仿生材料ppt
合集下载
仿生智能材料 ppt课件
类水稻叶表面碳纳米管薄膜
ppt课件
7
2.1 自然界的几种生物体的表面
性能及其仿生纳米界面材料
•2.1.2昆虫翅膀表面的自清洁性
蝴蝶翅膀由微米尺寸的鳞片交叠
覆盖,每一个鳞片上分布有排列
整齐的纳米条带结构,每条带由
倾斜的周期性片层堆pp积t课件而成。
8
2.1 自然界的几种生物体的表面
性能及其仿生纳米界面材料
ppt课件
24
2.1 自然界的几种生物体的表
面性能及其仿生纳米界面材料
润湿:一种流体从固体表面置换另一种流体的过 程,最常见的是固体的气固界面被液固界面所取 代的过程。
气液
液
固
固
(1)沾湿
ppt课件
固 气液
固液
(2)浸渍润湿
25
2.1 自然界的几种生物体的表
面性能及其仿生纳米界面材料
液
液
气
固
固
(3)铺展or完全润湿
身体的重量,它在水
面上每秒钟可滑行
100倍于身体长度的
距离。
ppt课件
水黾稳定的水上运动特性是
源于特殊的微/纳米结构和
油脂的协同效应
10
2.1 自然界的几种生物体的表面
性能及其仿生纳米界面材料
2.1.3在水面行走的昆虫—水黾
水黾的腿部有数 千根按同一方向 排列的多层微米 尺寸的刚毛(直 径3um),刚毛 表面形成螺旋状 的纳米沟槽结构。
ppt课件
Cassie model
cosc f1 cos1 f2 cos2
30
cosc f1 cos1 f2
2.1 自然界的几种生物体的表
面性能及其仿生纳米界面材料
第8章 仿生复合材料PPT课件
You Know, The More Powerful You Will Be
结构 决定 性能
天然蜘蛛丝具有软段区域和硬段区域, 即无定形区 和结晶区形成的微相分离结构。结晶相以纳米晶的 形式分散在无定形相中,拉伸时沿轴向取向。
55
2.蚕丝:“纤维皇后” 蚕丝由20 多种氨基酸组成, 结构复杂, 内层
为丝素蛋白, 外层被丝胶蛋白包覆。
蚕丝优异的力学性能: 沿纤维轴向既有较高的刚性和强度,又
23
为什么会有这种“荷叶效应”?
用传统的化学分子极性理论來解释,不仅解释不 通,恰恰是相反。
从机械学的粗糙度、光洁度角度来解释也不行, 因为它的表面光洁度根本达不到机械学意义上的 光洁度(粗糙度),用手触摸就可以感到它的粗 糙程度。
• 经过2位德国科学家的长期观察研究,即在1990年 代初终于揭开了荷叶叶面的奥妙。
• 尾肢可对秒数2公分的风做 出反应
• 可做微流速感知器
13
仿生材料科技的新思维
• 多从自然界动植物中寻求灵感 • 从事以生物为材料主体的研究 • 再生利用, 源源不绝的概念
14
一、仿生壁虎胶带
壁虎胶带
15
电镜显示, 壁虎脚上有密集的刚毛, 长度为30~ 130m 的刚毛, 每只脚上就有近50万根刚毛, 并且 每根刚毛又有400~ 1000 根直径为0.2~0.5 m 的 细分叉, 因此壁虎与附着物体有极大数目的接触点, 总的范德华力相当大, 足以支持壁虎的全身重量。
可以防止受到细菌、病原体的感染, 只要经过一场大雨的洗礼,就能恢复焕然一新。 目前荷叶效应的概念主要是应用在防污防尘上, 通过人工合成的方式,将特殊的化学成分加入涂料、建材、
衣料内等等, 使其具有某些程度的自洁功能,以实现防水防尘的目的。
结构 决定 性能
天然蜘蛛丝具有软段区域和硬段区域, 即无定形区 和结晶区形成的微相分离结构。结晶相以纳米晶的 形式分散在无定形相中,拉伸时沿轴向取向。
55
2.蚕丝:“纤维皇后” 蚕丝由20 多种氨基酸组成, 结构复杂, 内层
为丝素蛋白, 外层被丝胶蛋白包覆。
蚕丝优异的力学性能: 沿纤维轴向既有较高的刚性和强度,又
23
为什么会有这种“荷叶效应”?
用传统的化学分子极性理论來解释,不仅解释不 通,恰恰是相反。
从机械学的粗糙度、光洁度角度来解释也不行, 因为它的表面光洁度根本达不到机械学意义上的 光洁度(粗糙度),用手触摸就可以感到它的粗 糙程度。
• 经过2位德国科学家的长期观察研究,即在1990年 代初终于揭开了荷叶叶面的奥妙。
• 尾肢可对秒数2公分的风做 出反应
• 可做微流速感知器
13
仿生材料科技的新思维
• 多从自然界动植物中寻求灵感 • 从事以生物为材料主体的研究 • 再生利用, 源源不绝的概念
14
一、仿生壁虎胶带
壁虎胶带
15
电镜显示, 壁虎脚上有密集的刚毛, 长度为30~ 130m 的刚毛, 每只脚上就有近50万根刚毛, 并且 每根刚毛又有400~ 1000 根直径为0.2~0.5 m 的 细分叉, 因此壁虎与附着物体有极大数目的接触点, 总的范德华力相当大, 足以支持壁虎的全身重量。
可以防止受到细菌、病原体的感染, 只要经过一场大雨的洗礼,就能恢复焕然一新。 目前荷叶效应的概念主要是应用在防污防尘上, 通过人工合成的方式,将特殊的化学成分加入涂料、建材、
衣料内等等, 使其具有某些程度的自洁功能,以实现防水防尘的目的。
仿生设计ppt课件
形体模仿结构模仿形体模仿结构模仿?常见种类常见种类?生物与造船生物与造船?生物与飞机生物与飞机?生物与建筑生物与建筑研究和模拟的是生物机体外部形态和内部结动物的动物的动物的飞行行行力学仿生力学仿生力学仿生力学仿生理和动物的飞行生物与造船体形的模仿俄罗斯海军新型核潜艇俄罗斯海军新型核潜艇模仿鳕鱼鲇鱼外形建造的复仇号帆船造的复仇号帆船模仿鳕鱼鲇鱼外形建生物与造船生物与造船结构的模仿模仿鲸的胸鳍给船装上了船鳍船装上了船鳍模仿鲸的胸鳍给模仿鱼和鲸体表粘液合成了几种人工粘液以减小湍流粘液以减小湍流模仿鱼和鲸体表粘液合成了几种人工生物与飞机飞飞鸟的鸟的体体体体形和翅膀在滑进进飞飞行行时与时与飞飞飞飞机的飞行极为相相似似鹰击长空啸傲云天形和翅膀在滑机的飞行极为生物与飞机昆虫与飞机飞机仿造蜻蜓的翅膀配重防止振颤昆虫飞行时翅膀的运动很复杂其角度的变化控制比目前的飞行自动驾驶仪还好昆虫翅膀的运动昆虫翅膀的运动生物与建筑舱体结构薄壳结构艺术珍品艺术珍品澳大利亚悉尼歌剧院悉尼歌剧院澳大利亚东京中银舱体楼东京中银舱体楼美国佛罗里达的未来世界博物馆物馆美国佛罗里达的未来世界博?研究和模拟的是生物体中的各类化学反应包括酶学原理选择性生物膜和生物结构的能量转换酶学原理选择性生物膜和生物结构的能量转换生物发光生物发光生物发电等生物发电等
电源
嗅敏检测仪
嗅敏电阻是一类以SnO2为主体 的金属半导体,它是一种表面 效应很强的材料。
仿生物膜
细胞膜 ——流动镶嵌模型
脂双层形成框架; 蛋白质镶嵌其中; 具有动态特点
人工膜的特点
化学组成和厚度与天然膜相似:能有效地分开两种不
同的水相;具有结构和化学两侧不对称性,易于操作, 能用来研究膜的向量功能(如传递等)。
仿生设计
主要内容
仿生学概念 仿生学的研究方法 仿生与工程技术
电源
嗅敏检测仪
嗅敏电阻是一类以SnO2为主体 的金属半导体,它是一种表面 效应很强的材料。
仿生物膜
细胞膜 ——流动镶嵌模型
脂双层形成框架; 蛋白质镶嵌其中; 具有动态特点
人工膜的特点
化学组成和厚度与天然膜相似:能有效地分开两种不
同的水相;具有结构和化学两侧不对称性,易于操作, 能用来研究膜的向量功能(如传递等)。
仿生设计
主要内容
仿生学概念 仿生学的研究方法 仿生与工程技术
仿生复合材料PPT课件
如哑铃状的碳化硅晶须,延展性明显提高。 分形结构的碳纤维增强环氧树脂,强度和韧性比普
通纤维高50%。 仿双螺旋韧皮纤维增强复合材料 拟态
.
8.2.2.2. 分子尺度的化学仿生
✓复合相界面的化学仿生和复合材料单体结 构化学仿生。
✓a界面化学键仿生 ✓b单体化学分子结构仿生
.
8.2.2.3. 微观晶体结构仿生
连续纤维的脆性和界面设计的困难 纤维易由基体拔出导致增强失效 晶须的长径比不易选择 寻求陶瓷基复合材料增韧方法时遇到困难 需求复合材料损伤性能的恢复方法和内部 裂纹的愈合方法
.
生物材料最显著的特点是具有自我调节功能,再 者具有一些自适应和自愈合能力,而研究的重要 课题如下:
.
例如断骨的自愈合
.
8.2 复合材料的仿生 设计和制备
– 多层涂层、梯度涂层虽然可以做到消除热应力引起的裂纹, 但涂层受到外力损伤,容易失去抗氧化的功能。
– 陶瓷/碳复合材料处于高温氧化性环境,表面首先碳化,形 成陶瓷颗粒组成的脱碳层。
– 脱碳层的陶瓷颗粒氧化增大体积或熔融浸润整个材料表面, 氧气的扩散系数研究
.
8.2.3复合材料仿生制备的可行性途径
仿骨哑铃状碳化硅晶须的制备和增塑效应 用气相生长法制备树根状仿生碳纤维 用分形树状氧化锌晶须的制备 碳纤维螺旋束的增韧效应和反向非对称仿生碳纤 维螺旋的制备新方法 自愈合抗氧化陶瓷/碳复合材料的制备 制备内生复合材料的熔铸-原位反应技术 仿生叠层复合材料的制备
.
北京工商材料科学与工程学 院
.
8.2.2复合材料的仿生设计方法分类
.
8.2.2.1界面宏观拟态仿生设计
复合材料界面的作用:是增强物和基体连接的桥梁, 同时也是应力及其它信息的传递者,界面的 性质 直接影响着复合材料的各项力学性能。
通纤维高50%。 仿双螺旋韧皮纤维增强复合材料 拟态
.
8.2.2.2. 分子尺度的化学仿生
✓复合相界面的化学仿生和复合材料单体结 构化学仿生。
✓a界面化学键仿生 ✓b单体化学分子结构仿生
.
8.2.2.3. 微观晶体结构仿生
连续纤维的脆性和界面设计的困难 纤维易由基体拔出导致增强失效 晶须的长径比不易选择 寻求陶瓷基复合材料增韧方法时遇到困难 需求复合材料损伤性能的恢复方法和内部 裂纹的愈合方法
.
生物材料最显著的特点是具有自我调节功能,再 者具有一些自适应和自愈合能力,而研究的重要 课题如下:
.
例如断骨的自愈合
.
8.2 复合材料的仿生 设计和制备
– 多层涂层、梯度涂层虽然可以做到消除热应力引起的裂纹, 但涂层受到外力损伤,容易失去抗氧化的功能。
– 陶瓷/碳复合材料处于高温氧化性环境,表面首先碳化,形 成陶瓷颗粒组成的脱碳层。
– 脱碳层的陶瓷颗粒氧化增大体积或熔融浸润整个材料表面, 氧气的扩散系数研究
.
8.2.3复合材料仿生制备的可行性途径
仿骨哑铃状碳化硅晶须的制备和增塑效应 用气相生长法制备树根状仿生碳纤维 用分形树状氧化锌晶须的制备 碳纤维螺旋束的增韧效应和反向非对称仿生碳纤 维螺旋的制备新方法 自愈合抗氧化陶瓷/碳复合材料的制备 制备内生复合材料的熔铸-原位反应技术 仿生叠层复合材料的制备
.
北京工商材料科学与工程学 院
.
8.2.2复合材料的仿生设计方法分类
.
8.2.2.1界面宏观拟态仿生设计
复合材料界面的作用:是增强物和基体连接的桥梁, 同时也是应力及其它信息的传递者,界面的 性质 直接影响着复合材料的各项力学性能。
仿生智能材料经典课件
仿生智能材料
一、 仿生学 1、仿生学概念 2、生物材料与仿生材料
二、智能材料 1、什么是智能材料 2、智能材料的特征 3、智能材料的构成 4、智能材料的应用
一、 仿生学
1、仿生学概念
人类进化只有500万年的历史,而生命进化已经历 了约35亿年。人类很早就认识到生物具有许多超出 人类自身的功能和特性。对生物的结构、形态、功 能和行为等进行研究,我们就会从自然中获得解决 问题的智慧和灵感。
仿生学是一门生命科学、物质科学、信息 科学、数学和工程技术等学科相互渗透而结合 成的一门边缘科学。
2、生物材料和仿生材料 自然界存在的天然生物材料有着人工材
料无可比拟的优越性能。
生物材料通常有两个定义,一是有生命过 程形成的材料,如结构蛋白(蚕丝等)和 生物矿物(骨、牙、贝壳等),另一个是 指生物医用材料(Biomedical materials), 其定义随医用材料的发展不断发展,指用 于取代、修复活组织的天然或人造材料。
智能材料需具备以下内涵:
(1)具有感知功能,能够检测并且可以识别外 界(或者内部)的刺激强度,如电、光、 热、应力、应变、化学、核辐射等;
(2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当; (5)当外部刺激消除后,能够迅速恢复到原始
状态。
常用敏感材料:形状记忆材料、压电材料、光纤 材料、磁致伸缩材料、电致变色 材料、电流变体、磁流变体和液 晶材料等。
(3)驱动材料 因为在一定条件下驱动材料可产生较大的应变和 应力,所以它担负着响应和控制的任务。
常用有效驱动材料:形状记忆材料、压电材料、 电流变体和磁致伸缩材料等。
(4)其它功能材料
美国研发出一款举世无双 的“海豚潜艇”,它不仅 在外形上酷似海豚,而且 能像海豚一样学(Bionics):模仿生物系统的结构、形状、 原理、行为以及相互作用,建造技术系统,或 者使人造技术系统具有生物系统特征或类似特 征的科学,简而言之,仿生学就是“模仿生物 的科学”。
一、 仿生学 1、仿生学概念 2、生物材料与仿生材料
二、智能材料 1、什么是智能材料 2、智能材料的特征 3、智能材料的构成 4、智能材料的应用
一、 仿生学
1、仿生学概念
人类进化只有500万年的历史,而生命进化已经历 了约35亿年。人类很早就认识到生物具有许多超出 人类自身的功能和特性。对生物的结构、形态、功 能和行为等进行研究,我们就会从自然中获得解决 问题的智慧和灵感。
仿生学是一门生命科学、物质科学、信息 科学、数学和工程技术等学科相互渗透而结合 成的一门边缘科学。
2、生物材料和仿生材料 自然界存在的天然生物材料有着人工材
料无可比拟的优越性能。
生物材料通常有两个定义,一是有生命过 程形成的材料,如结构蛋白(蚕丝等)和 生物矿物(骨、牙、贝壳等),另一个是 指生物医用材料(Biomedical materials), 其定义随医用材料的发展不断发展,指用 于取代、修复活组织的天然或人造材料。
智能材料需具备以下内涵:
(1)具有感知功能,能够检测并且可以识别外 界(或者内部)的刺激强度,如电、光、 热、应力、应变、化学、核辐射等;
(2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当; (5)当外部刺激消除后,能够迅速恢复到原始
状态。
常用敏感材料:形状记忆材料、压电材料、光纤 材料、磁致伸缩材料、电致变色 材料、电流变体、磁流变体和液 晶材料等。
(3)驱动材料 因为在一定条件下驱动材料可产生较大的应变和 应力,所以它担负着响应和控制的任务。
常用有效驱动材料:形状记忆材料、压电材料、 电流变体和磁致伸缩材料等。
(4)其它功能材料
美国研发出一款举世无双 的“海豚潜艇”,它不仅 在外形上酷似海豚,而且 能像海豚一样学(Bionics):模仿生物系统的结构、形状、 原理、行为以及相互作用,建造技术系统,或 者使人造技术系统具有生物系统特征或类似特 征的科学,简而言之,仿生学就是“模仿生物 的科学”。
仿生材料PPT课件
田径比赛
起跑姿势:下蹲式(仿袋鼠在跳跃前总是把腿收缩起来再跳 游泳姿势:蛙泳式(仿游泳能手青蛙)
比直立式更快)
第二节 人类仿生的发展历史
鲁班 观察丝矛草叶子
仿其边缘的细齿结构
发明锯子
观察鱼在水中的游泳 仿鱼类的形体 发明木船 仿鱼尾巴摇摆而游动、转弯 发明木浆、橹和舵 鲁班 观察鸟的飞翔 用竹木作鸟“成而飞之,三日不下” 达· 芬奇 解剖鸟的身体并观察其飞行 制造扑翼机 (飞机的雏型)
第一章 绪 论
第一节 仿生学
蜘蛛丝的强韧性; 蜻蜓出色的飞行本领; 苍蝇的多种特殊功能; 孔雀、蝴蝶美丽的翅膀; 夜间活动型蛾(Night Moth)的眼 蜂巢奇妙的构造; 蟑螂灵敏的感知能力; 啄木鸟的脑壳有最紧密组织的抗震骨骼; 墨鱼的瞬间加速可以达到每小时20哩; 蜂鸟飞行600哩旅程耗費不到十分之一盎司的能量; 荷花叶面有绝佳的抗污性 (self-cleaning properties )
主要参考资料:
1. 2. 3. 4. 5.
6.
《Nature》近期杂志。 《Science》近期杂志。 《Biomacromolecules》近期杂志。 《Advanced Materials》近期杂志。 《International Journal of Biological Macromolecules》近期杂志。 仿生材料,崔福斋、郑传林编著,化学工业 出版社(2004)。
大象的奇妙行为-怪异的步伐
大象的奇妙行为
大象属于恒温动物 大象能承受的体温变化较大 大象居于炎热地带 其散热方式和身体结构有关。
大象的奇妙行为
大象的沟通方式很复杂。 同步前进相隔很远的象群是怎样进行 遥感沟通的?
仿生复合材料PPT课件
如哑铃状的碳化硅晶须,延展性明显提高。 分形结构的碳纤维增强环氧树脂,强度和韧性比普
通纤维高50%。 仿双螺旋韧皮纤维增强复合材料 拟态
.
8.2.2.2. 分子尺度的化学仿生
✓复合相界面的化学仿生和复合材料单体结 构化学仿生。
✓a界面化学键仿生 ✓b单体化学分子结构仿生
.
8.2.2.3. 微观晶体结构仿生
.
8.2.3.1仿骨哑铃状碳化硅晶须的制备和增塑效 应
仿生SiC的制备:SiO+3CO----SiC+2CO2 仿生SiC由直杆状晶须和珠状小球SiOx组成
仿生SiC晶须增强PVC:PVC片的强度有所降低,但塑性明显 提高
.
8.2.3.2用气相生长法制备树根状仿生碳纤 维
以苯为碳源,铁为催化剂,氢为载气。将硝酸铁 喷洒在陶瓷基板上干燥,将基板加热使硝酸铁分 解为Fe2O3,氢气1.粉体合成 2.块体材料
.
8.3仿生复合材料的应用
• 人造骨骼 • 叠层状陶瓷、纤维增强铝合金胶结层板、
钢板叠层复合材料 • 薄层陶瓷材料 • 水泥 • ……
.
.
.
谢谢欣赏!
.
个人观点供参考,欢迎讨论!
生物系统制造的非有机复合材料通过自身体液的矿化作 用生成。 人造复合材料是通过组成相的混合物在高温下进行热处 理。 磷灰石-金属基复合材料的制备仿生工艺: a.在生物环境下,提供能诱导磷灰石形成的表层 b.模拟配置生物体液 c.将商用Ti及其合金置于60℃,用一定浓度的氢氧化钠 溶液进行24小时表面活化处理,在600 ℃高温下进行1h 热处理,浸入生物体液。 d.X射线与红外光谱测定表明,其无序的钛酸钠表面覆 盖有状如薄片、含碳酸盐的类似骨骼的磷灰石晶体。
通纤维高50%。 仿双螺旋韧皮纤维增强复合材料 拟态
.
8.2.2.2. 分子尺度的化学仿生
✓复合相界面的化学仿生和复合材料单体结 构化学仿生。
✓a界面化学键仿生 ✓b单体化学分子结构仿生
.
8.2.2.3. 微观晶体结构仿生
.
8.2.3.1仿骨哑铃状碳化硅晶须的制备和增塑效 应
仿生SiC的制备:SiO+3CO----SiC+2CO2 仿生SiC由直杆状晶须和珠状小球SiOx组成
仿生SiC晶须增强PVC:PVC片的强度有所降低,但塑性明显 提高
.
8.2.3.2用气相生长法制备树根状仿生碳纤 维
以苯为碳源,铁为催化剂,氢为载气。将硝酸铁 喷洒在陶瓷基板上干燥,将基板加热使硝酸铁分 解为Fe2O3,氢气1.粉体合成 2.块体材料
.
8.3仿生复合材料的应用
• 人造骨骼 • 叠层状陶瓷、纤维增强铝合金胶结层板、
钢板叠层复合材料 • 薄层陶瓷材料 • 水泥 • ……
.
.
.
谢谢欣赏!
.
个人观点供参考,欢迎讨论!
生物系统制造的非有机复合材料通过自身体液的矿化作 用生成。 人造复合材料是通过组成相的混合物在高温下进行热处 理。 磷灰石-金属基复合材料的制备仿生工艺: a.在生物环境下,提供能诱导磷灰石形成的表层 b.模拟配置生物体液 c.将商用Ti及其合金置于60℃,用一定浓度的氢氧化钠 溶液进行24小时表面活化处理,在600 ℃高温下进行1h 热处理,浸入生物体液。 d.X射线与红外光谱测定表明,其无序的钛酸钠表面覆 盖有状如薄片、含碳酸盐的类似骨骼的磷灰石晶体。
仿生材料ppt课件
1997 年德国植物学家Barthlott 发现荷叶表面的自清洁效 应和超疏水现象。 所谓超疏水表面一般是指与水滴的接触角大于 150°且 滚动角小于10°的表面, 这种表面在工农业生产及日常 生活中有着广泛的应用, 例如, 集水功能、微流体装置、 抗结冰等. 研究发现, 这些超疏水性生物表面的微纳米结构对其超 疏水性起着至关重要的作用。 超疏水材料一般可以通过两种方法来制备: 一种是在粗 糙表面修饰低表面能物质;另一种是在疏水材料(一般其 接触角大于90°)表面构筑粗糙结构. 目前, 已经报道了许多比较成熟的制备技术, 如电化学 沉积法、等离子体和激光刻蚀法、交替沉积法、电纺丝 法、模板法、溶胶-凝胶法等.
荷叶粗糙表面上有微米结构的乳突,平均直径为5-9um, 单个乳突又是由平均直径约为124.3nm的纳米结构分支组 成,乳突虎脚掌
水黾腿
蝴蝶翅膀
蚊子复眼
沙漠甲壳虫背部
2.2超疏油仿生界面材料
荷叶上表面的微纳复合结构与表面植 物蜡的协同作用赋予了荷叶“出淤泥而不 染”的超疏水自清洁特性,这一点已经广 为人知。但是荷叶下表面的性质却被人忽 视。 Cheng等对荷叶的上表面和下表面的浸润 性进行了深入的研究。如左图(a)所示, 水滴在荷叶的上表面呈圆形;在水中,油 滴(染色的正己烷)也以球形停留在在荷叶 的下表面,表明荷叶的上下表面分别具有 超疏水和超疏油的特性。通过环境扫描电 镜(ESEM)和原子力显微镜(AFM)对荷叶下 表面进行形貌表征,发现下表面由无数个 扁形乳突组成,每个乳突的长度为30~ 50μ m,宽为10~30μ m,高为4μ m,且上 面覆盖着长度为200~500nm的纳米突起。 另外,荷叶的下表面覆盖着一层亲水的类 水凝胶化合物,正是荷叶下表面的这种特 殊微纳结构和化学组成造就了天然的稳定 水下超疏油表面。这一发现也从侧面反映 了荷叶下表面是抗生物粘附的性质。
仿生设计赏析PPT课件
第7页/共16页
●水母房子
这栋造型别致的房子是由美国加州建 筑师以水母为灵感设计的,是高科技 的产物。整个房子无论外形或者内部 构造都与海洋生物水母相似,房子内 部很大部分由液体构成,让人真正地 感受到在海中生活,离不开水,融于 自然的神奇。
之所以整屋子的“水”,是由于 这房子的设计运用了特殊的外部包膜 和过滤系统,使得雨水在经过净化后 储存于墙壁内,“水”进入到房子内 部,在房内流动,为房子的加热或冷 却系统提供“原料”。设计师还在做 进一步研究,希望“水母”房子除了 具有艺术美感,还能做到真正更好的 节约“能源”。
基于生物表面肌理与质感的仿生设计
● 提速武器——鲨鱼皮泳衣
在2008年北京奥运会上,美国游泳名将迈克尔·菲尔普斯凭借8枚金牌创造一项新的世界纪 录。能够取得如此骄人的成绩自然首先归功于多年的刻苦训练和令对手羡慕的天赋,但 他所穿的Speedo泳衣可能也让他拥有某种优势,这种超级泳衣使用的材料模仿鲨鱼皮的 形状和质地。 鲨鱼皮是人们根据其外形特征起的绰号, 它的核心技术在于模仿鲨鱼的皮肤。鲨鱼皮表 面粗糙的V形皱褶可以大大减少水流的摩擦力,使身体周围的水流更高效地流过进而实现 快速游动。
第13页/共16页
●鸡蛋椅
阿恩·雅各布森(ArnettJacobsen)受到鸡蛋优美的曲线的启发设计 出了蛋形椅。外形似鸡蛋,人们坐上去会感受到很舒服,很安全。
第14页/共16页
谢谢观看
第15页/共16页
感谢您的观看!
第16页/共16页
第12页/共16页
●模仿海鸥的侦察机
美国佛罗里达州大学工程师里克·林 德(Rick Lind)从海鸥身上得到启发, 研制出一种能在高层建筑周围寻找 出路,同时又可猛扑向林荫大道的 远程遥控侦察机,很多现代战场正 是由高层建筑和林荫大道构成。图 片中,林德手拿的就是基于海鸥可 在“肩部”和“肘部”弯曲翅膀的 这种能力设计的飞机原型。笔直的 “肘部”在最大程度上提高稳定性; “肘部”以下部分则提高飞机在骤 降、俯冲和翻滚时的灵活性。
《壁虎仿生材料》PPT课件
1.2壁虎的脱离机制
另外一种解释: 以壁虎绒毛与基底接
触点为支点,绒毛另一端与 基底的距离为力臂,吸附和 脱附时拖拽力均平行于基 底,但方向相反。脱附时的 力臂远远大于吸附过程中 的力臂,由杠杆原理知,壁虎 仅需用很小的力即可让绒 毛与基底分离。[1]
0 2
仿壁虎粘附阵列的设 计与制造
壁虎的粘附阵列是一种性能优异的干性 粘着剂,由于是范德华力起主要作用, 粘附力主要受绒毛材料和几何形状的影 响,这为人们仿制粘附阵列提供了很大 的可能性。
本模板的所有素材和逻辑 图表,均可自由编辑替换 和移动。
1.1壁虎的吸附机制
Kellar Autumn等人利用MEMS技术制造的高精度二维压阻悬臂梁测量了壁虎单根刚毛的粘附 力,最大值为194+25 uN 。所有刚毛同时粘附并达到最大值时,壁虎的脚掌可产生约1300 N 的粘附力。[1]
1.2壁虎的脱离机制
型对抹刀形顶端的半径进行了近似估计,结果为0.13~0.16 um, 与实验测量值很接制造了仿壁
虎的绒毛结构,并测量其与AFM探针间的粘附力,发现47%~63% 的粘附力都是由范德华力提供的。在这几种主要证据的支持下,范
德华力被普遍认为是壁虎实现粘附的主要机理。[1]
壁虎在竖直的墙壁上能 以1m/s的速度快速爬
> 行,在没有任何测量到
外拉力的条件下,刚毛 在15 ms内能轻松脱离 基底。那么爬行中迅速 的脱离是怎样实现的呢?
1.2壁虎的脱离机制
Kellar Autumn等人发 现,当刚毛与基底成30゚ 角时会突然发生脱离, 说明可能存在脱离的临 界角。整个脱离过程就 像是在剥离条带,这可 能是随着角度的增加, 刚毛边缘的应力增加, 导致绒毛与基底间的连 接出现裂纹,裂纹逐渐 增大造成脱离。[1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构) 松质骨,羟基磷灰石+胶原基体 密质骨,薄层胶原纤维+矿物晶体
长骨的分级结构示意图
皮质骨具有一种由厚薄两层交替而成的层状结构。薄层 中胶原纤维与矿物晶体c轴垂直于骨的长轴方向,厚度约 为0.3m,厚层中胶原纤维相互平行,并且与骨的长轴呈 一角度。这种结构与哈佛氏系统内的厚、薄骨板相对应。
层状骨结构示意图 (a)矿物相排列;(b)胶原纤维排列方向
因此,在材料的设计和研究中,引入了 仿生结构设计的思想 ,通过“简单组成、 复杂结构”的精细组合,来实现材料的高 韧性、抗破坏及使用可靠性特性。
7.3 天然生物材料的结构特征与仿生
一、贝壳和珍珠的层状叠片结构与仿 生
▪ 贝壳的成分主要是碳酸钙和少量的 壳基质构成,这些物质是由外套膜 上皮细胞分泌形成的。
文石
对贝壳珍珠层的结构分析表明其并不是单纯的层片结 构,而可以看成两级尺度结构的藕合。在珍珠层的一级 细观结构上,增强元文石薄片的面层与贝壳表面平行, 具有(5~10)m× (5~10) m ×(0.3~1.5) m的典型尺寸, 整个薄片在同一层面内以小于15nm的有机物粘合,形成 所谓硬层(即文石晶片层)。这些硬层再以厚约30 nm的 有机物粘合起来,形成软硬相间的层状结构。
▪ 贝壳的结构一般可分为3层: ✓ 最外一层为角质层,很薄,透明,
有光泽,由壳基质构成,不受酸碱 的侵蚀,可保护贝壳。 ✓ 中间一层为壳层,又称棱柱层,占 贝壳的大部分,由极细的棱柱状的 方解石(CaCO3, 三方晶系)构成。 ✓ 最内一层为壳底,即珍珠质层,富 光泽,由小平板(CaCO3, 斜方晶
珍珠层中文石晶体与 有机基质叠层示意图
▪ 珍珠具有类似于贝壳珍珠层的叠片累积结 构。
▪ 这种微观结构模式与贝壳珍珠层的差别仅 在于,在贝壳的珍珠层是沿贝壳的表面铺 排构成层的,而珍珠中的珍珠层包围核心 铺排成层。贝壳珍珠层之所以得名,是因 为它也具有珍珠光泽。
贝壳是的强、韧的最佳配合, 它又被称为摔不坏的陶瓷。
▪ 自然界中的物质和天然生物材料,如贝壳、骨骼、 蚕丝、竹、木材等都是经数亿年进化的产物,迄 今已具有适应其环境与功能需求的最佳结构,表 现出传统人工合成材料无法比拟的优异的强韧性、 功能适应性及损伤愈合能力。
▪ 因此,材料科学工作者试图揭示天然生物材料的 结构特征和形成机制,从而应用于现代材料的设 计与制备。
▪ 材 合料 后制,备轧是制将 成薄Si片3N4,粉模、仿Si珍C晶珠须层和中添的加文剂石混 晶片层,其中SiC晶须作为二级增韧元。以 B仿N珍和珠Al层2O3中的的混有和机浆基料质涂层覆,在涂轧层膜后片的上薄,片模 在 压烧石墨结模成瓷中叠。块,经排胶后在N2气氛下热
▪裂紋沿結構單元間的間隔層中發生階梯狀的偏轉 和分叉的擴展過程
贝壳和珍珠在断裂前能经受较 大的塑性变形,具有优异的高 韧性。其主要原因是由于裂纹 偏转、纤维(晶片)拔出以及 有机基质桥接等各种韧化机制 协同作用的结果。而这些韧化 机制又与珍珠层的特殊组成、 结构密切相关。
陶瓷强韧化设计:
▪ 简单组成、复杂结构; ▪ 引入弱界面层; ▪ 非均质精细结构设计
▪ 针对珍珠层特有的生物特征,清华大学模 仿珍珠层的两级增韧机制,设计制备出仿 珍珠层的具有较高强度和韧性的复合陶瓷。
Si3N4/BN-Al2O3纖維獨石陶瓷材料裂紋擴展路徑
▪ 模仿珍珠层的结构和增韧机理,采用两级尺度的 增韧结构,可以在保持较高强度的前提下,较大 幅度地提高材料的韧性。
二、骨骼的分级结构与仿生 ▪ 松质骨和密质骨 例:长骨 两端骨骺(松质骨)
中间骨干(密质骨) 骨的主要有机相:胶原纤维(三股螺旋结
▪ 在生物医疗领域,仿照天然生物材料制备出具有 生物功能,甚至是真正有生物活性的材料成为生 物材料科学极为活跃的前沿研究领域。
7.2 天然生物材料的特性
▪ 复合特性 ▪ 功能适应性 ▪ 创伤愈合性 ▪ 多功能性
人们从天然生物的研究中得到启示,天 然的生物材料,如竹、木、骨骼、贝壳等, 它们虽然具有简单的组成,但是通过复杂 结构的精细组合,赋予这些生物材料具有 非常好的综合性能。
(一)仿骨哑铃型晶须研制
动物的长骨,其构造特点为中部细长, 骨质致密;两端粗大,骨质疏松。
凡是骨骼中应力大的区域也正好是强度 高的区域。
长骨两端粗大,一方面在受压时减缓压 应力的冲击,另一方面在与肌肉组织的协 调配合上,粗大的端部有利于应力传递, 更有效地发挥骨质致密的中段骨头的承力 作用。这种骨头与肌肉的有效配合,使得 肢体的比强度和持重比提高。
智能材料 ——仿生材料
材化09-2 杨亚丽 学号:200907021045
仿生材料
7.1 仿生材料概述 一、仿生材料概念
仿生材料是参照生命系统的式样和器官材 料的规律而设计制造的人工材料。
生物仿生材料学(1960年9月第一届仿生讨 论会,J. Steele正式提出)是一门新型的 交叉学科,包括了材料科学与工程、分子 生物学、生物化学、物理学及其他学科内 容。
有机基质层对裂纹扩展起到偏转和桥接作用,使裂纹 扩展途径。
▪ 珍珠层由文石晶体与有机基质构
成。无机相占95%,有机基质由 三种生物大分子组成:(1)不可 溶的多糖几丁质;(2)一种富甘 氨酸和丙氨酸的不可溶蛋白质,具 有反平行折叠片结构,其x射线 衍射谱与丝纤维相似;(3)一种 富天冬氨酸等酸性氨基酸的可溶蛋 白,同样是折叠结构。 ▪ 生物矿化过程中,酸性蛋白质对无 机矿物的形成起至关重要的作用, 其中的酸性侧链与钙离子有强烈的 亲合作用,从而成为矿物晶体的形 成核心。这种文石晶片层与多糖及 蛋白质构成的有机层交替排列,组 成三维结构。有机层的厚度为 30~50 nm,这样紧密排列而成的 结构极为规则。
若增强剂(短纤维)为两端大的哑铃型,则其填充的 复合材料的强度比同样材质的平直纤维的大 。
例:SiC晶须
哑铃型晶须及其制备方法
SiO2+C
另外,浙江大学胡巧玲等利用原位沉析 法制备了可吸收壳聚糖羟基磷灰石复合的 仿骨结构的骨折内固定材料。不仅外形为 哑铃形结构,而且可降解吸收、释放出酸 根磷和钙离子,弯曲强度为和模量均比人 的自然骨高。
长骨的分级结构示意图
皮质骨具有一种由厚薄两层交替而成的层状结构。薄层 中胶原纤维与矿物晶体c轴垂直于骨的长轴方向,厚度约 为0.3m,厚层中胶原纤维相互平行,并且与骨的长轴呈 一角度。这种结构与哈佛氏系统内的厚、薄骨板相对应。
层状骨结构示意图 (a)矿物相排列;(b)胶原纤维排列方向
因此,在材料的设计和研究中,引入了 仿生结构设计的思想 ,通过“简单组成、 复杂结构”的精细组合,来实现材料的高 韧性、抗破坏及使用可靠性特性。
7.3 天然生物材料的结构特征与仿生
一、贝壳和珍珠的层状叠片结构与仿 生
▪ 贝壳的成分主要是碳酸钙和少量的 壳基质构成,这些物质是由外套膜 上皮细胞分泌形成的。
文石
对贝壳珍珠层的结构分析表明其并不是单纯的层片结 构,而可以看成两级尺度结构的藕合。在珍珠层的一级 细观结构上,增强元文石薄片的面层与贝壳表面平行, 具有(5~10)m× (5~10) m ×(0.3~1.5) m的典型尺寸, 整个薄片在同一层面内以小于15nm的有机物粘合,形成 所谓硬层(即文石晶片层)。这些硬层再以厚约30 nm的 有机物粘合起来,形成软硬相间的层状结构。
▪ 贝壳的结构一般可分为3层: ✓ 最外一层为角质层,很薄,透明,
有光泽,由壳基质构成,不受酸碱 的侵蚀,可保护贝壳。 ✓ 中间一层为壳层,又称棱柱层,占 贝壳的大部分,由极细的棱柱状的 方解石(CaCO3, 三方晶系)构成。 ✓ 最内一层为壳底,即珍珠质层,富 光泽,由小平板(CaCO3, 斜方晶
珍珠层中文石晶体与 有机基质叠层示意图
▪ 珍珠具有类似于贝壳珍珠层的叠片累积结 构。
▪ 这种微观结构模式与贝壳珍珠层的差别仅 在于,在贝壳的珍珠层是沿贝壳的表面铺 排构成层的,而珍珠中的珍珠层包围核心 铺排成层。贝壳珍珠层之所以得名,是因 为它也具有珍珠光泽。
贝壳是的强、韧的最佳配合, 它又被称为摔不坏的陶瓷。
▪ 自然界中的物质和天然生物材料,如贝壳、骨骼、 蚕丝、竹、木材等都是经数亿年进化的产物,迄 今已具有适应其环境与功能需求的最佳结构,表 现出传统人工合成材料无法比拟的优异的强韧性、 功能适应性及损伤愈合能力。
▪ 因此,材料科学工作者试图揭示天然生物材料的 结构特征和形成机制,从而应用于现代材料的设 计与制备。
▪ 材 合料 后制,备轧是制将 成薄Si片3N4,粉模、仿Si珍C晶珠须层和中添的加文剂石混 晶片层,其中SiC晶须作为二级增韧元。以 B仿N珍和珠Al层2O3中的的混有和机浆基料质涂层覆,在涂轧层膜后片的上薄,片模 在 压烧石墨结模成瓷中叠。块,经排胶后在N2气氛下热
▪裂紋沿結構單元間的間隔層中發生階梯狀的偏轉 和分叉的擴展過程
贝壳和珍珠在断裂前能经受较 大的塑性变形,具有优异的高 韧性。其主要原因是由于裂纹 偏转、纤维(晶片)拔出以及 有机基质桥接等各种韧化机制 协同作用的结果。而这些韧化 机制又与珍珠层的特殊组成、 结构密切相关。
陶瓷强韧化设计:
▪ 简单组成、复杂结构; ▪ 引入弱界面层; ▪ 非均质精细结构设计
▪ 针对珍珠层特有的生物特征,清华大学模 仿珍珠层的两级增韧机制,设计制备出仿 珍珠层的具有较高强度和韧性的复合陶瓷。
Si3N4/BN-Al2O3纖維獨石陶瓷材料裂紋擴展路徑
▪ 模仿珍珠层的结构和增韧机理,采用两级尺度的 增韧结构,可以在保持较高强度的前提下,较大 幅度地提高材料的韧性。
二、骨骼的分级结构与仿生 ▪ 松质骨和密质骨 例:长骨 两端骨骺(松质骨)
中间骨干(密质骨) 骨的主要有机相:胶原纤维(三股螺旋结
▪ 在生物医疗领域,仿照天然生物材料制备出具有 生物功能,甚至是真正有生物活性的材料成为生 物材料科学极为活跃的前沿研究领域。
7.2 天然生物材料的特性
▪ 复合特性 ▪ 功能适应性 ▪ 创伤愈合性 ▪ 多功能性
人们从天然生物的研究中得到启示,天 然的生物材料,如竹、木、骨骼、贝壳等, 它们虽然具有简单的组成,但是通过复杂 结构的精细组合,赋予这些生物材料具有 非常好的综合性能。
(一)仿骨哑铃型晶须研制
动物的长骨,其构造特点为中部细长, 骨质致密;两端粗大,骨质疏松。
凡是骨骼中应力大的区域也正好是强度 高的区域。
长骨两端粗大,一方面在受压时减缓压 应力的冲击,另一方面在与肌肉组织的协 调配合上,粗大的端部有利于应力传递, 更有效地发挥骨质致密的中段骨头的承力 作用。这种骨头与肌肉的有效配合,使得 肢体的比强度和持重比提高。
智能材料 ——仿生材料
材化09-2 杨亚丽 学号:200907021045
仿生材料
7.1 仿生材料概述 一、仿生材料概念
仿生材料是参照生命系统的式样和器官材 料的规律而设计制造的人工材料。
生物仿生材料学(1960年9月第一届仿生讨 论会,J. Steele正式提出)是一门新型的 交叉学科,包括了材料科学与工程、分子 生物学、生物化学、物理学及其他学科内 容。
有机基质层对裂纹扩展起到偏转和桥接作用,使裂纹 扩展途径。
▪ 珍珠层由文石晶体与有机基质构
成。无机相占95%,有机基质由 三种生物大分子组成:(1)不可 溶的多糖几丁质;(2)一种富甘 氨酸和丙氨酸的不可溶蛋白质,具 有反平行折叠片结构,其x射线 衍射谱与丝纤维相似;(3)一种 富天冬氨酸等酸性氨基酸的可溶蛋 白,同样是折叠结构。 ▪ 生物矿化过程中,酸性蛋白质对无 机矿物的形成起至关重要的作用, 其中的酸性侧链与钙离子有强烈的 亲合作用,从而成为矿物晶体的形 成核心。这种文石晶片层与多糖及 蛋白质构成的有机层交替排列,组 成三维结构。有机层的厚度为 30~50 nm,这样紧密排列而成的 结构极为规则。
若增强剂(短纤维)为两端大的哑铃型,则其填充的 复合材料的强度比同样材质的平直纤维的大 。
例:SiC晶须
哑铃型晶须及其制备方法
SiO2+C
另外,浙江大学胡巧玲等利用原位沉析 法制备了可吸收壳聚糖羟基磷灰石复合的 仿骨结构的骨折内固定材料。不仅外形为 哑铃形结构,而且可降解吸收、释放出酸 根磷和钙离子,弯曲强度为和模量均比人 的自然骨高。