固体物理 课后习题解答(黄昆版)第四章
固体物理教程答案
固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?2???2?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)?与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]??由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的?a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为v????e?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得?a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,????????eb?eb???vi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b的离子半e??eb??a???b?径不同, 质量不同, 所以一般a, .?a???a???b???b?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbt????epn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt????2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? [解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.??17.ab离子晶体的导电机构有几种?[解答]??离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体??????中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,????成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和?????a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
(完整word版)黄昆固体物理课后习题答案4
第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, -+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为-v B ν和-i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别-v B E 为-iB E , 则由(4.47)矢可得 Tk E B A A B v A v v e T k ea /2+++-=νμ,T k E B A A B i A i i e Tk ea /2+++-=νμ, T k E B B B B v B v v e Tk ea /2----=νμ, Tk E B B B B i B i i e T k ea /2----=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E ,-v B E <-i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, -v B ν<-i B ν. 另外, 由于+A 和-B 的离子半径不同, 质量不同, 所以一般-+≠B A E E , -+≠B A νν. 也就是说, 一般--++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+-=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+-=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν--==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.-+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. -+B A 离子晶体中有4种缺陷: +A 填隙离子, -B 填隙离子, +A 空位, -B 空位. 也就是说, -+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. -+B A 离子晶体中, +A 空位附近都是负离子, -B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, -B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和-B 空位的漂移方向与外电场方向一致, 而-B 填隙离子和+A 空位的漂移方向与外电场方向相反.。
固体物理学答案_黄昆原著_韩汝琦改编
2U N r m n 1 [( m 1 n 1 ) ] 2 V 2 V r r r 3NAr 2
2U V 2 N 1 m 2 n 2 m n [ m n m n ] 2 9V02 r0 r0 r0 r0
V V0
由平衡条件
2U V 2 2U V 2
d 2 a 2 (h 2 k 2 l 2 ) , 1.6、 对于简单立方晶格, 证明密勒指数为 (h, k , l ) 的晶面系, 面间距 d 满足:
其中 a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。 解:简单立方晶格: a1 a2 a3 , a1 ai , a2 aj , a3 ak 由倒格子基矢的定义: b1 2 倒格子基矢: b1
b2
2 (i j k ) a 同理可得: 即面心立方的倒格子基矢与体心立方的正格基矢相同。 2 b3 (i j k ) a
所以,面心立方的倒格子是体心立方。
a a1 2 (i j k ) a (2)体心立方的正格子基矢(固体物理学原胞基矢) : a2 ( i j k ) 2 a a3 2 (i j k )
a , 2 0, a , 2
a i, 2 3 a a a , a2 a3 , 2 4 2 a 0 , 2
j, 0, a , 2
k a a2 ( i j k ) 2 4 0
b1 2
4 a2 2 ( i j k ) ( i j k ) 3 a 4 a
1 m n nm W (1 )( ) m 2 n m
(3)体弹性模量 K (
2U )V V0 V 2 0
晶体的体积 V NAr 3 ,A 为常数,N 为原胞数目 晶体内能 U (r )
《固体物理·黄昆》第四章(2)
第一布里渊区的线度
第一布里渊区状态数 —— 第一布里渊区包散关系曲线具有周期性
色散关系
—— q空间的周期
频率极小值 频率极大值
q a a
只有频率在 其它频率的格波被强烈衰减
之间的格波才能在晶体中传播,
—— 一维单原子晶格看作成低通滤波器
讨论: 1)格波 —— 长波极限情况:
第n个原子和第n+1个原子间的距离
平衡位置时,两个原子间的互作用势能 发生相对位移 后,相互作用势能
黄昆版固体物理学课后答案解析答案 (2)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理答案第四章1
化简为习惯的表示式
E0
3 5
EF0
4.8 对于单位面积的样品,二维电子气的状态密度为g 4m
h2
试求二维电子气的比热。
解: 设g(E)为单位体积样品的状态密度,当系统由0K加热直至 温度T时, 它的总能量
ET
4m
Ef (E)g(E)dE
0
h2
2m
Ef (E)dE
0
h2
E 2 f (E) dE
k 空间中,状态密度等于V,计入自旋,在波矢 k ~ k dk
的球壳内的状态数为 2V 4k 2dk , 由此得到,费密球内
电子的总能量
E0
k kF
h2k 2 2m
2V
4k 2dk
式中 kF 是费密球半径。当V比较大时,波矢 k 在 k 空间的
分布非常密集,可以看作准连续,上式的求和可用积分代替,
L 因而在波矢空间每个状态的代表点占有面积为
2π
2
。
L
在k
~
k
dk 面积元
dk
dk x dk y
中含有的状态数为
L 2π
2
dk 。
每个波矢状态可容纳自旋相反的两个电子,则在面积元 dk 中
容纳电子数为
dz 2
L
2
dk
2
L
2 2 π kdk
2π
2π
又
E 2k2 2m
dE 2k dk m
所以E到E+dE之间的状态数
4π
L 2
2π
m 2
dE
L2m π 2
dE
(2)在E到E+dE内的电子数为dN
dN f Edz
固体物理第四章答案
y
b1+b2 b2 3 2 1 b1
2 a
-b1
2 a
-b2
x
-b1-b2
4.11设一维晶体晶格常数为a,系统的哈密顿量为 其中
H
2 d2
2m dx
2
V ( x),
V ( x) A ( x la)
l 1
N
若已知孤立原子的势和波函数为
Va A ( x la), a a e
J1 * [V ( x) Va ]a dx a
Na
* ( x na)[ A ( x na) A ( x na a )] a ( x na a )dx a
Na n 1
N
* ( x na)[ a
Na
n n1
1一维周期场中电子的波函数
满足 k ( x ) Bloch定理,若晶格常数为a的电子波函数为:
(a) k ( x) sin
x
a 3 x a
(b) k ( x) i cos (c) k ( x)
l
f ( x la)
试求电子在这些态的波失。
jka 解:根据Bloch定理 k ( x a) e k ( x) 可得:
Na N Na n 1 N
* ( x na)[ A ( x na) A ( x na)]a ( x na)dx a * ( x na)[ A ( x na) ]a ( x na)dx a
Na n n
根据 函数的性质,上式的值为0。而积分
=-U 上面计算中取 kn (
2 2 , ) ,Brayy 反射出现的第一布里渊区的四个顶点处。能隙为 2U。
固体物理教程答案
固体物理教程答案固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?22?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2 溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为ve?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv 和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,eb?ebvi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b 的离子半e??eb??ab?径不同, 质量不同, 所以一般a, .aabb?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbtepn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.ab离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
黄昆版固体物理学课后答案解析答案 (3)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆固体物理习题-第四章 能带理论
4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s 态原子能级相对应的能带函数)(k E s先求面心立方晶格s 态原子能级相对应的能带E s (k )函数,利用公式:∑=⋅−−−=NearestR R k i s s s s seR J J k E)()(0ε解:0*01()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==−−−>∫ 01()s s ik R ss R NearestE k J J eε−⋅==−−∑ s 原子态波函数具有球对称性,则:解:只计入最近邻格点原子的相互作用时,s 态原子能级相对应的能带函数表示为:∑=⋅−−−=NearestR R k i s s ss seR J J k E )()(0ε4.7 有一一维单原子链,原子间距a ,总长度为L =Na 1) 用紧束缚近似方法求出与原子s 态能级相对应的能带函数2) 求出其能带密度函数的表达式3) 如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度0F E 0FE )(E N二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中。
如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B点)。
这样,晶体将只有绝缘体性质。
然而由(2)可知,B点的能量比A点高很多,从能量上看,这种电子排列是不利的。
事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Fermi面。
因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能。
实际上,多数的二价金属具有六角密堆和面心立方结构,能带出现重达,所以可以导电。
4.8题解答完毕。
(完整版)黄昆版固体物理学课后答案解析答案
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (1)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理第四章习题及答案
第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, −+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为−v B ν和−i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别−v B E 为−iB E , 则由(4.47)矢可得 T k E B A A B v A v v e Tk ea /2+++−=νμ, Tk E B A A B i A i i e T k ea /2+++−=νμ,T k E B B B B v B v v e Tk ea /2−−−−=νμ, Tk E B B B B i B i i e T k ea /2−−−−=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E , −v B E <−i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, −v B ν<−i B ν. 另外, 由于+A 和−B 的离子半径不同, 质量不同, 所以一般−+≠B A E E , −+≠B A νν.也就是说, 一般−−++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+−=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+−=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν−−==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.−+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. −+B A 离子晶体中有4种缺陷: +A 填隙离子, −B 填隙离子, +A 空位, −B 空位. 也就是说, −+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. −+B A 离子晶体中, +A 空位附近都是负离子, −B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, −B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和−B 空位的漂移方向与外电场方向一致, 而−B 填隙离子和+A 空位的漂移方向与外电场方向相反.。
固体物理 课后习题解答(黄昆版)第四章
4.1,根据 k黄昆 固体物理 习题解答第四章 能带理论= ± π 状态简并微扰结果,求出与 E − 及 E +相应的波函数ψ − 及ψ+?,并说明它 a们的特性.说明它们都代表驻波,并比较两个电子云分布 ψ2说明能隙的来源(假设V n =V n *)。
<解>令 k= + π , k ′ = − π ,简并微扰波函数为ψ=A ψk( ) + B ψk( )a*a⎡E k ( ) − E A V B n= 0( )V A n+ ⎡E k − E B =取 E E +带入上式,其中 E += E k0( )+ V nV(x)<0,V n < 0 ,从上式得到 于是A ⎡ n π− n π ⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =ixe a − e i x a =2A sin n x+⎣k⎢ L ⎣⎥ ⎦L a 取 E E − , E −=E k0( )− V nV A n= −V B n,得到A BA ⎡ i nπx−i n πx⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =e a − ea=2A cos n x−⎣ k⎦⎢ ⎣L a由教材可知,Ψ+及 Ψ − ν ( ) 为零.产生驻波因为电子波矢n kπ=时,电子波的波长aλ =2π=2a ,恰好满足布拉格发射条件,这kn时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入 能量。
4.2,写出一维近自由电子近似,第 n 个能带(n=1,2,3)中,简约波数 k π= 的 0 级波函数。
2a11r2π1π 2π1i2π1xi mx i x i mx(m+ )ψ* <解>( ) = ikx=eikx ae e= e2a⋅ea= e a 4k L⋅π=L*Lπ1 i2xL第一能带:m0, m = 0,ψ( ) = e a2ab b′则b′ →,k2π⋅= −L2π, m= −1,i2πx i π∴ψ *( )= 13πi xe第二能带:a a即(e a=e )2a k L2a2π2π 1 π2π 1 5π第三能带:c′ →, ⋅=aa即m =,*1,ψk( ) = Li x i xe2a⋅ea= L i xe2a解答(初稿)作者季正华- 1 -4.3 电子在周期场中的势能.黄昆 固体物理 习题解答1 2 2 2 2 m ω ⎡b − −( x na ⎤) ,当na b x na b + V x ( ) =0 ,当(n-1)a+b ≤ ≤x na b −其中 d =4b , ω 是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带 度.<解>(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见, V x ( ) 是个以 a 为周期的周期函数,所以V x ( )= 1∫ V x L( )=1∫a( )=1a b( )L a ba ∫−b题设 a = 4b ,故积分上限应为 a b − = 3b ,但由于在 [b b ,3 ] 区间内[− , ] 区间内积分.这时, n = 0 ,于是V x ( ) 0=,故只需在= 1∫b= m ω2∫b22=m ω2 ⎡ 2b− 1x 3b ⎤ = 1m ωb 2V( )b − x dx )( b x ⎢ −b −b⎥ 。
《固体物理·黄昆》第四章(3)只是分享
—— 布里渊散射
2. 光子与光学波声子的相互作用 —— 光子的拉曼散射
能量守恒 动量守恒 —— 可见光或红外光k很小,光 子与光波声子发生相互作用,要 求声子的波矢q必须很小 —— 光子的拉曼散射只限于光子与长光学波声子的相互作用 散射光和入射光的频率位移
爱因斯坦温度
—— 爱因斯坦热容函数
—— 选取合适的E值,在较大温度变化的范围内,理论计 算的结果和实验结果相当好地符合
—— 大多数固体
金刚石 理论计算和实验结果比较
晶体热容: A):温度较高时:
—— 与杜隆 — 珀替定律相符
晶体热容: B)温度非常低时:
—— 按温度的指数形式降低 实验测得结果
《固体物理·黄昆》第四章(3)
原胞中的两个正负离子质量 两个正负离子的位移
描述长光学波运动的宏观量 —— 原胞体积 黄昆方程
—— 宏观极化强度和宏观电场强度
—— 离子相对运动的动力学方程
—— 正负离子相对运动位移产生的极 化和宏观电场产生的附加极化
方程中的系数可用特殊情况下的介电常数表示, 因此可通过实验测定:
一个振动模对热容贡献 高温极限
—— 忽略不计
物理意义:
—— 与杜隆- 珀替定律相符
一个振动模对热容贡献 低温极限
物理意义:
—— 与实验结果相符
晶体中有3N个振动模,总的能量 晶体总的热容
1. 爱因斯坦模型 一个振动模式的平均能量 N个原子构成的晶体,所有的原子以相同的频率w0振动
总能量
晶体热容
学横波(TO)具有电磁性,可以和光场发生耦合
4.6 确定晶格振动谱的实验方法 晶格振动的频率和波矢间的关系 —— 晶格振动的振动谱 晶格振动的振动谱测定方法 A): 中子非弹性散射 B):光子与晶格的非弹性散射 C): X射线散射 A): 中子非弹性散射 入射晶体时中子的动量和能量
黄昆固体物理习题-第四章 能带理论
4.1 根据状态简并微扰结果,求出与及相应的波函数及,并说明它们的特性,说明它们都代表驻波,并比较两个电子云分布说明能隙的来源(假设).2ψ*=nnV V 解:令,简并微扰波函数取带入上式,其中()n V k E E +=+0第四章习题参考解答, 从上式得到,于是取得到由教材可知, 及均为驻波。
电子波矢时,电子波的波长恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同能量。
4.1题解答完毕4.2写出一维近自由电子近似,第n个能带(n=1,2,3)中简约波矢的零级波函数解:一维近自由电子近似中,用简约波矢表示的波函数( 为简约波矢)代入得到对于第一个能带第n个能带零级波函数:简约波矢:则有对于第二个能带:对于第三个能带4.2题解答完毕4.3电子在周期场中的势能函数且a=4b, 是常数。
(1)画出此势能曲线,并计算势能的平均值;(2) 用近自由电子模型计算晶体的第一个和第二个带隙宽度。
解:由已知条件画出势能曲线(1)势能曲线势能的平均值为:令(2)带隙宽度第一个带隙宽度第二个带隙宽度4.3题解答完毕4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s态原子能级相对应的能带函数先求面心立方晶格s态原子能级相对应的能带E s(k )函数,利用公式:解:s原子态波函数具有球对称性,则:取任选取一个格点为原点,最近邻格点有12个代入能量公式类似的表示共有12项,归并化简后,得到面心立方s态原子能级相对应的能带为:对于体心立方格子,任选取一个格点为原点有8个最邻近格点,最近邻格点的位置为:类似的表示共有8项,归并化简后得到体心立方s态原子能级相对应的能带代入能量公式()01s ik k ss E k J J eε-⋅=--∑ ()()1,nik k at n sn nk r er k Nφϕ⋅=-∑ M 点的布洛赫波为:()()1,mik k at msm mk r er k Nφϕ⋅=-∑ 4.5 题略p582在只考虑S 态电子的情下,由一维简单晶格的布洛赫波为:解:S 态原子对应的能带函数其中矩阵元:所以此时久期方程变为:其中由于原子波函数满足薛氏方程:晶体的哈密顿量写成H ,所以矩阵元即库仑积分交叠积分由于晶体不同原子的电子波函数很少相互交迭,所以上式中只有当是相邻原子是相同原子时才不为零(2)解:(1)= 4.6 题略解:只计入最近邻格点原子的相互作用时,s态原子能级相对应的能带函数表示为:4.7有一一维单原子链,原子间距a ,总长度为L =Na1)用紧束缚近似方法求出与原子s 态能级相对应的能带函数2)求出其能带密度函数的表达式3)如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度对于一维情形,任意选取一个格点为原点,有两个最近邻的格点,坐标为:a和-a能带密度函数的计算对于一维格子,波矢为具有相同的能量此外考虑到电子自旋有2种取向,在dk区间的状态数为:能带密度T=0K的费密能级计算:总的电子数其中T=0K的费密能级T=0K费密能级处的能态密度4.7题解答完毕4.8 (1)证明一个简单正方晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍。
黄昆版固体物理学课后答案解析答案(1)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (1)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆固体物理习题解答
因此只要先求出倒格点 Ghkl ,求出其大小即可。
由正格子基矢 a = ai , b = bj , c = ck ,可以马上求出:
a∗ = 2π i , b ∗ = 2π j , c∗ = 2π k
a
b
c
因为倒格子基矢互相正交,因此其大小为
Ghkl =
(ha∗ )2 + (kb∗ )2 + (lc∗ )2 = 2π
(h)2 + (k )2 + ( l )2 abc
则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为
a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为 8,最近邻原子间距等于 3 a ,次近邻原 2
=V0
∂2U ( ∂r2
)r0
=
N 2
[−
m(m +1)α r m+2
0
+
n(n +1)β r n+2
0
=
N 2
{−
1 r02
m2α [( r0m
−
n2β r0n
)
+
(
mα r0m
−
nβ r0n
)]}
=
N 2
[−
1 r02
m2α ( r0m
−
n2β r0n
)]
=
N 2
[−
1 r m+2
0
(m2α
−
n2β nβ
AB = a (i − j − k ) 2
c
B
b
C
O
a
OB ⋅ AB =| OB || AB | cosθ = a2 (−1) 4
《固体物理·黄昆》第四章(3)
波矢的数值在
之间的振动方式的数目
频率在
之间,纵波数目
频率在
之间,横波数目
频率在
之间,格波数目
频率在
间,格波数目
频率分布函数
格波总的数目
晶体总的热容
晶体总的热容
令
德拜温度
德拜热容函数
德拜热容函数
在高温极限下
晶体总的热容 —— 与杜隆-珀替定律一致
晶体热容 低温极限
晶体热容
—— T3成正比
—— 德拜定律 —— 温度愈低时,德拜模型近似计算结果愈好 —— 温度很低时,主要的只有长波格波的激发
C): X射线散射
A): 中子非弹性散射
入射晶体时中子的动量和能量
出射晶体后中子的动量和能量
能量守恒
动量守恒 倒格子矢量 声子的准动量
—— 中子的能量 ____ 0.02~0.04 eV —— 声子的能量 ____ ~10 –2 eV 两者具有相同的数量级
测得各个方位上入射中子和散射中子的能量差
光子与声子的作用过程满足
能量守恒
动量守恒
—— 固定入射光的频率和入射方向,测量不同方向的散 射光的频率,可以得到声子的振动谱
1) 光子与长声学波声子相互作用 —— 光子的布里渊散射 长声学波声子
光子的频率 注意:一般而言,可见光光子的波矢 ~108 m-1,w=1016Hz
因此与之相互作用的声子的波矢: ~108 m-1
—— 确定声子的频率 根据入射中子和散射中子方向的几何关系 —— 确定声子的波矢
—— 得到声子的振动谱
—— 从反应堆出来的慢中子的能量与声子的能量接近,容易 测定中子散射前后的能量变化,直接给出声子能量的信息
局限性:不适用于原子核对中子有强俘获能力的情况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. e h c 3 . w
a a , 2 2 a a , − 2 2 a a − , 2 2 a a − , − 2 2 ⎧ a ⎪ 2, ⎪ ⎪ a, ⎪ 2 ⎨ ⎪− a , ⎪ 2 ⎪ a ⎪− , ⎩ 2 a 2 a 0, − 2 a 0, 2 a 0, − 2 0,
m o c
v E s ( k ) = ε s − J 0 − J1 =e
v E s (k ) = ε s − J 0
—— 归并化简后得到面心立方 s 态原子能级相对应的能带
w
−4 J1 (cos
—— 对于体心立方格子,任选取一个格点为原点
w
k a k a kx a ka ka ka cos y + cos x cos z + cos y cos z ) 2 2 2 2 2 2
⎞ˆ ⎛ 2π ⎞ ˆ ⎟ j, C = ⎜ ⎟ k, ⎠ ⎝ a ⎠
h2 ⎛ π ⎞ A点能量ε A == ⎜ ⎟ ; 2m ⎝ a ⎠
2
解答(初稿)作者
季正华
-5-
黄昆 固体物理 习题解答
2 2 2 2 h2 h 2 ⎡⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ ⎤ h 2 ⎡ ⎛ π ⎞ ⎤ 2 2 2 B点能量ε B = ( K x + K y + K z ) = 2 m ⎢⎜ ⎢3 ⎜ ⎟ ⎥ , ⎟ +⎜ ⎟ +⎜ ⎟ ⎥ = 2m a a a 2 m ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎢ ⎥ ⎢ ⎣ ⎦ ⎣ ⎝a⎠ ⎥ ⎦
V ( x) =
0 ,
当na − b ≤ x ≤ na + b 当(n-1)a+b ≤ x ≤ na − b
其中 d=4b, ω 是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带 度. <解>(I)题设势能曲线如下图所示.
(2)势能的平均值:由图可见, V ( x ) 是个以 a 为周期的周期函数,所以
v E s (k ) = ε s − J 0 −
Rs = Nearest
v v − ikv⋅R s J R e ( ) ∑ s
—— s 原子态波函数具有球对称性
v v v v v v v J1 = J ( Rs ) = − ∫ ϕi0* (ξ − Rs )[U (ξ ) − V (ξ )]ϕi0 (ξ )}d ξ > 0
v v av a v Rs = i + j + 0k 2 2
⎧ ⎪0, ⎪ ⎪0, ⎪ ⎨ ⎪0, ⎪ ⎪ ⎪0, ⎩
e −ik ⋅Rs = e
v v
v av a v v v v − i ( k x i + k y j + k z k )⋅ ( i + j + 0 k ) 2 2
k a k a ka ka = (cos x − i sin x )(cos y − i sin y ) 2 2 2 2
a −i ( kx + k y ) 2
Rs = Nearest
∑
e −ik ⋅Rs
v v
b 2 − 4ac
—— 类似的表示共有 12 项
解答(初稿)作者
季正华
-3-
黄昆 固体物理 习题解答
a ⎧ a , ⎪ 2, 2 ⎪ ⎪ −a, −a, ⎪ 2 2 ⎨ a ⎪ a, , ⎪ 2 2 ⎪ a a ⎪ − , − , 2 ⎩ 2
利用积分公式 u 2 cos mudu =
16mω 2
w
m =−∞
∑
∞
′ mπ 2 2b mπ 1 b mπ Vm cos x, Vm = V ( x) cos xdx = ∫ V ( x) cos xdx ∫ 0 0 2b 2b 2b b 2b mω 2 b
. e h c 3 . w
b −b
m o c
0 0 ψ+ = A⎡ ⎣ψ k ( x) −ψ k ′ ( x) ⎤ ⎦ = L ⎢e ⎣
取 E = E− , E− = E 0 (k ) − Vn
0 0 ψ− = A⎡ ⎣ψ k ( x) −ψ k ′ ( x) ⎤ ⎦ = L ⎢e ⎣
由教材可知, Ψ + 及 Ψ − 均为驻波. 在驻波状态下,电子的平均速度ν ( k ) 为零.产生 驻波因为电子波矢 k =
w
π
r i 2π mx )x 1 ikx 1 ikx 1 i 2πa x i 2aπ mx 1 i 2aπ ( m + 1 4 e = e e a = e ⋅e = e L L L L
. e h c 3 . w
A ⎡
i nπ x a
−e
−i
nπ x a
⎤ 2A nπ sin x ⎥= a L ⎦
m o c
第三能带: c′ → c, m ⋅
π x 2π 2π 1 i 2πa x i 2aπ x 1 i5 * e ⋅e e 2a , 即m = 1,ψ k ( x) = = = a a L L
解答(初稿)作者
季正华
-1-
黄昆 固体物理 习题解答
4.3 电子在周期场中的势能.
1 2 2 mω 2 ⎡ ⎣b − ( x − na ) ⎤ ⎦, 2
π
a
,简并微扰波函数为ψ = A ψ k0 ( x ) + Bψ k0 ( x )
⎡ E 0 (k ) − E ⎦ ⎤ A + Vn* B = 0 ⎣
0 Vn A + ⎡ ⎣ E ( k ′) − E ⎤ ⎦B=0
取 E = E+
带入上式,其中 E+ = E 0 (k ) + Vn
V(x)<0, Vn < 0 ,从上式得到 B= -A,于是
V ( x) =
1 1 a 1 a −b V ( x) = ∫ V ( x ) dx = ∫ V ( x )dx ∫ L L a b a −b
题设 a = 4b ,故积分上限应为 a − b = 3b ,但由于在 [b,3b ] 区间内 V ( x ) = 0 ,故只需在
[ −b, b] 区间内积分.这时, n = 0 ,于是
. e h c 3 . w
ika
—— 类似的表示共有 8 项
m o c
+ e−ika ) = ε s − J 0 − 2 J1 cos ka = E0 − 2 J1 cos ka
π
2a
0 ⋅ a = Es , N ( E F )=
N
π J1 sin
π
2a
= ⋅a
N π J1
4.8,证明一个自由简单晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大 2 倍.(b)对于一个简单立力晶格在第一布里渊区顶角上的一个自由电子动能比该区面心上 大多少?(c)(b)的结果对于二价金属的电导率可能会产生什么影响 7 <解>(a)二维简单正方晶格的晶格常数为 a,倒格子晶格基矢 A =
b
Eg 2 =
mω 2 b
∫
0
(b 2 − x 2 ) cos
πx
b
dx 再次利用积分公式有 E g2 =
2mω 2
π
2
b2
4.4 用紧束缚近似求出面心立方晶格和体心立方晶格 s 态原子能级相对应的能带
解答(初稿)作者 季正华 -2-
黄昆 固体物理 习题解答
v E s (k ) 函数
解:面心立方晶格—— s 态原子能级相对应的能带函数
—— 归并化简后得到体心立方 s 态原子能级相对应的能带
v kya ka ka cos z E s (k ) = ε s − J 0 − 8 J1 cos x cos 2 2 2
4.7,有一一维单原子链。间距为 a。总长度为 Na。求(1) ,用紧束缚近似求出原子 s 态能级 对应的能带 E(k)函数。 (2)求出其能态密度函数的表达式。 (3) ,如果每个原子 s 态只有一
时电子波发生全反射, 并与反射波形成驻波由于两驻波的电子分布不同, 所以对应不同代入 能量。 4.2,写出一维近自由电子近似,第 n 个能带(n=1,2,3)中,简约波数 k =
w
*
<解>ψ k ( x) =
1 i 2πa x = 0, m = 0,ψ ( x) = e 第一能带: m ⋅ 2a L
v E s ( k ) = ε s − J 0 − J1
Rs = Nearest
∑
e −ik ⋅Rs
v v
—— 任选取一个格点为原点 —— 最近邻格点有 12 个 12 个最邻近格点的位置
a ⎧ a , 0 ⎪ 2, 2 ⎪ ⎪ a, −a, 0 ⎪ 2 2 ⎨ a ⎪− a , , 0 ⎪ 2 2 ⎪ a a ⎪− , − , 0 2 ⎩ 2
1 b mω 2 b 2 mω 2 ⎡ 2 2 V = ∫ V ( x)dx = (b − x )dx = b x a −b 2a ∫− b 2a ⎢ ⎣
(3) ,势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数
V ( x) = V0 +
w
E g1 =
第一个禁带宽度Eg1 = 2 V1 ,以m = 1代入上式,Eg1 =
黄昆 固体物理 习题解答
第四章 能带理论
4.1,根据 k = ±
π
a
状态简并微扰结果,求出与 E− 及 E+ 相应的波函数ψ − 及ψ + ?,并说明它
2
们的特性. 说明它们都代表驻波, 并比较两个电子云分布 ψ 说明能隙的来源(假设 Vn = Vn* )。 <解>令 k = +
π
a
, k′ = −
的 0 级波函数。
Vn A = −Vn B, 得到A = B
i nπ x a
A ⎡
−e