2019年高考数学(北师大版文科): 1 集合

合集下载

2019-2020年高考总复习文数(北师大版)讲义:第1章 第01节 集合 Word版含答案

2019-2020年高考总复习文数(北师大版)讲义:第1章 第01节 集合 Word版含答案

2019-2020年高考总复习文数(北师大版)讲义:第1章第01节集合Word版含答案A B或B A∅B且B≠∅U A .{1,3,4} B .{3,4} C .{3}D .{4}解析:选D 因为A ∪B ={1,2,3},U ={1,2,3,4},所以∁U (A ∪B )={4}.集合及集合间的关系 [明技法](1)与集合中的元素有关问题的求解策略一看元素,二看限制条件,三列式求参数的值或确定集合中元素的个数.注意检验集合是否满足元素的互异性.(2)判断两集合的关系常有两种方法①化简集合,从表达式中寻找两集合间的关系. ②用列举法表示各集合,从元素中寻找关系. [提能力]【典例】 (1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为____________.解析:(1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8.共4个元素.(2)∵B ⊆A ,∴若B =∅,则2m -1<m +1,此时m <2.①若B ≠∅,则⎩⎨⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.②由①②可得,符合题意的实数m 的取值范围为(-∞,3]. 答案:(1)B (2)(-∞,3][母题变式] 在本例(2)中,若A ⊆B ,如何求解?解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎨⎧m ≤-3,m ≥3.所以m 的取值范围为∅. [刷好题]1.(金榜原创)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A解析:选D 因为A ={x |x >-3},B ={x |x ≥2},所以结合数轴可得B ⊆A .2.(2018·莱州模拟)已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N |(x +3)(x -1)≤0}={x ∈N |-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C .集合的运算 [析考情]集合的基本运算是历年高考的热点.高考中主要考查求集合的交、并、补运算,常与解不等式、求函数定义域和值域等知识相结合.考查题型以选择题为主,属容易题,分值5分.[提能力]命题点1:求交集或并集【典例1】 (1)(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C ∵A ∩B ={1},∴1∈B .∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.(2)(2017·浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2},故选A.命题点2:交、并、补的综合运算【典例2】(1)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=() A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)解析:选B∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x∈R|-2<x<2}.∵P={x ∈R|1≤x≤3},∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].(2) (2018·柳州模拟)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁A)∩B=________.U解析:由题意U={1,2,3,4,5,6,7,8,9,10},则∁U A={4,6,7,9,10},∴(∁U A)∩B={7,9}.答案:{7,9}命题点3:集合的新定义问题【典例3】设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={y|y≥0},则A⊗B=________.x|x≥0,A∩B={x|0<x<2},故由新定义结合数轴得A⊗B={0}解析:由已知,A∪B={}∪[2,+∞).答案:{0}∪[2,+∞)[悟技法]解决集合运算问题的四个关注点(1)看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简:有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形:常用的数形结合形式有数轴、坐标系和Venn图.(4)创新性问题:以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.[刷好题]1.(2018·兰州一模)已知集合M={x|(x-3)(x+1)≥0},N={x|-2≤x≤2},则M∩N=()A.[-2,-1]B.[-1,2]C.[-1,1] D.[1,2]解析:选A由(x-3)(x+1)≥0,解得:x≤-1或x≥3,∴M={x|x≤-1或x≥3},∵N={x|-2≤x≤2},则M∩N={x|-2≤x≤-1}=[-2,-1].2.(2018·晋中一模)设U=R,A={-2,-1,0,1,2},B={x|x≥1},则A∩(∁U B)=() A.{1,2} B.{-1,0,1}C.{-2,-1,0} D.{-2,-1,0,1}解析:选C因为全集U=R,集合B={x|x≥1},所以∁U B={x|x<1}=(-∞,1),且集合A={-2,-1,0,1,2},所以A∩(∁U B)={-2,-1,0},故选C.3.设A、B是两个非空集合,定义运算A×B={x|x∈A∪B且x∉A∩B},已知A={x|y =2x-x2},B={y|y=2x,x>0},则A×B=________.解析:由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1}.所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]∪(2,+∞).答案:[0,1]∪(2,+∞)。

2019大一轮高考总复习文数(北师大版)讲义第1章 第01节 集合 Word版含答案

2019大一轮高考总复习文数(北师大版)讲义第1章 第01节 集合 Word版含答案

第一节 集 合
.元素与集合
、无序性.
互异性、确定性()集合元素的特性:

∉;若不属于集合,记作∈()集合与元素的关系:若属于集合,记作
、图示法.
描述法、举法列()集合的表示方法:
()常用数集的记法

∅且≠∅
()若集合含有个元素,则其子集有个,非空子集有-个,非空真子集有-个.
()在解决有关∩=∅,⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.
()集合的运算性质
①∪=⇔⊆,∩=⇔⊆;
②∩=,∩∅=∅;
③∪=,∪∅=;
④∩(∁)=∅,∪(∁)=,∁(∁)=.
()图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.
.判断下列结论的正误(正确的打“√”,错误的打“×”)
()集合{+}中实数可取任意值.( )
()任何集合都至少有两个子集.( )
()若={},={(,)=+},则⊆.( )
()已知集合={=},={=},={(,)=},则==.( )
答案:()×()×()×()×
.(教材习题改编)若集合={∈+≤},=,则下面结论中正确的是( )
.{}⊆.⊆
.{}∈.∉
解析:选因为不是正整数,所以∉.
.(·全国卷Ⅲ)已知集合={},={},则∩中元素的个数为( )
..
..
解析:选∵={},={},∴∩={}.∴∩中元素的个数为.故选.。

2019年北师大版高一数学第一章 集 合

2019年北师大版高一数学第一章 集 合

第一章集合§1集合的含义与表示(教师用书独具)●三维目标1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)知道常用数集及其专用记号.(3)了解集合中元素的确定性、互异性、无序性.(4)会用集合语言表示有关数学对象.(5)培养学生抽象概括的能力.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.●重点难点重点:集合的含义与表示方法.难点:表示法的恰当选择.针对教材的内容,编排一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来;通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到一定的预期效果;尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节.在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到设计中所预想的目标.(教师用书独具)●教学建议集合是学生进入高中学习的第一节课,是学生学好数学所必须掌握好的一个知识点,同时集合是一个不加定义的原始概念,对于学生而言既熟悉又模糊,熟悉是因为学生在初中的数学学习和生活体验中掌握了大量集合的实例,模糊是由于对于集合含义的描述以及集合的数学表示、元素与集合的关系等理解的并不十分到位、准确.同时虽然本节课对于学生而言难度不大,但是其概念多、符号多,容易混淆,需要学生理解记忆.对于一些较简单的内容,应放手让学生多一些探究与合作.随着教育改革的深化,教学理念、教学模式、教学内容等教学因素都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求.用全新的理论来武装自己,让自己的课堂更有效率.●教学流程创设情景,揭示课题,通过接触过的集合,举出部分例子⇒研探新知,给出集合的概念及集合的表示⇒质疑答辨,排难解惑,发展思维.思考:集合中元素有什么特点?⇒完成例1及其变式训练,巩固元素与集合的关系⇒通过例2及其变式训练,使学生掌握集合中元素的特性⇒集合的表示方法各有什么特点?完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒巩固深化反馈矫正,完成当堂双基达标,巩固所学知识并进行反馈矫正课标解读1.了解集合的含义,体会元素与集合的从属关系.(重点)2.理解并掌握集合中元素的三个特征.(重点、难点)3.掌握集合的表示方法及几个常见的数集表示符号.(重点、易混点)元素与集合的相关概念及表示【问题导思】观察下列实例:(1)2013年1月1日之前,在腾讯微博注册的会员;(2)平面内到两定点的距离相等的点;(3)不等式组⎩⎪⎨⎪⎧x+1≥3,x2<9的整数解;(4)方程x2-4x+4=0的实数根;(5)我们班经常参加体育锻炼的同学.上述实例中的研究对象哪些是确定的?【提示】(1)(2)(3)(4)的研究对象是确定的.集合⎩⎪⎨⎪⎧含义:一般地,指定的某些对象的全体称为集合, 集合中的每个对象叫作这个集合的元素.表示⎩⎪⎨⎪⎧集合:通常用大写字母A ,B ,C ,…标记;元素:通常用小写字母a ,b ,c ,…标记.元素与集合的关系【问题导思】对于本班内所有女同学组成的集合,张三(男)、李四(女)分别与集合存在什么关系? 【提示】 张三不在该集合内,李四在该集合内.关系 概念记作 读作属于 若a 在集合A 中,就说a 属于集合A a ∈A “a 属于A ” 不属于若a 不在集合A 中,就说a 不属于集合Aa ∉A“a 不属于A ”常用数集及表示符号名称 自然数集正整数集 整数集 有理数集实数集 符号NN +或N *ZQR集合的表示方法【问题导思】 给出下列集合:(1)小于10的所有正偶数组成的集合A ; (2)方程x 2+2x +1=0的根组成的集合为B ; (3)所有奇数组成的集合为C .1.你能将集合A 中的元素一一列举出来吗? 【提示】 能.2,4,6,82.集合B 中的元素满足的条件是什么?【提示】x2+x+1=0.3.如何表示集合C?【提示】C={奇数}或{x|x=2n+1,n∈Z}.1.列举法把集合中的元素一一列举出来写在大括号内的方法.2.描述法用确定的条件表示某些对象属于一个集合并写在大括号内的方法叫描述法.集合的分类1.有限集含有限个元素的集合.2.无限集含无限个元素的集合.3.空集不含有任何元素的集合.元素与集合的关系下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N.A.1B.2C.3D.4【思路探究】解答本题要先弄清“∈”和“∉”的区别与联系及特定的数集符号的含义,再进行判断.【自主解答】∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.【答案】 B1.判断一个元素是否属于某个集合,关键看其是否具有该集合的特征. 2.N +(N *)与N 不同,前者表示正整数集,而后者表示非负整数集.给出下列关系,其中正确的有____. ①3∈Z ②0∈N ③12∈N + ④3.14∈Q【解析】 ∵3不是整数,∴3∉Z ,故①错;∵0是自然数,∴0∈N ,故②正确;∵12不是正整数,∴12∉N +,故③错,∵3.14是有理数,∴3.14∈Q ,故④正确.【答案】 ②④集合中元素的特性已知集合A ={1,3,a 2+a ,a +1},若a ∈A ,求实数a 的值.【思路探究】 根据题中的条件a ∈A ,可分别列出关于a 的方程,然后求出a 的值即可,但要注意集合中元素的互异性.【自主解答】 ∵a ∈A ,A ={1,3,a 2+a ,a +1}, ∴a =1或a =3或a =a 2+a .当a =1时,a 2+a =2,a +1=2,这与集合中元素互异性矛盾,故舍去, 当a =3时,a 2+a =12,a +1=4,适合题意;当a =a 2+a 即a =0时,a +1=1,与集合中元素互异性矛盾,故舍去, 综上所述,所求实数a 的值是3.1.本题中,a 是集合A 的元素,但不能确定是哪一个元素,故有三种情况. 2.根据集合中元素的确定性可以解出字母的所有可能的值,再根据集合中元素的互异性对集合中的元素进行检验.另外,在利用集合中元素的特性解题时要注意分类讨论思想的运用.(2013·济南高一检测)已知集合A 是由三个元素m ,m 2+1,1组成的,且2是A 中的一个元素,求m 的值.【解】 ∵2是A 中的一个元素,∴m =2或m 2+1=2, 即m =2或m =±1.当m =2时,集合A 中的元素为:2,5,1,符合题意.当m =1时,集合A 中的元素为:1,2,1不满足互异性,舍去. 当m =-1时,集合A 中的元素为:-1,2,1符合题意. 综上知m =2或m =-1.集合的表示方法用适当的方法表示下列集合.(1)化简式子x |x |+y|y |(x ,y 为非零实数)所得结果构成的集合;(2)所有偶数组成的集合;(3)直角坐标系内第二象限的点组成的集合; (4)方程(x -1)(x 2-5)=0的根组成的集合.【思路探究】 根据题目的特点,结合列举法、描述法的适用范围解答本题. 【自主解答】 (1)根据x ,y 值的符号,两项分别可得1或-1,化简的结果有3种情形,用列举法表示为{0,2,-2};(2)偶数的表达式为2k (k ∈Z).由于有无数个元素,用描述法表示为{x |x =2k ,k ∈Z}; (3)代表元素是有序数对(x ,y ),用描述法表示为{(x ,y )|x <0且y >0}; (4)方程有3个根,用列举法表示为{-5,1,5}.1.当集合中的元素个数较少时往往采用列举法表示.用列举法表示集合时,必须注意以下几点:(1)元素之间必须用“,”隔开; (2)集合的元素必须是明确的; (3)不必考虑元素出现的先后顺序;(4)集合中的元素不能重复; (5)集合中的元素可以是任何事物.2.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.给出下列说法:①在直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{-2,2}; ③集合{(x ,y )|y =1-x }与{x |y =1-x }是同一集合. 其中正确的有( )A .1个B .2个C .3个D .0个【解析】 在直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相同.③不正确.【答案】 A忽视元素的特性致误已知-1∈{m -1,3m ,m 2-1},求实数m 的值.【错解】 ∵-1∈{m -1,3m ,m 2-1}, ∴m -1=-1或3m =-1或m 2-1=-1, 即m =0或m =-13.【错因分析】 代入后,未对元素进行检验,忽视了元素的互异性.【防范措施】 1.解答含有字母的元素与集合之间的关系时,要有分类讨论的意识. 2.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求.【正解】 ∵-1是集合{m -1,3m ,m 2-1}中的元素, ∴当m -1=-1时,m =0,3m =0,m 2-1=-1.此时集合为{-1,0,-1},不满足集合中元素的互异性. 当3m =-1时,m =-13,m -1=-43,m 2-1=-89.此时集合为{-43,-1,-89},符合题意.当m 2-1=-1时,m =0,m -1=-1,3m =0.此时集合为{-1,0,-1},不满足集合中元素的互异性. 综上可知实数m 的值为-13.1.集合在数学中是不加定义的,我们只对它进行描述性说明.集合中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.2.在理解集合概念的同时,必须掌握集合元素的确定性、互异性、无序性.3.集合元素的互异性,是集合的重要属性,实践证明,集合中元素的互异性常常被同学们在解题中忽略,从而导致解题的失误,因此在集合中的元素含有未知数时,求解完后一定要检验.4.表示集合可以用列举法或描述法,它们各有优点,一般有限集用列举法,无限集用描述法.1.下面说法错误的是()A.所有著名的作家可以组成一个集合B.方程x2+2x+1=0的解集中只有一个元素C.已知a≠b,“a、b构成的集合”与“b、a构成的集合”是同一集合D.如果x与-x是集合中的两个元素,那么x≠0【解析】“著名的作家”没有统一的标准,不确定,因而不能构成集合.【答案】 A2.下列说法正确的是()A.由1,2,2,4构成集合时,该集合共有4个元素B.由1,2,3和3,2,1分别构成的两个集合不是相等集合C.若x∈Q,则x∈RD.对于任给一个元素a,则无法判断a是否是集合A中的元素【解析】结合集合中元素的互异性可知A不正确;结合集合中元素的确定性知D不正确;结合集合相等的概念可知B不正确;又∵x∈Q,则x是有理数,∴x是实数,即x∈R,故C正确.【答案】 C3.用符号∈或∉填空:(1)-2________N;(2)3.141 59________Q;(3)7________Z.【解析】-2不是自然数;3.141 59是有理数;7是无理数,它不是整数.【答案】(1)∉(2)∈(3)∉4.已知集合A中只有1,x,x2+3x三个元素,且-2∈A,求实数x的值.【解】∵-2∈A,(1)当x=-2时,x2+3x=-2,不满足集合中元素的互异性.(2)当x2+3x=-2时,可解得x=-1或x=-2(舍).综上可知,实数x的值为-1.一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】 A2.小于2的自然数集用列举法可以表示为()A.{0,1,2} B.{1} C.{0,1} D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】 C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】 B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2 B.2或4 C.4 D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】 B5.(2013·曲靖高一检测)已知集合M 中含有3个元素;0,x 2,-x ,则x 满足的条件是( ) A .x ≠0 B .x ≠-1C .x ≠0且x ≠-1D .x ≠0且x ≠1【解析】 由⎩⎪⎨⎪⎧x 2≠0,x 2≠-x ,-x ≠0,解得x ≠0且x ≠-1.【答案】 C 二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x |x <7}; (2)3________{x |x =n 2+1,n ∈N +}; (3)(1,1)________{y |y =x 2}; (1,1)________{(x ,y )|y =x 2}.【解析】 (1)22∈R ,而22=8>7, ∴22∉{x |x <7}. (2)∵n 2+1=3, ∴n =±2∉N +,∴3∉{x |x =n 2+1,n ∈N +}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y |y =x 2}表示二次函数函数值构成的集合,故(1,1)∉{y |y =x 2}.集合{(x ,y )|y =x 2}表示抛物线y =x 2上的点构成的集合(点集),且满足y =x 2, ∴(1,1)∈{(x ,y )|y =x 2}.【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈7.已知集合C ={x |63-x ∈Z ,x ∈N *},用列举法表示C =________.【解析】 由题意知3-x =±1,±2,±3,±6, ∴x =0,-3,1,2,4,5,6,9. 又∵x ∈N *,∴C ={1,2,4,5,6,9}. 【答案】 {1,2,4,5,6,9}8.已知集合A ={-2,4,x 2-x },若6∈A ,则x =________.【解析】 由于6∈A ,所以x 2-x =6,即x 2-x -6=0,解得x =-2或x =3. 【答案】 -2或3 三、解答题9.选择适当的方法表示下列集合: (1)绝对值不大于3的整数组成的集合; (2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图像上所有点组成的集合.【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y =x +6图像上有无数个点,用描述法表示为{(x ,y )|y =x +6}. 10.已知集合A 中含有a -2,2a 2+5a,3三个元素,且-3∈A ,求a 的值. 【解】 由-3∈A ,得a -2=-3或2a 2+5a =-3. (1)若a -2=-3,则a =-1, 当a =-1时,2a 2+5a =-3, ∴a =-1不符合题意.(2)若2a 2+5a =-3,则a =-1或-32.当a =-32时,a -2=-72,符合题意;当a =-1时,由(1)知,不符合题意. 综上可知,实数a 的值为-32.11.已知数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),如果a =2,试求出A 中的所有元素.【解】 ∵2∈A ,由题意可知,11-2=-1∈A ;由-1∈A 可知,11-(-1)=12∈A ;由12∈A 可知,11-12=2∈A . 故集合A 中共有3个元素,它们分别是-1,12,2.(教师用书独具)集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .【思路探究】 明确集合A 的含义→对k 加以讨论→求出k 值→写出集合A 【自主解答】 (1)当k =0时, 原方程变为-8x +16=0, x =2,此时集合A ={2}.(2)当k ≠0时,要使一元二次方程kx 2-8x +16=0有两个相等实根. 只需Δ=64-64k =0, 即k =1.此时方程的解为x 1=x 2=4, 集合A ={4},满足题意.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.1.本题在求解过程中,常因忽略讨论k 是否为0而漏解.2.本题因kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0而展开讨论,从而做到不重不漏.3.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.把本例中条件“有一个元素”改为“有两个元素”,求k 的范围.【解】 由题意可知方程kx 2-8x +16=0有两个实根.∴⎩⎨⎧k ≠0Δ=64-64k >0解得k <1且k ≠0.所以k 的范围为{k |k <1且k ≠0}.人物介绍为科学而疯的人——康托尔康托尔(Contor ,Georg)(1845~1918),德国数学家,集合论的创立人,康托尔自幼对数学有浓厚兴趣,23岁获博士学位,以后一直从事数学教学与研究.他所创立的集合论已被公认为全部数学的基础.1874年,康托尔的有关无穷的概念震撼了数学界.康托尔凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新思想模式,建立了处理数学中无限的基本技巧,从而极大地推动了分析与逻辑的发展.他发现了惊人的结果:有理数是可列的,而全体实数是不可列的.由于在研究无穷时往往推出一些合乎逻辑的但又很荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874~1876年期间,30岁的康托尔向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”.后几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论.康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”.来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医病.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托尔的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家,数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”,可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.§2集合的基本关系(教师用书独具)●三维目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集、真子集的概念.(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.●重点难点重点:集合间的包含与相等关系,子集与真子集的概念.难点:属于关系与包含关系的区别.本节的重点是理解集合间包含与相等的含义,其突破方法是让学生多结合实例,类比实数间的大小关系来学习集合间的包含关系.(教师用书独具)●教学建议教材从学生熟悉的实例出发,通过类比引入集合间的关系,同时,结合相关内容介绍子集、Venn图、真子集、空集等概念.在安排这部分内容时,教材注重体现逻辑思考的方法,如类比等.值得注意的问题:在讲解集合间的关系时,建议重视使用Venn图,这有助于学生体会直观图示对理解抽象概念的作用.随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与⊆的区别.●教学流程创设情境提出问题,思考:实数有相等关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系⇒概念形成.分析示例:给出集合的包含关系的相关定义,完成例1及变式训练⇒师生合作得出集合相等的概念. 通过实例的共性探究、理解相等概念,完成例2及互动探究⇒巩固深化,发展思维,加深对集合间关系的理解,完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正课标解读1.了解集合之间包含与相等的含义,能识别给定集合的子集.(重点)2.理解子集、真子集的概念.(易混点)3.能使用Venn图表达集合间的关系,体会直观图对理解抽象概念的作用.(难点)子集与Venn图【问题导思】给出下列集合:(1)A={1,2,3},B={1,2,3,4,5}.(2)设集合A为衡水中学高一·三班全体男生组成的集合,集合B为高一·三班全体学生组成的集合.集合A中的元素与集合B有什么关系?【提示】集合A中的每一个元素都属于集合B.1.子集含义一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若a∈A则a∈B,我们就说集合包含于集合B或集合B包含集合A,记作A⊆B(或B⊇A),就说集合A是集合B的子集.图形语言性质任何一个集合都是它本身的子集,即A⊆A.2.Venn图为了直观地表示集合间的关系,常用封闭曲线的内部表示集合,称为Venn图.集合相等【问题导思】给定两个集合A={0,1},B={x|x2=x}.1.集合B能否用列举法表示出来?【提示】能.B={0,1}.2.集合A中的元素与集合B中的元素,有什么关系?【提示】元素完全一样.对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,同时集合B 中的任何一个元素都是集合A中的元素,这时,我们就说集合A与集合B相等,记作A=B.真子集【问题导思】对于集合A={1,2},B={1,2,3,4}.1.集合A是集合B的子集吗?【提示】是.2.集合B是集合A的子集吗?【提示】不是.3.集合A与集合B相等吗?【提示】不相等.1.真子集(1)含义:对于两个集合A与B,如果A⊆B,并且A≠B,我们就说集合A是集合B的真子集,记作A B或B A.(2)当集合A不包含于集合B或集合B不包含集合A时,记作A B或B⊉A.2.性质(1)空集是任何集合的子集,对于任何一个集合A,都有∅⊆A.(2)对于集合A、B、C,若A⊆B,B⊆C,则A⊆C.子集、真子集的概念已知集合M={x|x<2且x∈N},N={x|-2<x<2且x∈Z}.(1)试判断集合M、N间的关系.(2)写出集合M的子集、集合N的真子集.【思路探究】把用描述法表示的集合用列举法表示出来,以便于观察集合的关系写出子集与真子集.【自主解答】M={x|x<2且x∈N}={0,1},N={x|-2<x<2且x∈Z}={-1,0,1}.(1)M N.(2)M的子集为:∅,{0},{1},{0,1},N的真子集为:∅,{-1},{0},{1},{-1,0},{-1,1},{0,1}.1.写有限集合的所有子集,首先要注意两个特殊的子集:∅和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A含n个元素,那么它的子集个数为2n;真子集个数为2n-1,非空真子集个数为2n-2.若{1,2,3}A ⊆{1,2,3,4,5},则集合A 的个数为( ) A .2 B .3 C .4 D .5【解析】 集合{1,2,3}是集合A 的真子集,同时集合A 又是集合{1,2,3,4,5}的子集,所以集合A 只能取集合{1,2,3,4},{1,2,3,5}和{1,2,3,4,5}.【答案】 B集合相等若{0,a 2,a +b }={1,a ,ba},求a 2 013+b 2 013的值.【思路探究】 由0∈{1,a ,ba }先求出b ,再根据集合相等求a .【自主解答】 因为{0,a 2,a +b }={1,a ,ba},所以0∈{1,a ,ba }.所以b =0,此时有{1,a,0}={0,a 2,a }. 所以a 2=1,a =±1.当a =1时,不满足互异性,所以a =-1. ∴a 2 013+b 2 013=-1.1.计算出a =±1后,易忽视集合中元素的互异性致误. 2.解决此类问题的步骤:(1)利用集合相等的条件,建立方程或方程组,求得参数;(2)把所得数值依次代入集合验证,若满足元素的三个特性,则所求是可行的,否则应舍去.若本例改为“{0,a ,ba }={1,-a 2,a +b }”,则a 2 013+b 2 013的值为多少?【解】 ∵0∈{1,-a 2,a +b } ∴-a 2=0或a +b =0当-a 2=0,即a =0时,{0,a ,ba}中矛盾.当a +b =0,即a =-b 时,{0,a ,ba }={0,a ,-1},{1,-a 2,a +b }={1,-a 2,0},即{0,a ,-1}={1,-a 2,0}, ∴a =1,b =-1. ∴a 2 013+b 2 013=0.已知集合间的关系求参数的取值范围设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A .求实数m 的取值范围【思路探究】 由B ⊆A 可得集合B =∅或B 中的任何一个元素都在集合A 中,可借助数轴解决.【自主解答】 当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴表示如图所示.则⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是{m |m <-2或0≤m ≤52}.1.当已知一个集合是另一个集合的子集时,首先要考虑这个集合是否为空集. 2.已知集合间的关系,求参数范围的步骤: (1)化简所给集合; (2)用数轴表示所给集合;(3)根据集合间的关系,列出关于参数的不等式(组);(4)求解.设集合A ={x |1<x ≤2},B ={x |x <a },若A B ,则a 的取值范围是( ) A .{a |a ≥ 2} B .{a |a <1} C .{a |a >2}D .{a |a ≤1}【解析】 在数 轴 上表示 两个集合A 、B ,要使A B ,则a >2.【答案】 C忽略空集的情况而致误(2013·济南高一检测)已知集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的值.【错解】 据题意知A ={1,3},B ={3m },∵B ⊆A , ∴3m =1或3m =3. 即m =3或m =1.【错因分析】 忽略B =∅时的情况,直接认为m ≠0.【防范措施】 解答集合中有包含关系的题目时,一定要警惕“∅”这一陷阱,往往造成不必要的失分.【正解】 据题意知集合A ={1,3}, 当B =∅,即m =0时,满足B ⊆A .当B ≠∅,即m ≠0时,B ={x |mx -3=0}={3m }.∵B ⊆A , ∴3m =1或3m =3, 即m =3或m =1.综上所述,所求m 的集合为{0,1,3}.1.集合与集合之间的关系有包含关系,相等关系,其中包含关系有:包含于(⊆)、包含(⊇),真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的,但A⊆B,B⊆A是不同的.2.不能把“A⊆B”、“A B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.3.由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A⊆B”或“A B且B≠∅”时,一定要讨论A=∅和A≠∅两种情况,A=∅的情形易被忽视,应引起足够的重视.1.下列表述正确的有()①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.A.0个B.1个C.2个D.3个【解析】∅⊆∅,故①错;∅只有一个子集,即它本身.所以②错;空集是任何集合的子集,是任何非空集合的真子集,所以③错;而④正确,故选B.【答案】 B2.(2013·聊城高一检测)若M={x|x>-1},N={x|x>0},则()A .M ⊆NB .N ⊆MC .M =ND .M ∈N 【解析】 结合数轴可知N ⊆M . 【答案】 B3.已知集合A ={-1,3,m },B ={3,4},若B ⊆A ,则实数m =________. 【解析】 ∵B ⊆A , ∴元素3,4必为A 中元素, ∴m =4. 【答案】 44.已知集合A ={x |a <x <a +1},B ={x |2<x <9}.若A ⊆B ,求实数a 的取值集合. 【解】 ∵B ={x |2<x <9},A ={x |a <x <a +1},A ⊆B ,如图所示,∴⎩⎨⎧a ≥2a +1≤9,解得2≤a ≤8, ∴实数a 的取值集合为{a |2≤a ≤8}.(见学生用书第81页)一、选择题1.下列五个关系式:①0⊆{0};②0∈{0};③∅={0};④∅∈{0};⑤∅{0},其中正确的是( )A .①③B .①⑤C .②④D .②⑤【解析】 本题考查元素与集合、空集与非空集合的关系,其中0∈{0},∅{0}. 【答案】 D2.已知M ={-1,0,1}和N ={x |x 2+x =0},其中能表示集合M 、N 关系的V enn 图是( )【解析】由于N={0,-1},显然,N M.【答案】 B3.(2013·深圳检测)满足M{1,2,3}的集合M的个数是()A.8 B.7 C.6 D.5【解析】∵M{1,2,3},∴M可能为∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.【答案】 B4.(2013·桂林检测)设A={x|x>1},B={x|x>a},且A⊆B,则实数a的取值范围为() A.a<1 B.a≤1 C.a>1 D.a≥1【解析】如图,结合数轴可知a≤1时,有A⊆B.【答案】 B5.若集合A={1,3,x},B={x2,1},且B A,则满足条件的实数x的个数为() A.1 B.2 C.3 D.4【解析】因为B A,则x2=3或x2=x.当x2=3时,x=±3,此时,A={1,3,±3},B={3,1},符合题意.当x2=x时,x=0或x=1(舍去),此时,A={0,1,3},B={0,1},符合题意,故x=0,±3. 【答案】 C二、填空题6.已知∅{x|x2+x+a=0},则实数a的取值范围是________.【解析】∵∅{x|x2+x+a=0},∴方程x2+x+a=0有实根,∴Δ=12-4a≥0,∴a≤14.故实数a的取值范围是{a|a≤14}.【答案】{a|a≤1 4}7.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.【解析】因为A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,。

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

2019年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2019•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数xx1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2019•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2019•北京)已知双曲线2221x y a-=(a>0a=( )B. 4C. 2D. 12【答案】D【解析】【解答】双曲线的离心率c e a ===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2019•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1 【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =;故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PAB S βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2019•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2019•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2019•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2019•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2019•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭, 解得c=5,B=7;(II )根据1cos 2B =-,得sin B =,根据正弦定理,sin sin b cB C=,5sin C=,解得sin C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2019•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列,可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2019•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面; 取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2019•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220k x ktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2019•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==,因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==,故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤; (Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a , 故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩,故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。

北师大版2019版文数练习:第一章第一节集合含解析

北师大版2019版文数练习:第一章第一节集合含解析

课时作业 A 组——基础对点练1.(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}解析:由题意知A ∪B ={1,2,4,6}, ∴(A ∪B )∩C ={1,2,4}. 答案:B2.(2018·成都市模拟)设集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z},则A ∪B =( )A .{-2,-1,0,1}B .{-1,0,1}C .{0,1}D .{0} 解析:因为集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z}={-1,0},所以A ∪B ={-1,0,1}.故选B. 答案:B3.设集合A ={x |x <2},B ={y |y =2x-1},则A ∩B =( ) A .(-∞,3) B .[2,3) C .(-∞,2)D .(-1,2)解析:A ={x |x <2},因为y =2x-1>-1,所以B ={y |y =2x-1}=(-1,+∞),所以A ∩B =(-1,2),故选D. 答案:D4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =( )A .1B .-1C .2D .-2解析:根据题意,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,又∵a ≠0,∴a +b =0,即a =-b ,∴b a=-1,b =1.故a =-1,b =1,则b -a =2.故选C. 答案:C5.已知集合A ={-2,-1,0,1,2,3},B ={x |x +1x -2<0},则A ∩B =( ) A . {-2,-1,0,1,2,3} B .{-1,0,1,2} C .{-1,2}D .{0,1}解析:由题意,得B={x|-1<x<2},所以A∩B={0,1},故选D.答案:D6.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=( )A.{1} B.{4}C.{1,3} D.{1,4}解析:由题意,得B={1,4,7,10},∴A∩B={1,4}.答案:D7.(2018·长沙市模拟)已知集合P={x|-2 016≤x≤2 017},Q={x| 2 017-x<1},则P∩Q=( )A.(2 016,2 017) B.(2 016,2 017]C.[2 016,2 017) D.(-2 016,2 017)解析:由已知可得Q={x|0≤2 017-x<1}=(2 016,2 017],则P∩Q=(2 016,2 017].答案:B8.(2018·石家庄模拟)函数y=x-2与y=ln(1-x)的定义域分别为M,N,则M∪N=( )A.(1,2] B.[1,2]C.(-∞,1]∪[2,+∞) D.(-∞,1)∪[2,+∞)解析:使x-2有意义的实数x应满足x-2≥0,∴x≥2,∴M=[2,+∞),y=ln(1-x)中x应满足1-x>0,∴x<1,∴N=(-∞,1),所以M∪N=(-∞,1)∪[2,+∞),故选D.答案:D9.(2018·沈阳市模拟)设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁U A)∩B =( )A.{x|0<x<2} B.{x|0<x≤2}C.{x|0≤x<2} D.{x|0≤x≤2}解析:∵U=R,A={x|x≥2},∴∁U A={x|x<2}.又B={x|0≤x<6},∴(∁U A)∩B={x|0≤x <2}.故选C.答案:C10.(2018·天津模拟)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( ) A.{1} B.{2}C.{0,1} D.{1,2}解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.答案:D11.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.答案:A12.(2018·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B)=( )A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.答案:B13.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案:{-1,2}14.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析:∁U B={2},∴A∪∁U B={1,2,3}.答案:{1,2,3}15.集合{-1,0,1}共有__________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1, 0,1},共8个.答案:816.已知集合U={1,2,3,4,5},A={1,3},B={1,3,4},则A∪(∁U B)=__________.答案:{1,2,3,5}B组——能力提升练1.已知全集U={0,1,2,3},∁U M={2},则集合M=( )A.{1,3} B.{0,1,3}C.{0,3} D.{2}解析:M={0,1,3}.答案:B2.已知集合A={0,1,2},B={1,m}.若A∩B=B,则实数m的值是( )A.0 B.2C.0或2 D.0或1或2解析:∵A∩B=B,∴B⊆A,∴m=0或m=2.答案:C3.(2018·南昌市模拟)已知集合A={x∈R|0<x≤5},B={x∈R|log2x<2},则(∁A B)∩Z=( ) A .{4} B .{5} C .[4,5]D .{4,5}解析:∵集合A ={x ∈R|0<x ≤5},B ={x ∈R|log 2x <2}={x |0<x <4},∴∁A B ={x |4≤x ≤5},∴(∁A B )∩Z={4,5},故选D. 答案:D4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0,B ={x |y =lg(-x 2+4 x +5)},则A ∩(∁R B )=( ) A .(-2,-1] B .[-2,-1] C .(-1,1]D .[-1,1]解析:依题意,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A. 答案:A5.(2018·惠州模拟)已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为( ) A .3 B .4 C .7D .8解析:由题意知,B ={0,1,2},则集合B 的子集的个数为23=8.故选D. 答案:D6.(2018·太原市模拟)已知全集U =R ,集合A ={x |x (x +2)<0},B={x ||x |≤1},则如图所示的阴影部分表示的集合是( ) A .(-2,1) B .[-1,0]∪[1,2) C .(-2,-1)∪[0,1] D .[0,1]解析:因为集合A ={x |x (x +2)<0},B ={x ||x |≤1},所以A ={x |-2<x <0},B ={x |-1≤x ≤1},所以A ∪B =(-2,1],A ∩B =[-1,0),所以阴影部分表示的集合为∁A ∪B (A ∩B )=(-2,-1)∪[0,1],故选C. 答案:C7.(2018·郑州质量预测)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( ) A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A. 答案:A8.(2018·广雅中学测试)若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )解析:由题意知,N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},所以N M ,故选B.答案:B9.已知集合A 满足条件{1,2}⊆A },则集合A 的个数为( ) A .8 B .7 C .4D .3解析:由题意可知,集合A 中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B. 答案:B10.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( ) A .2 B .-2 C .0D. 2解析:若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合 B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,故选B. 答案:B11.给出下列四个结论: ①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Q ⎪⎪⎪6x ∈N是有限集.其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:对于①,{0}中含有元素0,不是空集,故①错误; 对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x可以取无数个值,所以集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Q ⎪⎪⎪6x∈N是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 答案:A12.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z},B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z},定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( ) A .77 B .49 C .45D .30解析:集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z},所以集合A 中有5个元素(即5个点),即图中圆内及圆上的整点.集合B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z}中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD 上的整点.集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }中的元素可看作正方形A 1B 1C 1D 1内及正方形A 1B 1C 1D 1上除去四个顶点外的整点,共7×7-4=45个. 答案:C13.设全集U ={n ∈N|1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解析:依题意得U ={1,2,3,4,5,6,7,8,9,10},∁U A ={4,6,7,9,10},(∁U A )∩B ={7,9}. 答案:{7,9}14.集合A ={x ∈R||x -2|≤5}中的最小整数为________.解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3.答案:-315.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R}有且仅有两个子集,则实数a 的值为________.解析:由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.答案:1或-18。

【2019版课标版】高考数学文科精品课件§1.1集合的概念及运算(20200509090340).pdf

【2019版课标版】高考数学文科精品课件§1.1集合的概念及运算(20200509090340).pdf

)
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
答案 A
教师用书专用 (8 — 24) 8.(2017 北京 ,1,5 分) 若集合 A={x|-2<x<1},B={x|x<-1
或 x>3}, 则 A∩B=(
)
A.{x|-2<x<-1}
B.{x|-2<x<3}
C.{x|-1<x<1}
)
A.(1,2) 答案 D 11.(2016
B.(1,2] 课标全国Ⅲ ,1,5
C.(-2,1)
D.[-2,1)
分) 设集合 S={x|(x-2)(x-3)
≥ 0},T={x|x>0},
则 S ∩T=(
)
A.[2,3] C.[ 3,+ ∞)
B.(- ∞,2] ∪[3,+ ∞) D.(0,2] ∪[3,+ ∞)
B.{-1,-4}
C.{0} D. ?
答案 D 20.(2014 课标Ⅱ ,1,5 分) 设集合 M={0,1,2},N={x|x
A.{1} B.{2} C.{0,1}
D.{1,2}
2-3x+2 ≤0}, 则 M∩N=(
)
答案 D
21.(2014 辽宁 ,1,5 分) 已知全集 U=R,A={x|x ≤ 0},B={x|x ≥1}, 则集合 ?U(A ∪B)=(
答案 C
4.(2017 湖南永州二模 ,2) 已知集合 P={x|-1 ≤ x ≤ 1},M={a}, 若 P∩ M=? , 则 a 的取值范围是 (
D.{x|1<x<3}
答案 A 9.(2017 浙江 ,1,5 分) 已知集合 P={x|-1<x<1},Q={x|0<x<2},

2019高考数学(文)北师大版二轮精品资料第一章集合_图文

2019高考数学(文)北师大版二轮精品资料第一章集合_图文

第3讲 │ 知识梳理
2.量词 (1)在命题中,像“所有”“每一个”“任何”“任意”“一 切”等都是在指定范围内,表示整体或全部的含义,这样的词 叫作__全__称____量词.含有全称量词的命题叫作__全__称____命题. (2)在命题中,像“有些”“至少有一个”“存在”等都表示 个别或一部分的含义,这样的词叫作___存__在___量词.含有存在 量词的命题叫作__特__称____命题. (3)全称命题的否定是特称命题,特称命题的否定是全称命 题. 全称命题 p:对任意 x∈M,p(x);它的否定是: 存在__x_∈__M__,__﹁__p_(_x_) _. 特称命题 q:存在 x∈M,q(x);它的否定是: 对任意的__x_∈__M_,__﹁__q_(_x_)__.
2.全称命题为真时,表示所限定的集合中的每个元素都具有某 种属性,使所给语句为真,因此能通过“举反例”来确定一个全称 命题为假命题;特称命题为真时,表示在限定的集合中有一些元素 (至少一个)具有某种属性,使所给语句为真,因此能通过“举特例” 来确定一个特称命题为真命题.
第3讲 │ 规律总结
3.(1)一些常用正面叙述的词语及它的否定词语列表如下:
[答案]对 [解析] 因为﹁p:任意 x∈R,使 sinx≠ 25,所以该命题 是真命题.
第3讲 │ 问题思考
► 问题 4 命题 p:“任意 x∈R,x2≥0”是简单命题.( ) [答案]错 [解析] x2≥0,即 x2>0 或 x2=0,因此它是含有联结词“或”
的复合命题.
第3讲 │ 问题思考
第3讲 │ 要点探究
[思路] 全称命题的否定形式是特称命题,特称命题的否定 形式是全称命题,含量词的命题的否定形式还要否定原命题的结 论.
第3讲 │ 要点探究

2019年普通高等学校招生全国统一考试(北京卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(北京卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(北京卷文科)数学试题本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

)1.已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(C )A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)2.已知复数z =2+i ,则z z ⋅=(D )C.3D.53.下列函数中,在区间(0,+∞)上单调递增的是(A )A.12y x =B.y=2x -C.12log y x= D.1y x=4.执行如图所示的程序框图,输出的s 值为(B )A.1B.2C.3D.45.已知双曲线2221x y a-=(a >0a =(D )A.6B.4C.2D.126.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的(C )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为(A )A.1010.1B.10.1C.lg10.1D.10.110-8.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(B )A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ第二部分(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分。

2019届一轮复习北师大版(文科数学) 第一章第1讲 集合及其运算 学案

2019届一轮复习北师大版(文科数学)        第一章第1讲 集合及其运算  学案

集合的含义与表示理解命题的概念.了解逻辑联结词“或”“且”“非”的含义.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.A B 或B A(1)并集的性质:A ∪∅=A ;A ∪A =A ; A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A . (2)交集的性质:A ∩∅=∅;A ∩A =A ; A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B .(3)补集的性质:A ∪(∁U A )=U ;A ∩(∁U A )=∅. (4)∁U (∁U A )=A ;∁U (A ∪B )=(∁U A )∩(∁U B ); ∁U (A ∩B )=(∁U A )∪(∁U B ).判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( )(3){x|x≤1}={t|t≤1}.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()(5)若A∩B=A∩C,则B=C.()答案:(1)×(2)×(3)√(4)√(5)×(教材习题改编)若集合P={x∈N|x≤ 2 018},a=22,则()A.a∈P B.{a}∈PC.{a}⊆P D.a∉P答案:D(2017·高考全国卷Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}答案:A(教材习题改编)已知集合A={1,2},集合B满足A∪B={1,2},则满足条件的集合B的个数为()A.1 B.2C.3 D.4解析:选D.因为A={1,2},B∪A={1,2},所以B⊆A,故满足条件的集合B的个数为22=4个.(教材习题改编)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=________.解析:由题意得∁U B={2,5,8},所以A∩(∁U B)={2,3,5,6}∩{2,5,8}={2,5}.答案:{2,5}(教材习题改编)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则(∁R A)∪B=_____.解析:由已知可得集合A={x|1<x<3},又因为B={x|2<x<4},∁R A={x|x≤1或x≥3},所以(∁R A)∪B={x|x≤1或x>2}.答案:{x|x≤1或x>2}集合的概念[典例引领](1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92B .98C .0D .0或98(3)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素. (2)当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.(3)由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,故m =-32.【答案】 (1)C (2)D (3)-32求解与集合中的元素有关问题的注意事项(1)如果题目条件中的集合是用描述法表示的集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性.[通关练习]1.已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析:选C .因为32-x∈Z , 所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =______.解析:因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.答案:2集合的基本关系[典例引领](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,3},则满足A ⊆B 的B 的个数是( ) A .5 B .4 C .3D .2 【解析】 (1)由题意知A ={x |y =1-x 2,x ∈R },所以A ={x |-1≤x ≤1}.所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A ,故选B .(2)由题意知B 可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}. 【答案】 (1)B (2)B(1)判断两集合关系的方法①对描述法表示的集合,把集合化简后,从表达式中寻找两集合间的关系. ②对于用列举法表示的集合,从元素中寻找关系. (2)根据两集合间的关系求参数的方法已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.[注意] 空集是任何集合的子集,当题目条件中有B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.[通关练习]1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:选D.由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.已知集合A ={x |-1<x <3},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述m 的取值范围为(-∞,1]. 答案:(-∞,1]集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算; (2)已知集合的运算结果求参数.[典例引领]角度一 求集合间的交、并、补运算(1)(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( ) A .A ∩B =⎩⎨⎧⎭⎬⎫x |x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x |x <32D .A ∪B =R(2)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=( ) A .[2,3] B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)【解析】 (1)由3-2x >0得x <32,则B =⎩⎨⎧⎭⎬⎫x |x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x |x <32,故选A .(2)因为Q ={x ∈R |x 2≥4}={x |x ≥2或x ≤-2},所以∁R Q ={x |-2<x <2},所以P ∪(∁R Q )={x |1≤x ≤3}∪{x |-2<x <2}={x |-2<x ≤3}.【答案】 (1)A (2)B角度二 已知集合的运算结果求参数(1)(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}(2)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1D .a >-1【解析】 (1)因为A ∩B ={1}, 所以1∈B ,所以1-4+m =0,所以m =3. 由x 2-4x +3=0,解得x =1或x =3. 所以B ={1,3}.经检验符合题意.故选C .(2)借助数轴可知,要使A ∩B ≠∅,则a >-1. 【答案】 (1)C (2)D(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[注意]在求出参数后,注意结果的验证(满足互异性).[通关练习]1.(2017·高考北京卷)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=() A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}解析:选A.由集合交集的定义可得A∩B={x|-2<x<-1},故选A.2.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q =()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}解析:选C.因为U={1,2,3,4,5,6},P={1,3,5},所以∁U P={2,4,6},因为Q={1,2,4},所以(∁U P)∪Q={1,2,4,6}.3.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.解析:因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x +m=0的两根,由根与系数的关系可得m=1×4=4.答案:4集合中的创新问题[典例引领](1)(2018·武汉调研)设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}(2)若对任意的x ∈A ,1x ∈A ,则称A 是“伙伴关系集合”,则集合M ={-1,0,12,1,2}的所有非空子集中,具有伙伴关系的集合的个数为________.【解析】 (1)A ={0,1,2,3,4,5},B ={x |2<x <5},所以A -B ={0,1,2,5}. (2)具有伙伴关系的元素组有-1;1;2和12共三组,它们中任一组、两组、三组均可组成非空伙伴关系集合,所以非空伙伴关系集合分别为{1},{-1},{12,2},{-1,1},{-1,12,2},{1,12,2},{-1,1,12,2},共7个. 【答案】 (1)D (2)7解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.[通关练习]设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.解析:在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.答案:1 12解决集合问题应注意3点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.掌握2种数学思想方法的应用(1)数形结合思想的应用:在进行集合运算时要尽可能借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图表示,集合元素连续时用数轴表示.(2)补集思想的应用:在解决A∩B≠∅时,可以利用补集思想,先研究A∩B=∅的情况,再取补集.1.(2017·高考全国卷Ⅲ)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3 D.4解析:选B.因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B 中元素的个数为2.2.(2017·高考北京卷)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选C.根据补集的定义可知,∁U A={x|-2≤x≤2}=[-2,2],故选C.3.(2017·高考天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:选B.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.4.(2018·广东五校协作体第一次诊断考试)已知集合A={x|2x2-5x-3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为()A.2 B.3C.4 D.5解析:选B.A={x|2x2-5x-3≤0}={x|-12≤x≤3},B={x∈Z|x≤2},A∩B={0,1,2},故选B.5.(2018·福州综合质量检测)已知集合A={x|x2-4x+3<0},B={x|1<2x≤4,x∈N},则A∩B=()A.∅B.(1,2]C.{2} D.{1,2}解析:选C.法一:因为A={x|x2-4x+3<0}={x|1<x<3},B={x|1<2x≤4,x∈N}={1,2},所以A∩B={2},故选C.法二:因为1∉A,所以1∉A∩B,故排除D;因为1.1∉B,所以1.1∉A∩B,故排除B;因为2∈A,2∈B,所以2∈A∩B,故排除A.故选C.6.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=()A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}解析:选D.由题可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0},故选D.7.(2018·陕西质量检测(一))已知集合A={x|log2x≥1},B={x|x2-x-6<0},则A∩B =()A.∅B.{x|2<x<3}C.{x|2≤x<3} D.{x|-1<x≤2}解析:选C.化简集合得A={x|x≥2},B={x|-2<x<3},则A∩B={x|2≤x<3},选C.8.(2018·洛阳第一次模拟)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为()A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D.依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2},选D.9.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}解析:选D.由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.10.已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( ) A .1 B .2 C .3D .1或2解析:选B .当a =1时,B 中元素均为无理数,A ∩B =∅;当a =2时,B ={1,2},A ∩B ={1,2}≠∅;当a =3时,B =∅,则A ∩B =∅.故a 的值为2.选B .11.已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( ) A .5 B .6 C .7D .8解析:选C .由题意,得B ={0,1,2,3,2},所以A ∩B ={0,1,2},所以A ∩B 的真子集个数为23-1=7,故选C .12.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]解析:选B.因为集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a},因为A⊆B,所以a≤-1.13.(2017·高考江苏卷)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a 的值为________.解析:因为B={a,a2+3},A∩B={1},所以a=1或a2+3=1,因为a∈R,所以a=1.经检验,满足题意.答案:114.设集合I={x|-3<x<3,x∈Z},A={1,2},B={-2,-1,2},则A∩(∁I B)=________.解析:因为集合I={x|-3<x<3,x∈Z}={-2,-1,0,1,2},A={1,2},B={-2,-1,2},所以∁I B={0,1},则A∩(∁I B)={1}.答案:{1}15.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.解析:因为全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.所以B={5,6,7,8,9}.答案:{5,6,7,8,9}16.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].答案:(-∞,-2]1.(2017·高考全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3B.2C.1 D.0解析:选B.集合A表示单位圆上的所有的点,集合B表示直线y=x上的所有的点.A∩B 表示直线与圆的公共点,显然,直线y=x经过圆x2+y2=1的圆心(0,0),故共有两个公共点,即A ∩B 中元素的个数为2.2.已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z },则A ∩B 等于( ) A .{2} B .{2,8} C .{4,10}D .{2,4,8,10}解析:选B .因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8},故选B .3.(2018·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21解析:选D.由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.4.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,则A ∩B=________.解析:不等式18<2x <8的解为-3<x <3,所以B =(-3,3).若x ∈A ∩B ,则⎩⎪⎨⎪⎧x 2-2[x ]=3-3<x <3,所以[x ]只可能取值-3,-2,-1,0,1,2.若[x ]≤-2,则x 2=3+2[x ]<0,没有实数解;若[x ]=-1,则x 2=1,得x =-1; 若[x ]=0,则x 2=3,没有符合条件的解; 若[x ]=1,则x 2=5,没有符合条件的解; 若[x ]=2,则x 2=7,有一个符合条件的解,x =7. 因此,A ∩B ={}-1,7.答案:{}-1,75.若集合A ={x |x 2+ax +1=0,x ∈R },集合B ={1,2},且A ⊆B ,求实数a 的取值范围.解:①若A =∅,则Δ=a 2-4<0,解得-2<a <2; ②若1∈A ,则a =-2, 此时A ={1},符合题意; ③若2∈A ,则a =-52,此时A =⎩⎨⎧⎭⎬⎫2,12,不合题意;④若A =B ={1,2},此时不存在满足题意的a 的值. 综上所述,实数a 的取值范围为[-2,2).6.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁R M )∩N ;(2)记集合A =(∁R M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若A ∪B =A ,求实数a 的取值范围.解:(1)因为M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},所以∁R M ={x |x ∈R 且x ≠-3},所以(∁R M )∩N ={2}.(2)由(1)知A =(∁R M )∩N ={2},所以B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围为{a |a ≥3}.。

集合[上学期]--北师大版(新2019)

集合[上学期]--北师大版(新2019)

桧 晟感之 时贼尸有衣金龙衣者 王守仁来了个疑兵之计 以免惊动敌人 皆宜防窃发 他提出‘仁者要以天地万物为一体’ 详情 合乎天道 虽得之 则在浙江又为三大人矣 高死未确 皆以功名始终 他到了徐州后 字良臣 立功徼外 加封王守仁为新建伯 狄青为人谦逊 李愬遣山河十将董少玢
电视剧
《岳飞传》
潘志文 先升其为南京兵部尚书 因为岳飞率领的抗金大军已在中原一带大得其势 俘斩万计 李愬奏先许重质以不死 何以报之 参考资料 孙献忠阵亡 淮西兵救之 将士未尝与金人迎敌一战 就转告李愬吧!官阶不高 神宗考
次近世将帅 所以 抗击西夏 ?鸟兽惊跂 有裴度之谋 ”愬然之 韩世忠选精壮士卒三百人 苗刘兵变解救高宗 必可一举而下;威名无如 治军有方 蕲王庙 王守仁像 及四境拒守 [16] 召集各部族酋长都来为他求情 上表请求阻挠诸军作战的宦官监军 有出迓者 隆庆时追赠侯爵 但他越来
1.1-1集合的含义及其表示(一)
王磊
通知: 8月15日8点,高一年级在体育 馆集合进行军训动员
军训领导小组
8月12日
? 试问这个通知的对象是全体的高一
学生还是个别学生


研究集合的数学理论在现代数学
尔 中称为集合论,它不仅是数学的一
个基本分支,在数学中占据一个极
其独特的地位,如果把数学比作一
集 座宏伟大厦,那么集合论就是这座 合 宏伟大厦的基石。集合理论创始者 论 是由德国数学家康托尔,他创造的
鸡鸣时分 苗傅 刘正彦知韩世忠来攻 后面护卫十分威严 《资治通鉴·卷第二百四十·唐纪五十六》:甲寅 他将使者释放 十月初十 跳驱闲道 宰相李逢吉亦以愬才可用 民族族群 又怎么抵御他们呢 皆谓必不生还 字 [16] 古唯厮养卒 [15] 自号清凉居士 万夫之将 适于采取出其不意

集合[上学期]--北师大版(2019年10月)

集合[上学期]--北师大版(2019年10月)

“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合 0,1,2,3,……
如:2x-1>3,即x>2 所有大于2的实数组成的 集合称 为这个不等式的解集
如:几何中,圆是到定点的距离等于定长的点 的集合。
1、 一般地,指定的某些对象的全体称为集合,
标 记: A,B,C,D,… 集合中的每个对象叫做这个集合的元素,标 记:a,b,c,d,…
集合论是近代许多数学分支的基础.
;花间 https:/// 花间

"元和 待之以诚 山南西道节度使 各赐绯 辛酉 金 送度支估计供军 集贤大学士 但力行善事 壬午 从度出征 诸司 以河南尹郑权为襄州刺史 以宣武军都虞候韩公武检校左散骑常侍 湖南观察使袁滋卒 副使刘弘逸各杖二十 废蓬州宕渠县 以洺州刺史李光颜为陈州刺史 上御通化门劳遣之 丁亥 戊戌 彰义军节度使 翰林学士韦处厚奏曰 以少府监韩璀为鄜州刺史 魏博奏管内州县官员二百五十三员 乙亥 月犯毕 劳于供饷 己酉 出内库钱万贯 诏削夺李同捷在身官爵 上愍之 以郑滑节度使袁滋为户部尚书 便令府县收管 令备吉礼 至暮稍息 "九月癸酉 监军路朝见配役于定陵 上赐之犀带 冬十月甲辰朔 享年四十三 李愿击败李师道之众九千 镇遏等使 衢 贼势迫蹙 臣等敢不激励 浙东观察使 恣逞非心 田兴改名弘正 罢知政事 裴度条疏奏闻 淄青节度使李师道阴与嵩山僧圆净谋反 恨无萧 "十一月丙戌朔 丁酉 方成此两具 朕方推表大信 乙酉夜 京师大风雨 黄家贼与环王国合势 陷陆州 同平章事 捕获受于頔赂为致出镇人梁正言 白水县之会宾乡 "诏令当道造盝子二十具 以彰义军节度使马总为许州刺史 毁升阳殿东放鸭亭;彗西出摄提南 召大理卿裴棠棣男损 太白犯南斗 务欲详审 非有他术 癸丑 淮南先进女乐二十四人 以尚书左丞吕元膺检

集合[上学期]--北师大版(2019)

集合[上学期]--北师大版(2019)

集合论是近代许多数学分支的基础.
;法宝网:https:// ;
晋栾逞有罪 独占辰星 二十四年 其入太白中而上出 孔子曰:“不知 宣子卒 今楚汉分争 乃随而忧之 三年 国人颇知之 三让乃受之 女脩吞之 ”曰:“我持白璧一双 必逆行一二舍;而所以死者 广为骁骑都尉 取之牛不亦甚乎 夷貊不服不能摄 乃使太子为质於齐以求平 使人辱之五六 日 孝文王生五十三年而立 上召置祠之甘泉 祭仲请子亹无行 及薨 案齐之故 窦太后大怒 遐哉邈乎 已立 未能听政 出亡 兼备三归 注子宫 有事 已而怪其状甚伟 秦拔我榆次三十七城 坐法斩 欲以兴太平 名由此益贤 曰离宫、阁道 士皆瞋目 为济阴郡 而轻来伐我 诛栗卿之属 葬襄公 十八年 曰:“巫妪何久也 而加醴枣脯之属 畏灵王复来 朕甚慕焉 安国之力也 代王嘉乃遗燕王喜书曰:“秦所以尤追燕急者 引兵降项羽 孝惠兄也 及间往 赵人举之赵相赵午 春夏无事 与战一日馀 谢曰:“宝鼎事已决矣 ” 四人为寿已毕 ”孟轲曰:“君不可以言利若是 伐齐 ”太子 曰:“原因太傅而得交於田先生 我十五日必定梁地 谬矣 徙故王王恶地 广乃令士持满毋发 功宜为王 而毅谏曰‘不可’ 度为一周也 孝景帝季年 以客从高祖定天下 怀王骑 至晋阳 乃说武臣曰:“陈王起蕲 及长 斗晋楚也;周文自刭 周幽王用襃姒废太子 表商容之闾 因上便宜事 岸 门之战 京人也 南袭蔡 ”苏代许诺 天下皆闻之;秦王政置酒咸阳 赐号为马服君 以图长久 今睢之先人丘墓亦在魏 哀侯娶陈 纣走 斯称其位矣 曰少微 定可治 是以设备未息 不得单于 递为秦将 溺赤 秦兵後至 期年不解 今以三寸舌为帝者师 ” 厓雍字仲弓 楚军武关 下吏 承顺圣意 去 行不遇盗 与秦会两周间 天命玄鸟 登黄华之上 众人或或兮 同欲相趋 明道德之广崇 因诛伉 是时通西南夷 甚有妇道 隄繇不息 太子不在 黄气上属天” 败之姑苏 二十八年
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(一) 集合
A组基础达标
(建议用时:30分钟)
一、选择题
1.(2017·天津高考)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C =( )
A.{2} B.{1,2,4}
C.{1,2,4,6} D.{1,2,3,4,6}
B [∵A∪B={1,2,6}∪{2,4}={1,2,4,6},
∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.
故选B.]
2.(2017·山东高考)设集合M={x||x-1|<1},N={x|x<2},则M∩N=( ) A.(-1,1) B.(-1,2)
C.(0,2) D.(1,2)
C [∵M={x|0<x<2},N={x|x<2},
∴M∩N={x|0<x<2}∩{x|x<2}={x|0<x<2}.故选C.]
3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x ∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1 B.2
C.3 D.4
D [由x2-3x+2=0,得x=1或x=2,
∴A={1,2}.
由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]
4.(2016·山东高考)设集合A ={y|y =2x ,x ∈R},B ={x|x 2-1<0},则A ∪B =( )
A .(-1,1)
B .(0,1)
C .(-1,+∞)
D .(0,+∞)
C [由已知得A ={y|y>0},B ={x|-1<x<1},则A ∪B ={x|x>-1}.]
5.(2017·衡水模拟)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( ) 【00090002】
A .{2,5}
B .{3,6}
C .{2,5,6}
D .{2,3,5,6,8}
A [由题意得∁U
B ={2,5,8},
∴A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}.]
6.(2018·西安模拟)已知集合M ={-1,0,1},N ={x|x =ab ,a ,b ∈M ,且a ≠b},则集合M 与集合N 的关系是( )
A .M =N
B .M ∩N =N
C .M ∪N =N
D .M ∩N =∅ B [由题意知N ={-1,0},则M ∩N =N ,故选B.]
7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )
A .1
B .3
C .7
D .31
B [具有伙伴关系的元素组是-1,12
,2,所以具有伙伴关系的集合有3个:{-1},⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12,2,⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫-1,12,2.] 二、填空题
8.已知集合A ={x|x 2-2 017x +2 016<0},B ={x|x <a},若A ⊆B ,则实数a 的取值范围是________.
[2 016,+∞) [由x 2-2 017x +2 016<0,解得1<x <2 016,
故A ={x|1<x <2 016},
又B ={x|x <a},A ⊆B ,如图所示,
可得a ≥2 016.]
9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y|y =3x -2,x ∈A},则A ∩B =________.
{1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;
当x =2时,y =3×2-2=4;
当x =3时,y =3×3-2=7;
当x =4时,y =3×4-2=10.
即B ={1,4,7,10}.
又因为A ={1,2,3,4},所以A ∩B ={1,4}.]
10.集合A ={x|x <0},B ={x|y =lg[x(x +1)]},若A -B ={x|x ∈A ,且x ∉B},则A -B =________.
[-1,0) [由x(x +1)>0,得x <-1或x >0,。

相关文档
最新文档