1 + y 2) – 4y 1y 2 = E 2 – 4F = 48 ⑤解②③⑤联立成的方程组,得2012D E F =-⎧⎧⎪⎪=⎨⎨⎪⎪=-⎩⎩D=-10或E=-8F=4 故所求方程为:x 2 + y 2 – 2x – 12 = 0或x 2 + y 2 – 10x – 8y + 4 = 0.法二:求得PQ 的中垂线方程为x – y – 1 = 0 ① ∵所求圆的圆心C 在直线①上,故设其坐标为(a ,a – 1),又圆C 的半径22||(4)(1)r CP a a ==-++ ②由已知圆C 截y 轴所得的线段长为43,而圆C 到y 轴的距离为|a |.2224(3)2r a =+ 代入②并将两端平方,得a 2 – 5a + 5 = 0,② ③解得a 1 = 1,a 2 = 5. ∴1213,37r r ==故所求的圆的方程为:(x – 1)2 + y 2 = 13或(x – 5)2 + (y – 4)2 = 37.【评析】(1)在解本题时,为简化运算,要避开直接去求圆和y 轴的两个交点坐标,否则计算要复杂得多. (2)涉及与圆的弦长有关问题,常用垂径定理和由半弦长、弦心距及半径所构成的直角三角形解之,以简化运算.例3 已知方程x 2 + y 2 – 2(t + 3)x + 2(1 – t 2)y + 16t 4 + 9 = 0表示一个圆,求(1)t 的取值范围; (2)该圆半径r 的取值范围. 【解析】原方程表示一个圆的条件是D 2 +E 2 – 4F = 4(t + 3)2 + 4(1 – t 2)2 – 4(16t 4 + 9)>0即7t 2 – 6t – 1<0,∴117t -<<(2)2222224224(3)(1)(169)76143167()77D E F r t t t t t t +-==++--+=-++=--+∴216470,077r r <≤<<。
2014年人教A版必修二教案 4.1.2 圆的一般方程
4.1.2 圆的一般方程教学目标1.讨论并掌握圆的一般方程的特点,并能将圆的一般方程化为圆的标准方程,从而求出圆心的坐标和半径.2.能分析题目的条件选择圆的一般方程或标准方程解题,解题过程中能分析和运用圆的几何性质.3.通过对圆的一般方程的特点的讨论,培养学生严密的逻辑思维和严谨的科学态度;通过例题的分析讲解,培养学生分析问题的能力.教学重点与难点圆的一般方程的探求过程及其特点是教学重点;根据具体条件选用圆的方程为教学难点.教学过程一、复习并引入新课师:请大家说出圆心在点(a,b),且半径是r的圆的方程.生:(x-a)2+(y-b)2=r2.师:以前学习过直线,直线方程有哪几种?生:直线方程有点斜式、斜截式、两点式、截距式和一般式.师:直线方程的一般式是Ax+By+C=0吗?生A:是的.生B:缺少条件A2+B2≠0.师:好!那么圆的方程有没有类似“直线方程的一般式”那样的“一般方程”呢?(书写课题:“圆的一般方程”的探求)二、新课师:圆是否有一般方程?这是个未解决的问题,我们来探求一下.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式,两点式……)展开整理而得到的.想求圆的一般方程,怎么办?生:可仿照直线方程试一试!把标准形式展开,整理得x 2+y 2-2ax -2by+a 2+b 2-r 2=0.令D=-2a ,E=-2b ,F=a 2+b 2-r 2,有:x 2+y 2+Dx+Ey+F=0.(*)师:从(*)式的得来过程可知,只要是圆的方程就可以写成(*)的形式.那么能否下结论:x 2+y 2+Dx+Ey+F=0就是圆的方程?生A :不一定.还得考虑:x 2+y 2+Dx+Ey+F=0能否写成标准形式.生B :也可以像直线方程一样,要有一定条件.师:那么考虑考虑怎样去寻找条件?生:配方.师;请大家动手做,看看能否配成标准形式?(放手让同学讨论,教师适当指导,然后由同学说,教师板书.) ()∆-+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+.4422:*2222F E D E y D x )式配方得将( 1.当D 2+E 2-4F >0时,比较(△)式和圆的标准方程知:(*)式表示以 为半径的圆;为圆心,F E D E D 4212,222-+⎪⎭⎫ ⎝⎛-- 2.()()()有时也叫点圆,式表示一个点即式只有实数解时,当⎪⎭⎫ ⎝⎛--*-=-=*=-+22,2,204.22E D E y D x F E D 3.当D 2+E 2-4F <0时,(*)式没有实数解,因而它不表示任何图形.教师总结:当D 2+E 2-4F >0时,方程x 2+y 2+Dx+Ey+F=0叫圆的一般方程.师:圆的一般方程有什么特点?生A:是关于x、y的二元二次方程.师:刚才生A的说法对吗?生B:不全对.它是关于x、y的特殊的二元二次方程.师:特殊在什么地方?(通过争论与举反例后,由教师总结)师:1.x2,y2系数相同,且不等于零.2.没有xy这样的二次项.(追问):这两个条件是“方程Ax2+By2+Dx+Ey+F=0表示圆”的什么条件?生:必要条件.师:还缺什么?生:D2+E2-4F>0.练习:判断以下方程是否是圆的方程:①x2+y2-2x+4y-4=0②2x2+2y2-12x+4y=0③x2+2y2-6x+4y-1=0④x2+y2-12x+6y+50=0⑤x2+y2-3xy+2y+5y=0⑥x2+y2-12x+6y+F=0三、应用举例师:先请大家比较一下圆的标准方程(x-a)2+(y-b)2=r2与一般方程x2+y2+Dx+Ey+F=0在应用上各有什么优点?生:标准方程的几何特征明显——能看出圆心、半径;一般方程的优点是能从一般的二元二次方程中找出圆的方程.师:怎样判断用“一般方程”表示的圆的圆心、半径.生:.4212222F E D r E D -+=⎪⎭⎫ ⎝⎛--,,圆心 生B :不用死记,配方即可.师:两种形式的方程各有特点,我们应对具体情况作具体分析、选择.四.例题讲解例1.求过三点12(0,0),(1,1),(4,2)O M M 的圆的方程;分析:由于12(0,0),(1,1),(4,2)O M M 不在同一条直线上,因此经过12,,O M M 三点有唯一的圆.解:法一:设圆的方程为220x y Dx Ey F ++++=,∵12,,O M M 三点都在圆上,∴12,,O M M 三点坐标都满足所设方程,把12(0,0),(1,1),(4,2)O M M 代入所设方程,得:02042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解之得:860D E F =-⎧⎪=⎨⎪=⎩所以,所求圆的方程为22860x y x y +-+=.法二:也可以求1OM 和2OM 中垂线的交点即为圆心,圆心到O 的距离就是半径也可以求的圆的方程:22860x y x y +-+=.法三:也可以设圆的标准方程:222()()x a y b r -+-=将点的坐标代入后解方程组也可以解得22(4)(3)25x y -++=例2.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 中点M 的坐标(,)x y 中,x y 满足的关系?并说明该关系表示什么曲线?解:设点A 的坐标是00(,)x y ,由于点B 的坐标是(4,3),且M 是AB 的中点,所以0043,22x y x y ++==(*) 于是,有0024,23x x y y =-=-因为点A 在圆22(1)4x y ++=上运动,所以点A 的坐标满足方程22(1)4x y ++=,即2200(1)4x y ++=(**)将(*)式代入(**),得22(241)(23)4x y -++-=, 整理得2233()()122x y -+-=所以,x y 满足的关系为:2233()()122x y -+-= 其表示的曲线是以33(,)22为圆心,1为半径的圆.说明:该圆就是M 点的运动的轨迹;所求得的方程就是M 点的轨迹方程:点M 的轨迹方程就是指点M 的坐标(,)x y 满足的关系式. 五、小结注意一般式的特点:1°x 2,y 2系数相等且不为零;2°没有xy 这样的项; 3°D 2+E 2-4F >0.另外,大家考虑:D 2+E 2-4F 有点像什么?像判别式,它正是方程x 2+y 2+Dx+Ey+F=0是否是圆的方程的判别式.如D 、E 确定了,则与F 的变化有关.六、作业:1.求下列各圆的一般方程:①过点A(5,1),圆心在点C(8,-3);②过三点A(-1,5),B(5,5),C(6,-2).2.求下列各圆的圆心坐标和半径:①x2+y2-2x-5=0②x2+y2+2x-4y-4=0③x2+y2+2ax=0④x2+y2-2by-2b2=0设计思想这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”在整个探求过程中充分利用了“旧知识”及“旧知识的形成过程”,并用它探求新知识.这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程.。
(优质课)4.1.2 圆的一般方程
所求圆的方程为
所求圆的方程为
( x 2) ( y 3) 25
2 2
x2 y2 4x 6 y 12 0
牛刀小试:
2 2 2 x , y x y 2 mx 2 y m 5m 0 2.关于 的方程 表示圆
(1)求实数 m的取值范围
(2)圆心坐标和半径
1 m 5
- m,1
r 1 5m
典例分析:
例1:求过三点O(0,0),M1(1,1),M2(4,2)的圆的 方程,并指出这个圆的半径和圆心坐标.
方法一: 几何方法 方法二: 解:设所求圆的标准方程为:
0
y
M1(1,1) M (4,2) 2
x
方法三: 解:设所求圆的一般方程为:
22 22 x y D x E y F 0 ( D E 4 F 0 )
例1:求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并 指出这个圆的半径和圆心坐标.
B. k 1
C. k 1
2 2 a C.
D. k 1 D. 2a
A.2 2a
B. 2 2a
谢谢
延伸训练:
变式练习3:平面内四点O(0,0),M1(1,1),M2(4,2), D(0,-6)是否在同一个圆上? 若共圆求四边形OM1M2D的面积.
y
M1(1,1) M (4,2) 2
2 2
2
2
自主探究:
2 2
2 2
圆的一般方程
x y Dx Ey F 0 D2 E 2 4F 0
D E D2 E 2 4F x y 2 2 4
2 2 (1)当 D E 4F 0 时,表示圆,
4.1.2圆的一般方程(精品)
即
x2 y2 1 ,
(x 3)2 y2 2
化简得x2+y2+2x-3=0.即(x+1)2+y2=4, 所以动点P的轨迹是以点(-1,0)为圆心,以2为半径 的圆.
求动点轨迹的步骤:
1.建立坐标系,设动点坐标M(x, y); 2.列出动点M满足的等式并化简; 3.说明轨迹的形状.
求轨迹方程的方法:
解 由方程表示圆得, D2+E2-4F=12+22-4(a-1)=9-4a>0,
解得a<
9 4
,
即a的取值范围是
(, 9) 4
.
典例探究
例2、 已知线段AB的端点B的坐标是(-4,3),端点A在
圆 (x 1)2 y2 4上运动,点M满足 BA 2BM ,求
点M的轨迹方程.
解:设M (x, y), A(x0, y0 ), B(4,3), BA 2BM,
若生成轨迹的动点 P( x, y)随另一动点 Q( x0, y0 )
的变动而有规律地变动,可把Q点的坐标 x0 , y0
分别用动点P的坐标x, y 表示出来,代入到Q点 满足的已有的等式,得到动点P的轨迹方程
关键:列出P,Q两点的关系式.
课本P134 6/平面直角坐标系中有A(0,1),B(2,1), C(3,4),D(-1,2)四点,这四点能否在同一圆上?
思考:当D=0,E=0或F=0时,
圆 x2 y2 Dx Ey F 0 的位置分别
有什么特点?
y
y
y
C
C
C
o
x
o
x
o
x
D=0
E=0
F=0
练习1:判别下列方程表示什么图形,如果是圆,就
找出圆心和半径.
4.1.2圆的一般方程学案
4.1.2圆的一般方程学案学习要求:1.掌握圆的一般方程及其特点;2.会将圆的一般方程化为圆的标准方程,并能熟练地指出圆心的位置和半径的大小;3.能根据某些具体条件,运用待定系数法确定圆的方程.学法指导:通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,提高探索发现及分析问题的能力;体验数形结合、化归与转化等数学思想方法;通过求圆的方程,培养用配方法和待定系数法解决实际问题的能力.填一填知识要点,记下疑难点1.圆的一般方程的定义(1)当时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当时,方程x2+y2+Dx+Ey+F=0不表示任何图形.2.由圆的一般方程判断点与圆的位置关系已知点M(x0,y0)和圆的方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则其位置关系如下表:问题探究:探究点一圆的一般方程问题1方程x2+y2-2x+4y+1=0表示什么图形?x2+y2-2x+4y+6=0表示什么图形?问题2把x2+y2+Dx+Ey+F=0配方后,将得到怎样的方程?这个方程是不是表示圆?问题3观察圆的一般方程,你能归纳出圆的一般方程的特点吗?例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2+4y 2-4x +12y +9=0; (2)4x 2+4y 2-4x +12y +11=0.跟踪训练1 判断下列方程是否表示圆,若是,化成标准方程.(1)x 2+y 2+2x +1=0; (2)x 2+y 2+20x +121=0; (3)x 2+y 2+2ax =0.探究点二 圆的一般方程的应用问题1 求圆的一般方程实质上是求圆的一般方程中的哪些量?问题2 求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是怎样的?例2 求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标.课堂小结:1.圆的一般方程x 2+y 2+Dx +Ey +F =0来源于圆的标准方程(x -a )2+(y -b )2=r 2.在应用时,注意它们之间的相互转化及表示圆的条件.2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况来确定是设圆的标准方程还是设圆的一般方程,以便简化解题过程.当堂检测:1.将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=02.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A.⎝ ⎛⎭⎪⎫-32,1和194 B .(3,2)和192 C.⎝ ⎛⎭⎪⎫-32,1和192 D.⎝ ⎛⎭⎪⎫32,-1和192 3.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为 ( )A .2 B.22 C .1 D. 2。
4.1.2圆的一般方程(轨迹问题)(第二课时)
一、代入法求轨迹方程:
例4:已知线段AB的端点B的坐标是 2 2 (4,3), 端点A在圆 ( x 1) y 4 上运动,求线段AB的中点M的轨迹 方程。
方法总结
代入法也称相关点法:
如果轨迹上的动点P(x,y)依赖于另一动
点Q(a,b),而Q又按某一个规律运动,则可 先用x,y表示a,b,再把a,b代入点Q所满足
圆的一般方程 (轨迹问题)
学习目标:
由已知条件求出圆的方程及轨迹方程
学习重难点:
根据已知条件求轨迹方程
预备知识:轨迹与轨迹方程 1、什么是轨迹?
符合一定条件的动点所形成的图形,或者 说,符合一定条件的点的全体所组成的集 合,叫做满足该条件的点的轨迹. 2、轨迹与轨迹方程有区别吗? 轨迹是图形,轨迹方程实际上就是轨迹 曲线的方程,即动点坐标(x,y)满足的关 系式.
2 2
轨迹方程为x 3y 4( x 1).
10
的条件便得到动点P的轨迹方程。
简记为:先有未知表示已知,再有 已知表示未知
练习:
1、已知点P在圆C: 2 2 x y 8x 6 y 21 0
上运动,求线段OP的中点M的轨迹方程。
2、一个动点在圆:x2+y2=1上运动时,
它与定点(3,0)所连线段的中点P的 轨迹方程是什么?
F 2,0 为
2
二、直接法求轨迹方程:
1.(2010 上海卷)若动点P到点F 2, 0 的距离与它到直线 x 2 0的距离相等,则点P的轨迹方程为 __________
程为y 8x.
方法总结
直接法也称直译法: 将已知条件直接翻译为关于动点的几何关 系,再利用解析几何有关公式(如两点间
(完整版)圆的一般方程教案(正式)
4.2.1圆的一般方程一、复习提问,引入课题问题:求过三点(0,0),(1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。
因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。
于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。
【辅助手段】:多媒体课件幻灯片展示问题。
二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()x a y b r -+-=、圆心(a ,b)、半径r把圆的标准方程展开,并整理:22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=222a b r +-220x y Dx Ey F ++++=这个方程就是圆的方程.反过来给出一个形如220x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?把220x y Dx Ey F ++++=配方得: 222224()()224D E D E Fx y +-+++= 【师生互动】配方和展开由学生完成,教师最后展示结果。
问题:这个方程是不是表示圆?⑴当2224D E F +-﹥0时,方程表示以(-2D ,2E)为圆心,以22142D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容. ⑵质疑提问,小组讨论,提高了学生学习的兴趣.⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是所有的方程都可以 表示圆。
使得学生的认识不断加深,同时一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。
【教师讲解】设圆的方程为220x y Dx Ey F ++++=∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:2042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩即D=-8 E=6 F=O∴所求的方程为22860x y x y +-+=222142r D E F =+-=5、2D -=4、2E-=-3∴圆心坐标为(4,-3)或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。
4.1.2 圆的一般方程(新)
5
课前预习
课堂互动
课堂反馈
(2)圆 x2+y2+kx+2y-4=0 的圆心坐标是(-2k,-1), 由圆的性质知直线 x-y+1=0 经过圆心, ∴-2k+1+1=0 得 k=4,
圆 x2+y2+4x+2y-4=0 的半径为12 42+22+16=3, ∴该圆的面积为 9π.
答案
(1)(-a2,a2),
位置关系 点 M 在圆_外___
代数关系 x20+y20+Dx0+Ey0+F>0
点 M 在圆_上___
x20+y20+Dx0+Ey0+F=0
点 M 在圆_内___
x20+y20+Dx0+Ey0+F<0
3
课前预习
课堂互动
课堂反馈
@《创新设计》
题型一 圆的一般方程的概念 【例1】 若方程x2+y2+2mx-2y+m2+5m=0表示圆,求实数m的取值范围,并写出
2|a| 2
(2)9π
@《创新设计》
6
课前预习
课堂互动
课堂反馈
题型二 求圆的一般方程
【例2】 已知A(2,2),B(5,3),C(3,-1),求△ABC外接圆的方程.
解 设△ABC外接圆的方程为:x2+y2+Dx+Ey+F=0,
由题意得25DD+ +23EE+ +FF+ +83= 4=0, 0,解得DE==--28,,
所以直角顶点C的轨迹方程为x2+y2-2x-3=0(x≠3,且x≠-1).
13
课前预习
课堂互动
课堂反馈
@《创新设计》
法二 同法一,得x≠3,且x≠-1. 由勾股定理,得|AC|2+|BC|2=|AB|2, 即(x+1)2+y2+(x-3)2+y2=16, 化简得x2+y2-2x-3=0. 所以直角顶点C的轨迹方程为x2+y2-2x-3=0(x≠3,且x≠-1).
(完整版)圆的一般方程教案(正式)
4.2.1圆的一般方程一、复习提问,引入课题问题:求过三点(0,0),(1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。
因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。
于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。
【辅助手段】:多媒体课件幻灯片展示问题。
二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()x a y b r -+-=、圆心(a ,b)、半径r把圆的标准方程展开,并整理:22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=222a b r +-220x y Dx Ey F ++++=这个方程就是圆的方程.反过来给出一个形如220x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?把220x y Dx Ey F ++++=配方得: 222224()()224D E D E Fx y +-+++= 【师生互动】配方和展开由学生完成,教师最后展示结果。
问题:这个方程是不是表示圆?⑴当2224D E F +-﹥0时,方程表示以(-2D ,2E)为圆心,以22142D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容. ⑵质疑提问,小组讨论,提高了学生学习的兴趣.⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是所有的方程都可以 表示圆。
使得学生的认识不断加深,同时一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。
【教师讲解】设圆的方程为220x y Dx Ey F ++++=∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:2042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩即D=-8 E=6 F=O∴所求的方程为22860x y x y +-+=222142r D E F =+-=5、2D -=4、2E-=-3∴圆心坐标为(4,-3)或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。
4.1.2圆的一般方程 教案(人教A版必修2)
4.1.2圆的一般方程●三维目标1.知识与技能(1)掌握圆的一般方程及一般方程的特点.(2)能将圆的一般方程化成圆的标准方程,进而求圆心和半径.(3)能用待定系数法由已知条件求出圆的方程.(4)能用坐标法求动点的轨迹方程.2.过程与方法(1)进一步培养学生用代数方法研究几何问题的能力.(2)加深对数形结合思想的理解和加强待定系数法的运用.3.情感、态度与价值观(1)培养学生主动探究知识、合作交流的意识.(2)培养学生勇于思考、探究问题的精神.●重点难点重点:圆的一般方程及待定系数法求圆的方程.难点:用坐标法求动点的轨迹方程.重点突破:以教材的思考为切入点,采取由特殊到一般、由具体到抽象的方法,结合圆的标准方程,突破“二元二次方程同圆的关系”这一重难点,通过学生探究合作与交流,结合题组训练,引导学生进一步掌握用“待定系数法”求解圆的一般方程;借助多媒体演示及学生的直观感知突破“求动点的轨迹方程”这一难点.●教学建议本节课是上节课的拓展和延伸,可采用开门见山、单刀直入的引入方法,让学生通过对一组二元二次方程的观察比较,分析讨论,得出圆的一般方程的形式,并指明“二元二次方程”同“圆”的关系,培养学生分类讨论的思想意识.考虑到“用相关点法求动点的轨迹方程”的难度,教学时可结合一些具体例子,让学生分组协作,通过组内讨论的方式找出动点的轨迹与已知曲线的关系,教师适时点拨,这样学生既掌握了用相关点法求动点轨迹的问题,又对一般的轨迹问题有了了解,为今后进一步学习轨迹问题奠定基础.●教学流程创设问题情境,引出问题:二元二次方程同圆什么关系?⇒引导学生结合配方法及圆的标准方程得出圆的一般方程形式.⇒通过引导学生回答所提问题理解二元二次方程同圆的关系及表示圆的条件.⇒通过例1及其变式训练,使学生掌握圆的一般方程的概念.⇒通过例2及其变式训练,使学生掌握圆的一般方程的求法.⇒通过例3及其变式训练,初步培养学生解决与圆相关的轨迹问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.圆的标准方程(x -a )2+(y -b )2=r 2展开可得到一个什么式子? 【提示】 x 2+y 2-2ax -2by +a 2+b 2-r 2=0. 2.观察以下三个方程: (1)x 2+y 2+2x +2y +8=0; (2)x 2+y 2+2x +2y +2=0; (3)x 2+y 2+2x +2y =0.先将它们分别配方,分析它们分别表示什么图形?【提示】 (1)配方得(x +1)2+(y +1)2=-6,不表示任何图形. (2)配方得(x +1)2+(y +1)2=0,表示点(-1,-1). (3)配方得(x +1)2+(y +1)2=2,表示圆. 方程x 2+y 2+Dx +Ey +F =0(*)表示的图形(1)变形:(x +D 2)2+(y +E 2)2=D 2+E 2-4F4.(2)图形:①当D 2+E 2-4F >0时,方程表示的曲线为圆,且圆心为(-D 2,-E2),半径为12D 2+E 2-4F ,方程(*)称为圆的一般方程; ②当D 2+E 2-4F =0时,方程(*)表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,方程(*)不表示任何图形.下列方程能否表示圆?若能,求出圆心和半径.(1)2x 2+y 2-7y +5=0; (2)x 2-xy +y 2+6x +7y =0; (3)x 2+y 2-2x -4y +10=0; (4)2x 2+2y 2-5x =0.【思路探究】 分析每个方程是否具有圆的一般方程的特征,也可以把方程配方观察求解.【自主解答】 (1)∵方程2x 2+y 2-7y +5=0中x 2与y 2的系数不相同, ∴它不能表示圆.(2)∵方程x 2-xy +y 2+6x +7y =0中含有xy 这样的项, ∴它不能表示圆.(3)方程x 2+y 2-2x -4y +10=0化为(x -1)2+(y -2)2=-5, ∴它不能表示圆.(4)方程2x 2+2y 2-5x =0化为(x -54)2+y 2=(54)2,∴它表示以(54,0)为圆心,54为半径长的圆.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,应满足的条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.如果x 2+y 2-2x +y +k =0是圆的方程,则实数k 的范围是________. 【解析】 由题意可知(-2)2+12-4k >0, 即k <54.【答案】 (-∞,54)并求这个圆的半径长和圆心坐标.【思路探究】 设圆的一般式方程――→过点O 、M 、N 求圆的一般式方程――→公式法求圆心坐标、半径【自主解答】 设圆的一般式方程为x 2+y 2+Dx +Ey +F =0, 由题意可知点O (0,0),M (1,1),N (4,2)满足圆的方程,即 ⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得⎩⎪⎨⎪⎧D =-8,E =6,F =0.所以,所求圆的一般方程是x 2+y 2-8x +6y =0化为标准方程为(x -4)2+(y +3)2=25. ∴圆的圆心坐标是(4,-3),半径r =5.1.一般地,所求的圆经过几点且不易得知圆心和半径,常选用一般式. 2.圆的一般式方程中也含有三个未知参数,求解时也需要三个独立的条件.已知A (2,2),B (5,3),C (3,-1),求三角形ABC 的外接圆的方程. 【解】 设三角形ABC 外接圆的方程为x 2+y 2+Dx +Ey +F =0, 由题意得⎩⎪⎨⎪⎧2D +2E +F +8=0,5D +3E +F +34=0,3D -E +F +10=0,解得⎩⎪⎨⎪⎧D =-8,E =-2,F =12,即三角形ABC 的外接圆方程为x 2+y 2-8x -2y +12=0.【思路探究】 本题考查动点轨迹方程的求法,关键是寻找动点M 的横、纵坐标之间的关系.【自主解答】 设M (x ,y ),由于M 是AP 的中点, ∴P 点的坐标是(2x -4,2y ).∵P 是圆x 2+y 2=1上的点, ∴(2x -4)2+(2y )2=1.即动点M 的轨迹方程为(x -2)2+y 2=14.本题是运用代入法求轨迹方程.用动点坐标表示相关坐标,再根据相关点所满足的方程即可求动点的轨迹方程,这种求轨迹方程的方法叫作相关点法或代入法.经过圆x 2+y 2=4上任意一点P 作x 轴的垂线,垂足为Q ,则线段PQ 中点M 的轨迹方程为________.【解析】 设M (x ,y ),P (x 0,y 0),由题意可知⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又点P (x 0,y 0)在圆x 2+y 2=4上,故x 20+y 20=4,即x 2+4y 2=4,所以,所求轨迹方程为x 2+4y 2=4. 【答案】x 2+4y 2=4忽略圆的一般方程中D 2+E 2-4F >0致误已知定点A (a,2)在圆x 2+y 2-2ax -3y +a 2+a =0的外部,求a 的取值范围. 【错解】 因为点A (a,2)在圆的外部, 所以a 2+4-2a 2-3×2+a 2+a >0, 解得a >2.故所求a 的范围为(2,+∞).【错因分析】 上述解法的错误在于“忘记判断二元二次方程表示圆的条件”. 【防范措施】 对于二元二次方程x 2+y 2+Dx +Ey +F =0只有在D 2+E 2-4F >0的前提下,它才表示圆,故求解本题在判定出点与圆的位置关系后,要验证所求参数的范围是否满足D 2+E 2-4F >0.【正解】 因为点A 在圆的外部,所以有⎩⎪⎨⎪⎧a 2+4-2a 2-3×2+a 2+a >0,(-2a )2+(-3)2-4(a 2+a )>0,解得⎩⎪⎨⎪⎧a >2,a <94,即2<a <94.所以a 的取值范围为(2,94).1.圆的一般方程x 2+y 2+Dx +Ey +F =0是圆的另一种表示形式,其隐含着D 2+E 2-4F >0,同圆的标准方程类似,求圆的一般式方程也需要三个独立的条件.2.求轨迹的方法很多,注意合理选取,在求与圆有关的轨迹时,注意充分利用圆的性质.1.已知圆x 2+y 2-4x +2y -4=0,则圆心坐标、半径的长分别是( ) A .(2,-1),3 B .(-2,1),3 C .(-2,-1),3 D .(2,-1),9【解析】 圆x 2+y 2-4x +2y -4=0可化为(x -2)2+(y +1)2=9. 故其圆心坐标为(2,-1),半径的长为3. 【答案】 A2.点P (x 0,y 0)是圆x 2+y 2=16上的动点,点M 是OP (O 为原点)的中点,则动点M 的轨迹方程是________.【解析】 设M (x ,y ),则⎩⎨⎧x =x 02,y =y2,即⎩⎪⎨⎪⎧x 0=2x ,y 0=2y , 又P (x 0,y 0)在圆上, ∴4x 2+4y 2=16,即x 2+y 2=4. 【答案】 x 2+y 2=43.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是________. 【解析】 由(-4)2+22-4×5k >0,得k <1. 【答案】 (-∞,1)4.已知圆C 过点O (0,0),A (1,0),B (0,-1),求圆C 的方程.【解】 设圆C 的方程为x 2+y 2+Dx +Ey +F =0.将O ,A ,B 三点坐标依次代入,得 ⎩⎪⎨⎪⎧F =0,1+D +F =0,(-1)2-E +F =0,解之得D =-1,E =1,F =0. 所以圆C的方程为x 2+y 2-x+y=0.一、选择题1.(2013·聊城高二检测)方程x 2+(a +2)y 2+2ax +a =0表示一个圆,则( ) A .a =-1 B .a =2 C .a =-2 D .a =1【解析】 由题意可知a +2=1,∴a =-1. 【答案】 A2.(2013·浏阳高一检测)若方程x 2+y 2+Dx +Ey +F =0(D 2+E 2>4F )表示的曲线关于直线y =x 对称,那么必有( )A .D =EB .D =FC .E =FD .D =E =F【解析】 方程所表示的曲线为圆,由已知,圆关于直线y =x 对称,所以圆心在直线y =x 上,即点(-D 2,-E2)在直线y =x 上,所以D =E .故选A.【答案】 A3.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形为( ) A .以(a ,b )为圆心的圆 B .以(-a ,-b )为圆心的圆 C .点(a ,b ) D .点(-a ,-b )【解析】 原方程可化为:(x +a )2+(y +b )2=0.所以它表示点(-a ,-b ). 【答案】 D4.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( ) A .-2或2 B.12或32C .2或0D .-2或0【解析】 由圆心(1,2)到直线的距离公式得|1-2+a |2=22得a =0或a =2.故选C.【答案】 C5.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π【解析】 设点P 的坐标为(x ,y ),由|P A |=2|PB |得(x +2)2+y 2=4(x -1)2+4y 2 即(x -2)2+y 2=4.故点P 的轨迹所围成的图形的面积S =4π. 【答案】 B 二、填空题6.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________. 【解析】 由题意可知⎩⎪⎨⎪⎧-D2=2,-E2=-4,12D 2+E 2-4F =4,解得D =-4,E =8,F =4. 【答案】 47.圆x 2+y 2-2x +6y +8=0的周长等于________. 【解析】 圆的半径r =12(-2)2+62-4×8=2,故圆的周长为22π. 【答案】 22π8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________.【解析】 设M 的坐标为(x ,y ),由题意可知圆心A 为(2,-1),P (2x -2,2y +1)在圆上, 故(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即x 2+y 2-4x +2y +1=0. 【答案】 x 2+y 2-4x +2y +1=0 三、解答题9.(2013·济宁高一检测)设圆的方程为x 2+y 2-4x -5=0, (1)求该圆的圆心坐标及半径;(2)若此圆的一条弦AB 的中点为P (3,1),求直线AB 的方程.【解】 (1)将x 2+y 2-4x -5=0配方得:(x -2)2+y 2=9.∴圆心坐标为C (2,0),半径为r =3.(2)设直线AB 的斜率为k .由圆的几何性质可知:CP ⊥AB ,∴k CP ·k =-1. 又k CP =1-03-2=1,∴k =-1.∴直线AB 的方程为y -1=-(x -3), 即x +y -4=0.10.(2013·黄冈高一检测)已知定点O (0,0),A (3,0),动点P 到定点O 的距离与到定点A 的距离的比值是1λ,求动点P 的轨迹方程,并说明方程表示的曲线. 【解】 设动点P 的坐标为(x ,y ),则由λ|PO |=|P A |,得λ(x 2+y 2)=(x -3)2+y 2, 整理得:(λ-1)x 2+(λ-1)y 2+6x -9=0.∵λ>0,∴当λ=1时,方程可化为2x -3=0,故方程表示的曲线是线段OA 的垂直平分线;当λ≠1时,方程可化为(x +3λ-1)2+y 2=[3λ(λ-1)]2,即方程表示的曲线是以(-3λ-1,0)为圆心,3λ|λ-1|为半径的圆.11.(思维拓展题)设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由. 【解】 (1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),∴⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得D =0,E =3-a ,F =-3a .∴圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0.由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0,解得x =0,y =-3. ∴圆M 过定点(0,-3).等腰三角形的顶点是A (4,2),底边的一个端点是B (3,5),求另一个端点C 的轨迹方程,并说明它的轨迹是什么.【思路探究】 用直接法求轨迹方程,但必须考虑点C 是三角形的另一顶点,即A ,B ,C 三点不能共线,这一点容易被忽略,应注意.【自主解答】 设另一端点C 的坐标为(x ,y ). 依题意得|AC |=|AB |. 由两点间距离公式,得:(x -4)2+(y -2)2=(4-3)2+(2-5)2, 整理得(x -4)2+(y -2)2=10.这是以点A (4,2)为圆心,以10为半径的圆,如图所示,又因为A ,B ,C 为三角形的三个顶点,所以A ,B ,C 三点不共线,即点B ,C 不能重合且B ,C 不能为⊙A 的一直径的两个端点.因为点B ,C 不能重合,所以点C 不能为(3,5). 又因为点B ,C 不能为一直径的两个端点, 所以x +32≠4,且y +52≠2,即点C 不能为(5,-1).故端点C 的轨迹方程是(x -4)2+(y -2)2=10(除去点(3,5)和(5,-1)),它的轨迹是以点A (4,2)为圆心,10为半径的圆,但除去(3,5)和(5,-1)两点.一般地,求轨迹方程就是求等式,就是找等量关系.把等量关系用数学语言表达出来,再进行变形、化简,就会得到相应的轨迹方程,所以找等量关系是解决问题的关键.如图所示,自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.【解】 ∵P 为BC 中点,O 为圆心,∴OP ⊥BC .设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1,即x 2+y 2-4x =0(0<x <1).① 当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(0≤x <1).。
4.1.2圆的一般方程教案
2 2
3. 已知方程 x 2 y 2 kx (1 k ) y 范围 (
A.
13 0 表示圆, 则 k 的取值 4
D. k 3 或 k 2
教学 目标
程; 2.理解圆的标准方程和一般方程的特点,并会运用待定系数法和数形结合思想求圆的方 程.
教学 重点 教学 难点 教学 方法 教学 手段
1.圆的一般方程的认知过程
2.掌握圆的一般方程及初步应用.
形如 x2 y 2 Dx Ey F 0 的方程在什么条件下表示圆及方程的应用.
D E 配方 , ) 为圆心, 2 2
学
D2 E 2 4F 为半径的圆; 2
2.当 D2 E 2 4F 0 时,方程表示一个点 (
D E , ) ; 2 2
讨论
过
3.当 D2 E 2 4F 0 时,方程无实数解,即方程不表示 程 任何图形; 方程 x2 y 2 Dx Ey F 0(D2 E 2 4F 0) 叫做圆的 一般方程. 结构特征: (1)二次项系数相等,且不为零(2)没有 xy 项 思考:圆的标准方程与圆的一般方程各有什么特点?
法三:也可以设圆的标准方程:( x a) ( y b) r 将点的坐
2 2 2
标代入后解方程组也可以解得 ( x 4) ( y 3) 25
2 2
第 教 师 教 学 活 动 设 计 注:1.待定系数法求圆的方程步骤: (1). 根据题意设所求圆的方程为标准式或一般式; (2). 根据条件列出关于 a、b、r 或 D、E、F 的方程; (3). 解方程组,求出 a、b、r 或 D、E、F 的值,代入所设 方程,就得要求的方程. 2.何时选用圆的标准方程或一般方程? 四.课堂小结 1.对方程 x 2 y 2 Dx Ey F 0 的讨论(什 教 么时候可以表示圆); 2.与标准方程的互化; 定系数法求圆的方程。 五. 【课后练习】 3.用待 学生活动 学生总结 估时
人教高一数学教学设计之《4.1.2圆的一般方程》
人教高一数学教学设计之《4.1.2圆的一般方程》一. 教材分析《4.1.2圆的一般方程》这一节主要让学生了解圆的一般方程形式,并学会如何将圆的参数方程转化为一般方程。
教材通过实例引导学生理解圆的方程,培养学生解决实际问题的能力。
二. 学情分析高一学生已经学习了函数、方程等基础知识,具备一定的数学思维能力。
但学生对圆的一般方程可能初次接触,理解上存在一定难度。
因此,在教学过程中,教师需要通过具体实例、引导学生自主探究,以加深学生对圆的一般方程的理解。
三. 教学目标1.了解圆的一般方程的形式及意义;2.学会将圆的参数方程转化为一般方程;3.能够运用圆的一般方程解决实际问题。
四. 教学重难点1.圆的一般方程的形式及意义;2.如何将圆的参数方程转化为一般方程。
五. 教学方法1.实例教学:通过具体实例让学生了解圆的一般方程;2.自主探究:引导学生自主探究圆的一般方程的特点及转化方法;3.小组讨论:分组讨论,分享学习心得,互相解答疑问。
六. 教学准备1.准备相关实例,如圆的参数方程和一般方程的例子;2.准备投影仪,用于展示实例和讲解;3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用投影仪展示圆的参数方程和一般方程的例子,引导学生思考:如何用一个方程来表示一个圆?2.呈现(10分钟)介绍圆的一般方程的形式及意义,解释圆的一般方程与圆的参数方程之间的关系。
3.操练(10分钟)让学生分组讨论,尝试将给出的圆的参数方程转化为一般方程。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几组学生的答案,进行讲解和评价。
让学生明确圆的一般方程的特点及转化方法。
5.拓展(10分钟)让学生运用圆的一般方程解决实际问题,如:已知圆的方程,求圆的半径和圆心坐标。
6.小结(5分钟)对本节课的内容进行总结,强调圆的一般方程的重要性和应用价值。
7.家庭作业(5分钟)布置一些有关圆的一般方程的练习题,让学生课后巩固所学知识。
4.1.2 圆的一般方程1优质课
D D E E 方程只有实数解x=- ,y=- ,表示一个点 (- ,- ). 密切相关 2 2 2 2
2 2
(3)当D +E
D 2 E 2 -4F<0时,②式可化为(x+ 2) +(y+ 2 ) <0
方程没有实数解,因而它不表示任何图形曲线.
得结论、给定义
圆的一般方程
方程x2+y2+Dx+Ey+F=0的轨迹可能是圆、点或无轨迹.
∴
F 0 D E F 2 0 4D 2E F 20 0
解此方程组,可得:D=-8,E=6,F=0.
∴所求圆的方程为:x2+y2-8x+6y=0. 将此方程左边配方得圆的标准方程(x-4)2+(y+3)2=52, 于是圆心坐标(4,-3),半径为r=5.
将圆的标准方程展开,化简,整理,可得 x2+y2-2ax-2by+(a2+b2-r2)=0, 取D=-2a,E=-2b,F=a2+b2-r2,可写成:x2+y2+Dx+Ey+F=0. 也就是说: 任何一个圆的方程都可以通过展开写成下面方程 的形式:x2+y2+Dx+Ey+F=0 ①
请大家思考一下,反过来讲,形 如①的方程的曲线是否一定 是一个圆呢?下面我们来深 入研究这一方面的问题.
化简得x2+y2+3x-2y-18=0, 点C在曲线上,并且曲线为圆C内部的一段圆弧.
课堂练习
圆的一般方程
注意:圆(x-a)2+(y-b)2=m2的半径是|m|. 1.补充练习: (1)方程x2+y2+Dx+Ey+F=0表示的曲线是以(-2,3) 为圆心,4为半径的圆.求D、E、F的值
2.示范教案(4.1.2 圆的一般方程)
4.1.2 圆的一般方程整体设计教学分析教材通过将二元二次方程x 2+y 2+Dx+Ey+F=0配方后化为(x+2D )2+(y+2F )2=4422F E D -+后只需讨论D 2+E 2-4F >0、D 2+E 2-4F=0、D 2+E 2-4F <0.与圆的标准方程比较可知D 2+E 2-4F >0时,表示以(-2D ,-2E )为圆心,21F E D 422-+为半径的圆;当D 2+E 2-4F=0时,方程只有实数解x=-2D ,y=-2E ,即只表示一个点(-2D ,-2E );当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形.从而得出圆的一般方程的特点:(1)x 2和y 2的系数相同,不等于0;(2)没有x·y 这样的二次项;(3)D 2+E 2-4F >0.其中(1)和(2)是二元一次方程Ax 2+Bxy +Cy 2+Dx +Ey +F=0表示圆的必要条件,但不是充分条件,只有三条同时满足才是充要条件.同圆的标准方程(x -a)2+(y -b)2=r 2含有三个待定系数a 、b 、r 一样,圆的一般方程x 2+y 2+Dx+Ey+F=0中也含有三个待定系数D 、E 、F,因此必须具备三个独立条件才能确定一个圆.同样可以用待定系数法求得圆的一般方程.在实际问题中,究竟使用圆的标准方程还是使用圆的一般方程更好呢?应根据具体问题确定.圆的标准方程的特点是明确指出了圆心的坐标和圆的半径,因此,对于由已知条件容易求得圆心坐标和圆的半径或需利用圆心坐标列方程的问题,一般采用圆的标准方程.如果已知条件和圆心坐标、圆的半径都无直接关系,通常采用圆的一般方程;有时两种方程形式都可用时也常采用圆的一般方程的形式,这是因为它可避免解三元二次方程组.圆的标准方程的优点在于明确直观地指出圆心坐标和半径的长.我们知道,圆心确定圆的位置,半径确定圆的大小,它有利于研究圆的有关性质和作图.而由圆的一般方程可以很容易判别一般的二元二次方程中,哪些是圆的方程,哪些不是圆的方程,它们各有自己的优点,在教学过程中,应当使学生熟练地掌握圆的标准方程与圆的一般方程的互化,尤其是由圆的一般方程通过配方化为圆的标准方程,从而求出圆心坐标和半径.要画出圆,就必须要将曲线方程通过配方化为圆的标准方程,然后才能画出曲线的形状.这充分说明了学生熟练地掌握这两种方程互化的重要性和必要性.三维目标1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x 2+y 2+Dx +Ey +F=0表示圆的条件,通过对方程x 2+y 2+Dx +Ey +F=0表示圆的条件的探究,培养学生探索发现及分析、解决问题的能力.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法和轨迹法求圆的方程,同时渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索,培养学生探索发现及分析解决问题的实际能力.重点难点教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数D 、E 、F.教学难点:对圆的一般方程的认识、掌握和运用.课时安排1课时教学过程导入新课思路1.①说出圆心为(a,b),半径为r 的圆的标准方程.②学生练习:将以C(a,b)为圆心,r 为半径的圆的标准方程展开并整理得x 2+y 2-2ax-2by+a 2+b 2-r 2=0.③指出:如果D=-2a,E=-2b,F=a 2+b 2-r 2,得到方程x 2+y 2+Dx+Ey+F=0,这说明圆的方程还可以表示成另外一种非标准方程形式.④能不能说方程x 2+y 2+Dx+Ey+F=0所表示的曲线一定是圆呢?这就是我们本堂课的内容,教师板书课题:圆的一般方程.思路2.问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程.利用圆的标准方程解决此问题显然有些麻烦,用直线的知识解决又有其简单的局限性,那么这个问题有没有其他的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式.教师板书课题:圆的一般方程.推进新课新知探究提出问题①前一章我们研究直线方程用的什么顺序和方法?②这里我们研究圆的方程是否也能类比研究直线方程的顺序和方法呢?③给出式子x 2+y 2+Dx+Ey+F=0,请你利用配方法化成不含x 和y 的一次项的式子.④把式子(x -a)2+(y -b)2=r 2与x 2+y 2+Dx+Ey+F=0配方后的式子比较,得出x 2+y 2+Dx+Ey+F=0表示圆的条件.⑤对圆的标准方程与圆的一般方程作一比较,看各自有什么特点?讨论结果:①以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式、两点式、…)展开整理而得到的.②我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准形式展开,整理得到,也是从特殊到一般.③把式子x 2+y 2+Dx+Ey+F=0配方得(x+2D )2+(y+2E )2=4422F E D -+. ④(x -a)2+(y -b)2=r 2中,r >0时表示圆,r=0时表示点(a,b),r <0时不表示任何图形.因此式子(x+2D )2+(y+2E )2=4422F E D -+. (ⅰ)当D 2+E 2-4F >0时,表示以(-2D ,-2E )为圆心,21F E D 422-+为半径的圆; (ⅱ)当D 2+E 2-4F=0时,方程只有实数解x=-2D ,y=-2E ,即只表示一个点(-2D ,-2E ); (ⅲ)当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形.综上所述,方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x 2+y 2+Dx+Ey+F=0的形式,但方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,只有当D 2+E 2-4F >0时,它表示的曲线才是圆.因此x 2+y 2+Dx+Ey+F=0表示圆的充要条件是D 2+E 2-4F >0.我们把形如x 2+y 2+Dx+Ey+F=0表示圆的方程称为圆的一般方程.⑤圆的一般方程形式上的特点:x 2和y 2的系数相同,不等于0.没有xy 这样的二次项.圆的一般方程中有三个待定的系数D 、E 、F,因此只要求出这三个系数,圆的方程就确定了.与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.应用示例思路1例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2+4y 2-4x+12y+9=0;(2)4x 2+4y 2-4x+12y+11=0.解:(1)由4x 2+4y 2-4x+12y+9=0,得D=-1,E=3,F=49, 而D 2+E 2-4F=1+9-9=1>0,所以方程4x 2+4y 2-4x+12y+9=0表示圆的方程,其圆心坐标为(21,-23),半径为21; (2)由4x 2+4y 2-4x+12y+11=0,得 D=-1,E=3,F=411,D 2+E 2-4F=1+9-11=-1<0, 所以方程4x 2+4y 2-4x+12y+11=0不表示圆的方程.点评:对于形如Ax 2+By 2+Dx+Ey+F=0的方程判断其方程是否表示圆,要化为x 2+y 2+Dx+Ey+F=0的形式,再利用条件D 2+E 2-4F 与0的大小判断,不能直接套用.另外,直接配方也可以判断.变式训练求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0;(2)x 2+y 2+2by=0.解:(1)把x 2+y 2-8x+6y=0配方,得(x -4)2+(y+3)2=52,所以圆心坐标为(4,-3),半径为5;(2)x 2+y 2+2by=0配方,得x 2+(y+b)2=b 2,所以圆心坐标为(0,-b),半径为|b|.例2 求过三点O(0,0)、M 1(1,1)、M 2(4,2)的圆的方程,并求圆的半径长和圆心坐标. 解:方法一:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由O 、M 1、M 2在圆上,则有⎪⎩⎪⎨⎧=+++=+++=.02024,02.0F E D F E D F 解得D=-8,E=6,F=0,故所求圆的方程为x 2+y 2-8x+6y=0,即(x -4)2+(y+3)2=52.所以圆心坐标为(4,-3),半径为5.方法二:先求出OM 1的中点E(21,21),M 1M 2的中点F(25,23), 再写出OM 1的垂直平分线PE 的直线方程y-21=-(x-21), ① AB 的垂直平分线PF 的直线方程y-23=-3(x-25), ② 联立①②得⎩⎨⎧=+=+,93,1y x y x 得⎩⎨⎧-==.3,4y x 则点P 的坐标为(4,-3),即为圆心.OP=5为半径. 方法三:设所求圆的圆心坐标为P(a,b),根据圆的性质可得|OP|=|AP|=|BP|,即x 2+y 2=(x-1)2+(y-1)2=(x-4)2+(y-2)2,解之得P(4,-3),OP=5为半径.方法四:设所求圆的方程为(x -a)2+(y -b)2=r 2,因为O(0,0)、A(1,1)、B(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于a 、b 、r 的方程组,即 ⎪⎩⎪⎨⎧=-+-=+=-+-.)2()4(,,)1()1(222222222r b a r b a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,4r b a 所以所求圆的方程为(x -4)2+(y+3)2=52,圆心坐标为(4,-3),半径为5.点评:请同学们比较,关于何时设圆的标准方程,何时设圆的一般方程.一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.例3 已知点P(10,0),Q 为圆x 2+y 2=16上一动点.当Q 在圆上运动时,求PQ 的中点M 的轨迹方程.活动:学生回想求曲线方程的方法与步骤,思考讨论,教师适时点拨提示,本题可利用平面几何的知识,见中点作中线,利用中线定长可得方程,再就是利用求曲线方程的办法来求.图1解法一:如图1,作MN ∥OQ 交x 轴于N,则N 为OP 的中点,即N(5,0).因为|MN|=21|OQ|=2(定长). 所以所求点M 的轨迹方程为(x-5)2+y 2=4.点评:用直接法求轨迹方程的关键在于找出轨迹上的点应满足的几何条件,然后再将条件代数化.但在许多问题中,动点满足的几何条件较为隐蔽复杂,将它翻译成代数语言时也有困难,这就需要我们探讨求轨迹问题的新方法.转移法就是一种很重要的方法.用转移法求轨迹方程时,首先分析轨迹上的动点M 的运动情况,探求它是由什么样的点控制的.解法二:设M(x,y)为所求轨迹上任意一点Q(x 0,y 0).因为M 是PQ 的中点,所以⎪⎩⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧+=+=.2.102,20,2100000y y x x y y x x 即 (*) 又因为Q(x 0,y 0)在圆x 2+y 2=16上,所以x 02+y 02=16.将(*)代入得(2x-10)2+(2y)2=16.故所求的轨迹方程为(x-5)2+y 2=4.点评:相关点法步骤:①设被动点M(x,y),主动点Q(x 0,y 0).②求出点M 与点Q 坐标间的关系⎪⎩⎪⎨⎧==).,(),,(002001y x f y y x f x (Ⅰ) ③从(Ⅰ)中解出⎪⎩⎪⎨⎧==).,(),,(2010y x g y y x g x (Ⅱ) ④将(Ⅱ)代入主动点Q 的轨迹方程(已知曲线的方程),化简得被动点的轨迹方程.这种求轨迹方程的方法也叫相关点法,以后要注意运用.变式训练已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x+1)2+y 2=4上运动,求线段AB 的中点M 的轨迹方程.解:设点M 的坐标是(x,y),点A 的坐标是(x 0,y 0).由于点B 的坐标是(4,3)且M 是线段AB 的中点,所以x=240+x ,y=230+y .于是有x 0=2x-4,y 0=2y-3. ① 因为点A 在圆(x+1)2+y 2=4上运动,所以点A 的坐标满足方程(x+1)2+y 2=4,即(x 0+1)2+y 02=4.② 把①代入②,得(2x-4+1)2+(2y-3)2=4,整理,得(x-23)2+(y-23)2=1. 所以点M 的轨迹是以(23,23)为圆心,半径长为1的圆. 思路2例1 求圆心在直线l :x+y=0上,且过两圆C 1:x 2+y 2-2x+10y-24=0和C 2:x 2+y 2+2x+2y-8=0的交点的圆的方程.活动:学生审题,教师引导,强调应注意的问题,根据题目特点分析解题思路,确定解题方法.由于两圆的交点可求,圆心在一直线上,所以应先求交点再设圆的标准方程.解:解两圆方程组成的方程组⎪⎩⎪⎨⎧=-+++=-+-+.0822,024*******y x y x y x y x 得两圆交点为(0,2),(-4,0). 设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上,所以得方程组 ⎪⎩⎪⎨⎧=+=-+=+--.0,)2(,)4(222222b a r b a r b a解得a=-3,b=3,r=10.故所求圆的方程为(x+3)2+(y-3)2=10.点评:由已知条件容易求圆心坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程.例2 已知圆在x 轴上的截距分别为1和3,在y 轴上的截距为-1,求该圆的方程.解法一:利用圆的一般方程.设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由已知,该圆经过点(1,0),(3,0)和(0,-1),则有⎪⎩⎪⎨⎧=+--=++=++.0)1(,033,0122F E F D F D ,解之得D=-4,E=4,F=3.故所求圆的方程为x 2+y 2-4x+4y+3=0.解法二:利用圆的标准方程.由题意该圆经过P(1,0),Q(3,0),R(-1,0),设圆的方程为(x-a)2+(y-b)2=r 2,则圆心C(a,b)在PQ 的垂直平分线上,故a=2.因为|PC|=|RC|,所以2222)1()1(++=+-b a b a .将a=2代入,得b=-2,所以C(2,-2).而r=|PC|=5,故所求圆的方程为(x-2)2+(y+2)2=5.例3 试求圆C:x 2+y 2-x+2y=0关于直线l:x-y+1=0对称的曲线C′的方程.活动:学生先思考,然后解答,教师引导学生抓住本质的东西,即圆的圆心坐标变化、半径不变,另外可利用相关点法来求.解法一:设P′(x,y)为所求曲线C′上任意一点,P′关于l 的对称点为P(x 0,y 0),则P(x 0,y 0)在圆C 上. 由题意可得⎪⎪⎩⎪⎪⎨⎧-=∙--=++-+,11,01220000x x y y y y x x 解得⎪⎩⎪⎨⎧+=-=.1,100x y y x (*) 因为P(x 0,y 0)在圆C 上,所以x 02+y 02-x 0+2y 0=0.将(*)代入得(y-1)2+(x+1)2-(y-1)+2(x+1)=0,化简得x 2+y 2+4x-3y+5=0,即为C′的方程.解法二:(特殊对称)圆C 关于直线l 的对称图形仍然是圆,且半径不变,故只需求圆心C′,即求(21,-1)关于直线l:x-y+1=0的对称点C′(-2,23),因此所求圆C′的方程为(x+2)2+(y-23)2=45. 点评:比较解法一与解法二看出,利用几何性质解题往往较简单.知能训练课本练习1、2、3.拓展提升问题:已知圆x 2+y 2-x-8y+m=0与直线x+2y-6=0相交于P 、Q 两点,定点R(1,1),若PR ⊥QR,求实数m 的值.解:设P(x 1,y 1)、Q(x 2,y 2),由⎪⎩⎪⎨⎧=-+=+--+.062,0822y x m y x y x 消去y 得5x 2+4m-60=0. ① 由题意,方程①有两个不等的实数根,所以60-4m >0,m <15. 由韦达定理⎪⎩⎪⎨⎧-==+.1254,02121m x x x x 因为PR ⊥QR,所以k PR k QR =-1.所以11112211--∙--x y x y =-1,即(x 1-1)(x 2-1)+(y 1-1)(y 2-1)=0,即x 1x 2-(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0. ② 因为y 1=3-21x ,y 2=322x -,所以y 1y 2=(3-21x )(322x -)=9-23(x 1+x 2)+421x x =9+421x x , y 1+y 2=6,代入②得45x 1x 2+5=0,即45(54m-12)+5=0. 所以m=10,适合m <15.所以实数m 的值为10.课堂小结1.任何一个圆的方程都可以写成x 2+y 2+Dx+Ey+F=0的形式,但方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,只有D 2+E 2-4F >0时,方程表示圆心为(-2D ,-2E ),半径为r=21F E D 422-+的圆.2.求圆的方程,应根据条件特点选择合适的方程形式:若条件与圆心、半径有关,则宜用标准方程;若条件主要是圆所经过的点的坐标,则宜用一般方程.3.要画出圆的图像,必须要知道圆心坐标和半径,因此应掌握利用配方法将圆的一般方程化为标准方程的方法.作业习题4.1 A 组1、6,B 组1、2、3.设计感想这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”.在展现知识的形成过程中,尽量避免学生被动接受,引导学生探索,重视探索过程.一方面,把直线一般方程探求过程进行回顾、类比,学生从中领会探求方法;另一方面,“把标准方程展开→认识一般方程”这一过程充分运用了“通过特殊认识一般”的科学思想方法.同时,通过类比进行条件的探求——“D 2+E 2-4F”与“Δ”(判别式)类比.在整个探求过程中充分利用了“旧知识”及“旧知识的形成过程”,并用它探求新知识.这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程.。
4.1.2圆的一般方程教案
4. 1.2圆的一般方程【教学目标】1.使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.【教学过程】(一)情景导入、展示目标前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.引出圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.例1 求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0, (2)x 2+y 2+2by=0.解析:先配方,将方程化为标准形式,再求圆心和半径.解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b . 点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握. 变式训练1:1.方程x 2+y 2+2kx +4y +3k +8=0表示圆的充要条件是( ) A.k >4或者k <-1 B.-1<k <4 C.k =4或者k =-1 D.以上答案都不对2.圆x 2+y 2+Dx +Ey +F =0与x 轴切于原点,则有( ) A.F =0,DE ≠0 B.E 2+F 2=0,D ≠0 C.D 2+F 2=0,E ≠0 D.D 2+E 2=0,F ≠0答案:1.A 2.C例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程. 解:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由O 、A 、B 在圆上,则有解得:D=-8,E=6,F=0,故所求圆的方程为x 2+y 2-8x+6=0. 点拨:1.用待定系数法求圆的方程的步骤: (1)根据题意设所求圆的方程为标准式或一般式; (2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程;(3)解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程. 2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.变式训练2: 求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.解:解方程组⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得两圆交点为(-4,0),(0,2).设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上所以得方程组为⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10. 故所求圆的方程为:(x+3)2+(y-3)2=10.课后练习与提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( )A.-71<m <1 B.-1<m <71C.m <-71或m >1 D.m <-1或m >712.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是 . 5.过点A (-2,0),圆心在(3,-2)的圆的一般方程为 . 6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.一、选择题(每小题5分,共20分) 1.下列方程中表示圆的是( ) A .x 2+y 2-2x +2y -4=0 B .x 2+y 2-2xy +y +1=0 C .x 2+2y 2-2x +4y +3=0D .x 2+2y 2+4x -12y +9=0解析: A 采用配方的办法可得到圆的方程,B 中含xy 项,C ,D 中x 2,y 2的系数不相等. 答案: A2.若圆x 2+y 2+Dx +Ey +F =0的圆心坐标为(-2,3),半径为4,则D ,E ,F 分别是( ) A .-4,-6,3 B .-4,6,3 C .-4,6,-3D .4,-6,-3解析: 由(x +2)2+(y -3)2=16,展开得x 2+y 2+4x -6y -3=0,∴D =4,E =-6,F =-3.答案: D3.已知动点M 到点(8,0)的距离等于点M 到点(2,0)的距离的2倍,那么点M 的轨迹方程是( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析: 设M (x ,y ),则M 满足(x -8)2+y 2=2(x -2)2+y 2,整理得x 2+y 2=16. 答案: B4.当圆x 2+y 2+2x +ky +k 2=0的面积最大时,圆心坐标是( ) A .(0,-1) B .(-1,0) C .(1,-1)D .(-1,1)解析: r 2=4+k 2-4k 24=1-34k 2.∴当k =0时,r 2最大,从而圆的面积最大. 此时圆心坐标为(-1,0),故选B. 答案: B二、填空题(每小题5分,共10分)5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.解析: 由题意,可得圆C 的圆心⎝⎛⎭⎫-1,-a 2在直线x -y +2=0上,将⎝⎛⎭⎫-1,-a2代入直线方程,得-1-⎝⎛⎭⎫-a2+2=0,解得a =-2. 答案: -26.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是____________________.解析: 圆的标准方程是(x -2)2+(y +1)2=16, 则圆心A (2,-1).设M (x ,y ),P (x 0,y 0),则x 20+y 20-4x 0+2y 0-11=0,又有⎩⎨⎧x =x 0+22,y =y 0-12,∴⎩⎪⎨⎪⎧x 0=2x -2,y 0=2y +1, 代入x 20+y 20-4x 0+2y 0-11=0得x 2+y 2-4x +2y +1=0.答案: x 2+y 2-4x +2y +1=0 三、解答题(每小题10分,共20分)7.求一个动点P 在圆x 2+y 2=1上移动时,它与定点A (3,0)连线的中点M 的轨迹方程. 解析: 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0). 由于点A 的坐标为(3,0)且M 是线段AP 的中点, 所以x =x 0+32,y =y 02, 于是有x 0=2x -3,y 0=2y . 因为点P 在圆x 2+y 2=1上移动,所以点P 的坐标满足方程x 20+y 20=1,则(2x -3)2+4y 2=1, 整理得⎝⎛⎭⎫x -322+y 2=14. 所以点M 的轨迹方程为⎝⎛⎭⎫x -322+y 2=14. 8.求圆心在直线y =x 上,且经过点A (-1,1),B (3,-1)的圆的一般方程. 解析: 设圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心是⎝⎛⎭⎫-D 2,-E2,由题意知⎩⎨⎧-D 2=-E 2,2-D +E +F =0,10+3D -E +F =0,解得D =E =-4,F =-2,即所求圆的一般方程是x 2+y 2-4x -4y -2=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征
化.
A 是主动点, B 是被动点.
推导 将几何条件直接坐标化
将主动点坐标用被动点坐标
过程
表示,带入圆的方程.
(3)轨迹与轨迹方程不同,前者是曲线,后者是方程,但要求轨迹往往先求轨
迹方程.如例 5,若改为求线段 AB 的中点 M 的轨迹,我们根据题意看不出 M 的轨
迹是什么曲线,但先求出点 M 的轨迹方程 (x 3)2 ( y 3)2 1,根据方程就能知
问题解决最佳方案
【方法总结】
【自我检测】
1.方程 x2 y2 2ax 2by a2 b2 0 表示的图形是( ).
(A)以 (a, b) 为圆心的圆
(B)以 (a,b) 为圆心的圆
(C)点 (a, b)
(D)点 (a,b)
2.圆的方程为 (x 1)(x 2) ( y 2)(y 4) 0 ,则圆心坐标为( ).
.
【典型例题】
例 1 求过三点 O(0,0), M1(1,1), M 2 (4,2) 的圆的方程,并求这个圆的半径长和
圆心坐标.
【方法总结】
2
必修 2 第四章 圆与方程
例 2 已知线段 AB 的端点 B 的坐标是 (4,3) ,端点 A 在圆 (x 1)2 y2 4 上运 动,求线段 AB 的中点 M 的轨迹方程.
(
).
(A) x y 3 0 (B) x 2y 4 0 (C) x y 1 0 (D) x 2 y 0
7. 已 知 圆 x2 y2 kx 2 y k 2 , 当 该 圆 的 面 积 取 最 大 值 时 , 圆 心 坐 标
为
.
8.设圆 x2 y2 4x 2 y 11 0 的圆心为 A ,点 P 在圆上,则 PA的中点 M 的
问题解决最佳方案
x2 y2 Dx Ey F 0 ,可以得出如下结论:当二元二次方程具备条件:
① x2 和 y 2 的系数相同,且不等于 0 ,即
;
②没有 xy 项
③ 【感悟】
时,才表示圆.
2.圆的标准方程与一般方程的特点对比
标准方程
一般方程
(x a)2 ( y b)2 r 2 (r 0)
2
2
道点 M 的轨迹是以 ( 3 , 3) 为圆心,半径长是1的圆,这就是解析几何的重要思想. 22
【基础练习】
1.求下列各方程表示的圆的圆心坐标和半径长:
(1) x2 y2 6x 0
(2) x2 y2 2by 0
(3) x2 y2 2ax 2 3ay 3a2 0
2.判断下列方程分别表示什么图形:
(1) x2 y2 0 ; (2) x2 y2 2x 4 y 6 0 ;
(3) x2 y2 2ax b2 0 .
3.若方程 a2 x2 (a 2) y2 2ax a 0 表示圆,则 a 等于
.
4.已知 M (1,1), N(2,5) ,则到 M , N 距离相等的点的轨迹是
x2 y2 Dx Ey F 0(D2 E2 F 0)
指出了
和
,几何 是一种特殊的
方程,代数特征明显.
特征明显.
二者都含有三个待定参数,要确定方程,均需要三个独立条件.
【感悟】
3.待定系数法求圆的方程
(1)
;
(2)
;
(3)
;
【感悟】
1
问题解决最佳方案
4.轨迹与轨迹方程
轨迹方程是
.
3
问题解决最佳方案
必修 2 第四章 圆与方程
9.圆 x2 y2 Dx Ey 3 0 的圆心在坐标轴上,半径为 2 ,当 D E 时,求
圆的方程.
10.已知一条曲线在 x 轴的上方,它上面的每一点,到点 A(0,2) 的距离减去它到 x 轴的距离的差都是 2 ,求这条曲线的方程,并说明是什么曲线.
).
(A) 2 2a
(B) 2 2a
(C) 2a2
(D) 2a
5.到两坐标轴的距离相等的动点的轨迹方程是(
).
(A)y x
(B)y x
(C)x2 y 2
(D)x2 y2 0
6. 如 果 过 A(2,1) 的 直 线 l 将 圆 x2 y2 2x 4 y 0 平 分 , 则 l 的 方 程 为
必修 2 第四章 圆与方程
(1)求动点的轨迹方程,就是根据题意建立动点的坐标 (x, y) 所满足的等量关
系,并把这个方程化成最简形式,如题目中无坐标系,就要先建立适当的直角坐标系.
(2)阅读例 5 并与推导圆的标准方程的方法对比.
圆的标准方程推导
例5
动点
个数Biblioteka 动点 动点几何条件明显A 点在圆上运动导致 M 变
教后反思
4
(A) (1,1)
(B) ( 1 ,1) 2
(C) (1,2)
(D) ( 1 ,1) 2
3.若方程 x2 y2 4x 2 y 5k 0 表示圆,则 k 的取值范围是( ).
(A) k 1
(B) k 1 (C) k 1
(D) k 1
4.圆 2x2 2 y2 4ax 12ay 16a2 0(a 0) 的周长等于(
必修 2 第四章 圆与方程
4.1.2 圆的一般方程
【教学目标】 1.掌握圆的一般方程,理解圆的一般房车与标准方程的联系; 2.初步了解用代数方法处理几何问题,掌握求点的轨迹方程的思想方法.
【重点】圆的一般方程 【难点】点的轨迹方程的求法
【学习探究】
【预习提纲】 (根据以下提纲,预习教材第 121 页~第 123 页) 1.圆的一般方程
(1)方程 x2 y2 Dx Ey F 0 .
①当 ②当 ③当 等于
时,方程表示一个点,该点的坐标为 时,方程不表示任何图形; 时,方程表示的曲线为圆,它的圆心坐标为
,上述方程称为圆的一般式方程.
; ,半径
(2)比较二元二次方程 Ax2 Bxy Cy2 Dx Ey F 0 和圆的一般方程