第1章概率论基础4
概率论基础基础(复旦版)李贤平概论
![概率论基础基础(复旦版)李贤平概论](https://img.taocdn.com/s3/m/13f669fef705cc175527092d.png)
符号 Ω Φ ω∈Ω {ω} A⊂ Ω A ⊂B A=B A∪B A∩B Ā A-B A∩B=φ
测度论含义 全集 空集 集合的元素 单点集 一个集合 A A的元素在B中 B 集合A与B相等 A与B的所有元素 A与B的共同元素 A的补集 在A中而不在B中的元素 A与B无公共元素
概率论含义 样本空间,必然事件 不可能事件 样本点 基本事件 一个事件 A A发生导致B发生 B 事件A与B相等 A与B至少有一个发生 A与B同时发生 A的对立事件 A发生而B不发生 A与B互斥
显然 φ ⊂A⊂Ω ⊂Ω ⊂ 且 ⊂ 相等 A=B : A⊂B且B⊂A
2. 和事件 事件A和 至少有一个发生 A∪B :事件 和B至少有一个发生 ∪ 事件 A 显然, ∪ 显然 A∪φ =A A∪Ω=Ω ∪ Ω B
3. 积事件 事件 与 同时发生 A∩B : 事件A与B同时发生 简写AB 简写 A 显然, 显然 A∩φ=φ A∩Ω=A Ω B
例 抛硬币 试验者 Buffon Pearson Kerrich 掷的次数 4040 24000 10000 正面次数 2048 12012 5067 正面频率 0.5069 0.5005 0.5067
例,高尔顿钉板试验 在相同的条件下,大量重复某一试验时,各可能结果出现的 频率稳定在某各确定值附近,即 随机试验中频率的稳定性 频率稳定性的存在标志着随机现象也由数量规律 概率论是研究随机现象中数量规律的数学学科
四、随机事件的关系及运算
对应集合的关系和运算来定义事 件的关系及运算,并根据 事件发生” 并根据“ 件的关系及运算 并根据“事件发生”的 含义,来理解它们在概率论中的含义 含义 来理解它们在概率论中的含义
1. 子事件 包含 A⊂ B : 事件 发生必有事件B发 事件A发生必有事件 发 发生必有事件 ⊂ 包含A 生, 称B包含 包含 B A
概率论基础知识
![概率论基础知识](https://img.taocdn.com/s3/m/e28e131b5f0e7cd1842536ae.png)
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
第1章 概率论基础知识
![第1章 概率论基础知识](https://img.taocdn.com/s3/m/2c3b74360722192e4536f63b.png)
1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式
《概率论基础》(李贤平)第三版-课后答案
![《概率论基础》(李贤平)第三版-课后答案](https://img.taocdn.com/s3/m/b791a0e35fbfc77da269b1a1.png)
第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。
(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。
(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。
(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。
3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
第一章概率论的基础知识3-45学分
![第一章概率论的基础知识3-45学分](https://img.taocdn.com/s3/m/332086fc05087632311212cc.png)
随机事件
二、样本空间
1、样本空间:试验的所有可能结果所组成的 集合称为样本空间,记为S( Ω ) . 2、样本点: 试验的每一个结果或样本空间的 元素称为一个样本点,记为e ( ω ). 3.由一个样本点组成的单点集称为一个基本事 件,记为{e} ( {ω} ).
请给出E1-E7的样本空间
三、随机事件
五、事件的运算
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、德.摩根(De Morgan)律:
A B A B,
k k
AB A B
可推广 Ak Ak ,
A
k
k
Ak .
k
交变并,并变交,最后加补
例2
甲、乙、丙三人各向目标射击一发子弹, 以A、B、C分别表示甲、乙、丙命中目标, 试用A、B、C的运算关系表示下列事件:
A1 : “至少有一人命中目标 ” :
A B C
A2 : “恰有一人命中目标” : ABC ABC ABC A3 : “恰有两人命中目标” : ABC ABC ABC A4 : “最多有一人命中目标 ” : A5 : “三人均命中目标” :
i 1
n
4. 积(交)事件:A与B同时发生 AB=AB发生
4’n个事件A1, A2,…, An同时发生 A1A2…An发生
5.差事件:A-B称为A与B的差事件。A-B发生
事件A发生而B不发生
何时A-B=? 何时A-B=A?
6 互不相容(互斥)
7 对立事件 (逆事件)
A B
组合一:从含有n个元素的集合中随机抽取k 个, 共有
步步高大一轮复习讲义数学答案
![步步高大一轮复习讲义数学答案](https://img.taocdn.com/s3/m/b4fe0d98a48da0116c175f0e7cd184254a351b45.png)
步步高大一轮复习讲义数学答案第一章:概率论基础1.1 集合与概率题目:设集合A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。
答案:•交集:A∩B = {3,4,5}•并集:A∪B = {1,2,3,4,5,6,7}•差集:A-B = {1,2}1.2 条件概率与事件独立题目:某班级有40名男生和30名女生,从中随机抽取一名学生,求抽到男生的概率。
答案: - 总人数:40 + 30 = 70 - 抽到男生的概率:40/70 = 4/72.1 随机变量与离散型随机变量题目:设随机变量X表示投掷一枚骰子出现的点数,求X 的概率分布。
答案:X123456P(X)1/61/61/61/61/61/62.2 连续型随机变量与概率密度函数题目:设随机变量X表示一位学生的身高,其概率密度函数为f(x) = 0.01,0<x<100,求X在区间[50,70]的概率。
答案: - X在区间[50,70]的概率:P(50<=X<=70) =∫(50,70)0.01dx = 0.01*(70-50) = 0.23.1 矩阵与线性方程组题目:解下列线性方程组: - 2x + 3y = 8 - 3x + 2y = 7答案: - 通过消元法可得:x = 1,y = 23.2 行列式与矩阵的逆题目:求下列矩阵的逆矩阵: - A = [1, 2; 3, 4]答案: - A的逆矩阵:A^(-1) = [ -2, 1/2; 3/2, -1/2]第四章:数学分析基础4.1 极限与连续题目:求极限lim(x->0)(sinx/x)的值。
答案: - 极限lim(x->0)(sinx/x) = 14.2 导数与微分题目:求函数y=3x^2的导数。
答案: - y的导数:dy/dx = 6x以上是《步步高大一轮复习讲义》中关于数学部分的答案,希望对你的复习有所帮助。
祝你学习顺利!。
概率论与数理统计基础知识
![概率论与数理统计基础知识](https://img.taocdn.com/s3/m/83df7ee481c758f5f61f671d.png)
从集合的角度看
B
A
事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
1.1(随机试验与样本空间)
![1.1(随机试验与样本空间)](https://img.taocdn.com/s3/m/63bcf6cb0508763231121215.png)
第1章 概率论基础
1.1 随机试验与样本空间
1.1.1 随机试验
客观世界中存在着两类现象: 必然现象 随机现象
概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
Ω {H, T }
它既可以作为抛掷硬币出现正面或出现反面的 模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排
队的模型等.
1.1.2 样本空间
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
在一定条件下必然出现的现象,
称为必然现象;
实例: “太阳从东边升起” “水从高处向低处流” “同性电荷互斥”
1.1.1 随机试验
必然现象的特征
条件完全决定结果
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况. 结果有可能出现正面也可能出现反面.
1827 ) 、 高 斯 ( Gauss, 德 ,1777-1855 ) 和 泊 松
(Poisson,法,1781-1840)等一批数学家对概率论作 了奠基性的贡献.
【概率论简史】
1812年,拉普拉斯所著《概率的分析理论》实现了
从组合技巧向分析方法的过渡,开辟了概率论发展的
新时期.
19世纪后期,极限理论的发展成为概率论研究的中 心课题,是概率论的又一次飞跃,为后来数理统计的 产生和应用奠定了基础.契比谢夫(Chebyhev,俄, 1821-1894)对此做出了重要贡献.他建立了关于独立
概率论与数理统计基础公式大全
![概率论与数理统计基础公式大全](https://img.taocdn.com/s3/m/188484a233687e21ae45a9b4.png)
〔3〕F〔x,y〕分别对x和y是右连续的,即
〔4〕
〔5〕对于
.
〔4〕离散型与连续型的关系
〔5〕边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
。
连续型
X的边缘分布密度为
Y的边缘分布密度为
〔6〕条件分布
离散型
在X=xi的条件下,Y取值的条件分布为
在Y=yj的条件下,X取值的条件分布为
连续型
在Y=y的条件下,X的条件分布密度为
;
在X=x的条件下,Y的条件分布密度为
〔7〕独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型=fX(x)fY(y)
直接判断,充要条件:
①可别离变量
②正概率密度区间为矩形
记为〔X,Y〕~N〔
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N〔
但是假设X~N〔 ,(X,Y)未必是二维正态分布。
〔10〕函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布〔 〕。
n个相互独立的正态分布的线性组合,仍服从正态分布。
。
指数分布
,
0, ,
其中 ,那么称随机变量X服从参数为 的指数分布。
X的分布函数为
,
x<0。
记住积分公式:
正态分布
设随机变量 的密度函数为
, ,
其中 、 为常数,那么称随机变量 服从参数为 、 的正态分布或高斯〔Gauss〕分布,记为 。
概率论基础讲义全
![概率论基础讲义全](https://img.taocdn.com/s3/m/8a3eb2bbd15abe23492f4d24.png)
概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。
每次试验都不可能发生的事情称为不可能事件,记为①。
例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。
例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。
在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。
例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。
试验中所有样本点构成的集合称为样本空间。
记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
概率论基础知识
![概率论基础知识](https://img.taocdn.com/s3/m/90d08e4acf84b9d528ea7acc.png)
两事件相互独立 P ( AB ) P ( A) P ( B ) 两事件互斥
AB
二者之间没 有必然联系
定义2: 设A,B,C是三个事件,若满足: P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) 则称A,B,C为相互独立的事件. 定义3:对n个事件A1,A2,…,An,如果对所有可 能的组合1≤i<j<k<…≤n成立着 P(AiAj)=P(Ai)P(Aj) P(AiAjAk)=P(Ai)P(Aj)P(Ak) P(A1A2…An)=P(A1)P(A2)…P(An), 则称这n个事件A1,A2,…,An相互独立.
概率的统计定义直观地描述了事件发生的 可能性大小,反映了概率的本质内容,但 也有不足,即无法根据此定义计算某事件 的概率。
2.2、古典概型
若随机试验满足以下特征:
(1)试验的可能结果只有有限个;
(2)各个结果的出现是等可能的. 则称此试验为古典概型.
古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为: Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
Ai — 第i次试验中A发生, 则
k P( X k ) Cn p k q nk , k 0,1,2,, n
称随机变量X服从参数为n,p的二项分布,记为
P( A n A1A 2 A n1 )
2.4 全概率公式和贝叶斯公式:
1. 样本空间的划分 定义 : 若B1, B2 , , Bn一组事件满足:
(i) Bi B j , i j, i, j 1, 2, ...,n,
第一章概率论基础知识
![第一章概率论基础知识](https://img.taocdn.com/s3/m/3e99fe48cc22bcd127ff0c3f.png)
P{x1Xx2}P{x1Xx2}P{Xx1} F(x2)F(x1)P{Xx1}
2020/12/26
■分布函数的性质
⑴ 单调不减性:若x1 x2,则 F(x1) F(x2)
⑵ 归一 性:对任意实数x, 0Fx1,且
F ( )lim F (x)0,F( )lim F(x)1 ;
解 由题意可知 RX{0,1,2,3},则 X 的分布律为
X0
1
2
3
p k p 3 C31(1p)p2 C32(1p)2p (1 p )3
2020/12/26
将 p 1/2带入可得 X 的分布律为
X0
1
2
3
pk 1
3
3
1
8
8
8
8
2020/12/26
2.常用的离散型随机变量
(1) (0—1)分布 定义1 如果随机变量X的分布律为
x
x
⑶ 右连续性:对任意实数 X F (x 0 ) lim F (t) F (x ).
t x
具有上述三个性质的实函数,必是某个随机变量的分 布函数。故该三个性质是分布函数的充分必要性质。
2020/12/26
例1 已知 F xA arcx tB a,n求 A,B。
解
FAB0
2
FAB1
A1
F'xfx
2020/12/26
例1 设X 的分布函数为 Fx1e2x, x0
0, x0
求 P X 2 ,P X 3 ,fx .
解 PX2F2 1e4
P X31PX31F3 e 6
fxFx
2e
2
x
概率论初步知识介绍
![概率论初步知识介绍](https://img.taocdn.com/s3/m/2dd87f9a33d4b14e8524689c.png)
(2,7)
(2,8) (3,6)
(3,7)
(3,8) (4,6)
(4,7)
(4,8)
2.组合计数法则
▪阶乘
n!=n(n-1)(n-1)…3·2·1
▪排列
从n个不同对象中抽取r个(r<n)进行有序放置称为排列。
若n=r叫全排列。
P
r n
=n(n-1)···(n-r+1)
完成结果 投资成功 投资失败 合计
咨询意见 可以投资 不宜投资
154次 38次
2次
156次
6次
44次
合计
192次
8次
7、事件逆
样本空间S与事件A之差,即S-A这一事件称为A的逆事件、
对立事件或互补事件。记作 A。
8、互斥事件
如果两个事件A与B不可能同时发生,则称A与B互不相容 事件,或称为互斥事件,记作AB=Φ。
在我们的生活中会面临许多不确定性的决策问题
❖ 1、如果提高产品价格,则销售下降的“机会”有多少? ❖ 2、某种新的装配方法会有多大的“可能性”提高生产率? ❖ 3、某项工程按期完成的“可能”有多大? ❖ 4、新投资赢利的机率有多大?
工期超过十个月的概率是多少?
一、概率的加法定理
2、相容事件的加法定理
如果事件A、B同时出现,则事件A和事件B称为联合事件,记 为AB。两个相容事件A与B之和的概率为: P(A∪B)=P(A)+P(B)—P(AB) [例] 投资房地产赚钱的概率是0.7,投资电脑软件业的成功率 是0.8,同时投资的成功率是0.6,问投资二者中至少一种赚 钱的概率为多少? 解:P(A∪B)=P(A)+P(B)—P(AB)=0.7+0.8-0.6=0.9
近代概率论基础第一章 概率空间
![近代概率论基础第一章 概率空间](https://img.taocdn.com/s3/m/b6e5835614791711cd791732.png)
机动 目录 上页 下页 返回 结束
一、概率空间及其三要素
1、样本空间
是一非空集合,称为样本空间;其中的元素称
为样本点,相应于随机试验的结果。
2、 F 与可测空间 我们把事件A定义为 的一个子集,它包含若干
近代概率论基础
任课教师: 范胜君
E-mail: f_s_j@
教材 李贤平 编 《概率论基础》 高教出版社 2005.
机动 目录 上页 下页 返回 结束
一、内容与学时 第一章 概率空间
(5 学时)
第二章 条件概率与统计独立性(5 学时) 共
第三章 随机变量与分布函数 (6 学时) 32 学
件为 x y 20
可能的结果全体是边长为60的正方形中的点,能会
面的点的区域用阴影标出,故所求的概率为
p
602 402 602
5 9
y
60
实际上,我们假定了两人到达的时间 20 在7点到8点之间的机会均等且互不影响。 0 20
60 x
机动 目录 上页 下页 返回 结束
例2 在圆周上任取三点A,B,C,试求这三点构成的 三角形为锐角三角形的概率
B
N
A
C
1 2
1 2
B
A C
B
A M
机动 目录 上页 下页 返回 结束
同一问题有三种不同的答案,细究其原因,发 现是在取弦时采用了不同的等可能性假定。在第一 种解法中,假定端点在圆周上均匀分布,在第二种 解法中,假定弦的中点在直径上均匀分布,而在第 三种解法中,又假定弦的中点在圆内均匀分布。这 三种答案针对三种不同的随机试验,对于各自的随 机试验而言,它们都是正确的。
概率论第二版习题答案
![概率论第二版习题答案](https://img.taocdn.com/s3/m/e34bb0b0541810a6f524ccbff121dd36a32dc4f1.png)
概率论第二版习题答案概率论是一门研究随机现象的数学分支,它在统计学、金融学、工程学等多个领域都有广泛的应用。
第二版的概率论教材通常会在第一版的基础上进行修订和补充,以反映最新的研究成果和教学方法。
以下是一些概率论习题的答案示例,这些答案仅供参考,具体习题的答案可能会根据教材的不同而有所变化。
第一章:概率空间1. 习题1:描述一个概率空间的基本元素。
- 答案:一个概率空间由三个基本元素组成:样本空间(Ω),事件集合(F),以及概率测度(P)。
样本空间包含了所有可能的结果,事件集合是样本空间的子集,概率测度为每个事件分配一个介于0和1之间的实数,表示事件发生的可能性。
2. 习题2:证明如果事件A和事件B互斥,那么P(A∪B) = P(A) +P(B)。
- 答案:由于A和B互斥,即A∩B = ∅,根据概率测度的性质,P(A∪B) = P(A) + P(B) - P(A∩B)。
由于A和B互斥,P(A∩B) = 0,因此P(A∪B) = P(A) + P(B)。
第二章:随机变量及其分布1. 习题1:定义离散型随机变量和连续型随机变量。
- 答案:离散型随机变量是其取值可以列举的随机变量,其概率分布可以用概率质量函数来描述。
连续型随机变量是其取值无法一一列举的随机变量,其概率分布可以用概率密度函数来描述。
2. 习题2:如果X是一个随机变量,求E(X)和Var(X)。
- 答案:期望E(X)是随机变量X的平均值,定义为E(X) = ∑x *P(X = x)(对于离散型随机变量)或E(X) = ∫x * f(x) d x(对于连续型随机变量)。
方差Var(X)是随机变量X的离散程度的度量,定义为Var(X) = E[(X - E(X))^2]。
第三章:多维随机变量及其分布1. 习题1:描述联合分布函数和边缘分布函数的关系。
- 答案:联合分布函数给出了两个或多个随机变量同时取特定值的概率,而边缘分布函数是通过对联合分布函数进行积分或求和得到的,它给出了单个随机变量的分布。
概率论基础知识
![概率论基础知识](https://img.taocdn.com/s3/m/7894240179563c1ec5da713e.png)
概率论基础知识第一章 随机事件及其概率 一 随机事件§1几个概念:(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E 。
例如:E 1:掷一骰子,观察出现的总数;E 2:上抛硬币两次,观察正反面出现的情况;2、在试验中可能出现也可能不出现的 A ,B ,C …… 例如,在E 1中,A 表示“掷出2点”,B 表示“掷出偶数点”均为随机事件。
3、每次试验必发生的事Φ。
例如,在E 1中,“掷出不大于6点”的事件便是必然事件,而“掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件4、试验中直接观察到的最简单的结果例如,在E 1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。
在E 1中“掷出偶数点”便是复合事件。
5、从集合观点看,称构成基本事件的e.例.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
此试验的样本空间所有样本点的个数为第一种方法用组合+乘法原理;第二种方法用排列§2事件间的关系与运算1、包含:“若事件A 的发生必导致事件B 发生,则称事件B 包含事件A ,记为A B 或B A 。
例如,在E 1中,令A 表示“掷出2点”的事件,即A={2} B 表示“掷出偶数”的事件,即B={2,4, 6}则2、相等:若A B 且B A ,则称事件A 等于事件B ,记为A=B4、积:称事件A 与事件B 同时发生的事件为A 与B 的积事件,简称为积,记为A B 或AB 。
5、差:称事件A 发生但事件B 不发生的事件为A 减B 的差事件简称为差,记为A-B。
6、互不相容:若事件A 与事件B 不能同时发生,即AB=φ,则称A 与B 是互不相容的。
7、对立:称事件A 不发生的事件为A 的对立事件,记为显然 ,A ∩=φ3事件的运算规律1、交换律 A ∪B=B ∪A ; A ∩B=B ∩A2、结合律 (A ∪B )∪C=A ∪(B ∪C ) ;(A ∩B )∩C=A ∩(B ∩C )3、分配律 A ∩(B ∪C)=(A ∩B )∪(A ∩C ), A ∪(B ∩C )=(A ∪B )∩(A ∪C ) 4、对偶律此外,还有一些常用性质,如A ∪B A ,A ∪B B (越求和越大);A ∩B A ,A ∩B B (越求积越小)。
第一讲概率论基本知识
![第一讲概率论基本知识](https://img.taocdn.com/s3/m/fbb37df8770bf78a6529549f.png)
第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| ( X , Y ) |2 1
1.4随机变量的数字特征
推广: 设X1,X2 , ∙∙∙ ,Xn是n个随机变量,则
D( X i ) DX i 2 cov(X i , Y j )
i 1 i 1 1i j n
n
n
1.4 随机变量的数字特征
例:(配对问题)n个人将自己的帽子放在一起,充分混合后每 人随机取出一顶帽子,试求选中自己帽子的人数的均值和方差。 解:定义随机变量X
刻画随机变量X,Y取值存在 某种统计上的线性相关关系
2 X
2 Y
1.4随机变量的数字特征
1.4.2.3 随机变量的协方差和相关系数 定义4:设 X= X(ω), Y= Y (ω)是定义在概率空间(Ω ,F, P)上的两 个随机变量,若 0 DX 2 ,0 DY 2
n 1 1 2 n 2 2C n 2 n n (n 1) 1
1.4 随机变量的数字特征
1.4.2.4 随机变量的矩 定义5 : 设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数:
(1)对 >0R,其 阶绝对矩(absolute moment of order )为
1.4随机变量的数字特征
随机变量数学期望的性质 若ci (i=1,2, ∙∙∙ ,n)为常数, Xi= Xi(ω)是定义在概率空间(Ω ,F, P)上的随机变量,
则
E[ ci X i ] ci EX
i 1 i 1
n
n
设g(x)为x函数,F (x)为随机变量X分布函数,若E[ g(X)] 存在,则
E[ g ( X )]
g ( x)dF ( x)
—当X为离散型随机变量,即 P (X=xi)=pi(i N )时,则
EX xi pi
i 1
EX 是X所有可能值的加权平均
—当X为连续型随机变量,且有概率密度 f (x) 时,则
EX
xf ( x)dx
1.4随机变量的数字特征
gX(x)称为随机变量X的矩母函数。
1.5 矩母函数、特征函数和拉普拉斯变换
☞ 性质: 设X= X(ω)是定义在概率空间(Ω ,F, P)上随机变量,其分布函数 为F (x) , gX(x)称为随机变量X的矩母函数,则 (1) g(0)=1 ; (2)若g(t)在包含原点的(t1, t2)上存在,那么其存在各阶导数,即
g(k)(0)=E(X k) , k =1,2, ∙∙∙ .
ebt g(at) (4)设X1(ω),X2(ω),∙∙∙,Xn(ω)互相独立,矩母函数分别为 g1(t),g2(t),∙∙∙,gn(t),则
(3) aX +b的矩母函数为
X ( ) X i ( ) 的矩母函数为 gi (t )
1.5 矩母函数、特征函数和拉普拉斯变换
1.5.1随机变量的矩母函数(moment generating function) 定义1 . 设X= X(ω)是定义在概率空间(Ω ,F, P)上随机变量,其分 布函数为F (x) ,定义 etX 的数学期望为
g X (t ) E (e ) g X (t ) E (e )
D (aX ) a D( X ) , a const ☆设 X 1, ∙∙∙ ,Xn是互相独立的随机变量
2
D( X i ) D( X i )
i 1 i 1
n
n
1.4随机变量的数字特征
1.4.2.3随机变量的协方差和相关系数 定义3:设 X= X(ω), Y= Y (ω)是定义在概率空间(Ω ,F, P) 上的两个随机变量,若
X Y
称
cov( X , Y ) cov( X , Y ) ( X ,Y ) XY DXDY
刻画随机变量(X,Y) 之间线性关系的密切 程度
为(X,Y)的相关系数(correlation coefficient)。 特别若 (X,Y) =0 X,Y不相关
1.4随机变量的数字特征
2
( X ) D( X ) ( X )
为标准差(standard deviation)
1.4随机变量的数字特征
性质: 设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数,随机变量X方差具有如下性质 ☆ ☆ D( X c) D( X ) , c const
1.4 随机变量的数字特征
cov(X i , X j ) E ( X i , X j ) EX i EX j
n n
1 1 1 2 2 n(n 1) n n (n 1)
DX D( X i ) DX i 2 cov(X i , Y j )
i 1 i 1 1i j n
1 Xi 0
其分布率为
第i个人选中自己的帽子; (i 1,2,, n) 否则; n
X Xi
i 1
1 n 1 P(X i 1 ) ,P(X i 0 ) n n
EXi 1 , i 1,2,n n
1.4 随机变量的数字特征
EX E ( X i ) EX i 1
设 X,Y是定义在概率空间(Ω ,F, P)上的两个随机变量,
E (aX bY ) aEX bEY , a, b const
若X,Y相互独立
EXY EXEY
1.4随机变量的数字特征
1.4.2.2随机变量的方差(variance) 定义2:设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数,若 x dF ( x) 存在,则称 2 2 DX E ( X EX ) ( x EX ) dF ( x) 刻画随机变量X 为随机变量X 的方差。 围绕其均值散布程度 亦记作 2 2 DX var X ( X ) X 而称 2
E| X |
|
x | dF ( x)
(2)对 k N , 若 E| X |k 存在,其k 阶原点矩(moment about origin )为 k k k E ( X ) x dF ( x) (2)对 m >1 N,若 E| X |m 存在,其m 阶中心矩(moment about center )为 m m E( X EX ) ( x EX )m dF ( x)
关于R-S积分的几个特例 ☆特别当 g(x)=1
b a g ( x)dF ( x)
F (b) F (a) P(a X b)
☆ 若X是离散型随机变量,即P ( X =ci )= pi (i=1,2, ∙∙∙ ) ,则
F ( x) pi
ci x
c0 , c1 , cn X ~ p , p , p 1 n 0
i j
n n
(3)若X1, X2, ∙∙∙ ,Xn两两不相关,则 D( X i ) D( X i )
i 1 i 1
(4)施瓦茨(Schwarz)不等式,设随机变量X, Y存在二阶矩,则
[ E ( XY )]2 E ( X 2 ) E (Y 2 )
特别 | cov( X , Y ) |2 DXDY 2 2 X Y
性质:
☆ 协方差 cov(X,Y)=σXY和相关系数 (X,Y) 是刻画随机变量之 间相依性(interdependence)的数字特征,他们具有相同的符
号,且:
cov(X,Y)=σXY >0( (X,Y) >0)随机变量X,Y具有相同的变化趋势; cov(X,Y)=σXY <0( (X,Y) <0) 随机变量X,Y具有相反的变化趋势。
1.4随机变量的数字特征
☆设 X,Y是定义在概率空间(Ω ,F, P)上的两个随机变量,则:
(1)D( a
i 1
n
i Xi )
(2)若X1,X2 , ∙∙∙ ,Xn互相独立,则cov(Xi, Xj)=0 (ij) Xi,X j不相关
2 ai DX i i 1
n
2 ai a j cov( X i , X j )
i 1 i 1 n n
由 EX i
2
1 n
,得
2
DX i EX i
1 1 ( EX i ) 2 , i 1,2,, n n n
2
而当 i j 时,
1 E ( X i , X j ) P( X i 1, X j 1) P( X i 1) P( X j 1 X i 1) n(n 1)
是一个跳跃型分布函数,即F(x)仅在c1 , c2 , ∙∙∙ 点作跃度pi的变化,
则R-S积分为
b
a
g ( x)dF ( x) g (ci )[ F (ci 0) F (ci 0)] g (ci ) pi
i 1 i 1
其R-S积分级数
1.4随机变量的数字特征
tX
tX
tx e dF ( x)
如果X= X(ω)为连续型的,概率密度函数为 f (x),那么
tx e
f ( x)dx
x1 , xn , p1 , pn ,
x0 , 如果X= X(ω)为离散型的,概率分布率为, X ~ p , 0 txk 那么 g X (t ) e pk k
0 DX ,0 DY 称 cov( X , Y ) E[( X EX )(Y EY )] E ( XY ) ( EX )( EY )
为(X,Y)的协方差(covariance)。简记为cov(X, Y)=σXY 特别X与 Y独立 cov(X, Y)=σXY=0