仿生材料ppt

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

珍珠层中文石晶体与 有机基质叠层示意图
▪ 珍珠具有类似于贝壳珍珠层的叠片累积结 构。
▪ 这种微观结构模式与贝壳珍珠层的差别仅 在于,在贝壳的珍珠层是沿贝壳的表面铺 排构成层的,而珍珠中的珍珠层包围核心 铺排成层。贝壳珍珠层之所以得名,是因 为它也具有珍珠光泽。
贝壳是的强、韧的最佳配合, 它又被称为摔不坏的陶瓷。
有机基质层对裂纹扩展起到偏转和桥接作用,使裂纹 扩展途径。
▪ 珍珠层由文石晶体与有机基质构
成。无机相占95%,有机基质由 三种生物大分子组成:(1)不可 溶的多糖几丁质;(2)一种富甘 氨酸和丙氨酸的不可溶蛋白质,具 有反平行折叠片结构,其x射线 衍射谱与丝纤维相似;(3)一种 富天冬氨酸等酸性氨基酸的可溶蛋 白,同样是折叠结构。 ▪ 生物矿化过程中,酸性蛋白质对无 机矿物的形成起至关重要的作用, 其中的酸性侧链与钙离子有强烈的 亲合作用,从而成为矿物晶体的形 成核心。这种文石晶片层与多糖及 蛋白质构成的有机层交替排列,组 成三维结构。有机层的厚度为 30~50 nm,这样紧密排列而成的 结构极为规则。
因此,在材料的设计和研究中,引入了 仿生结构设计的思想 ,通过“简单组成、 复杂结构”的精细组合,来实现材料的高 韧性、抗破坏及使用可靠性特性。
7.3 天然生物材料的结构特征与仿生
一、贝壳和珍珠的层状叠片结构与仿 生
▪ 贝壳的成分主要是碳酸钙和少量的 壳基质构成,这些物质是由外套膜 上皮细胞分泌形成的。
若增强剂(短纤维)为两端大的哑铃型,则其填充的 复合材料的强度比同样材质的平直纤维的大 。
例:SiC晶须
哑铃型晶须及其制备方法
SiO2+C
另外,浙江大学胡巧玲等利用原位沉析 法制备了可吸收壳聚糖羟基磷灰石复合的 仿骨结构的骨折内固定材料。不仅外形为 哑铃形结构,而且可降解吸收、释放出酸 根磷和钙离子,弯曲强度为和模量均比人 的自然骨高。
(一)仿骨哑铃型晶须研制
动物的长骨,其构造特点为中部细长, 骨质致密;两端粗大,骨质疏松。
凡是骨骼中应力大的区域也正好是强度 高的区域。
长骨两端粗大,一方面在受压时减缓压 应力的冲击,另一方面在与肌肉组织的协 调配合上,粗大的端部有利于应力传递, 更有效地发挥骨质致密的中段骨头的承力 作用。这种骨头与肌肉的有效配合,使得 肢体的比强度和持重比提高。
智能材料 ——仿生材料
材化09-2 杨亚丽 学号:200907021045
仿生材料
7.1 仿生材料概述 一、仿生材料概念
仿生材料是参照生命系统的式样和器官材 料的规律而设计制造的人工材料。
生物仿生材料学(1960年9月第一届仿生讨 论会,J. Steele正式提出)是一门新型的 交叉学科,包括了材料科学与工程、分子 生物学、生物化学、物理学及其他学科内 容。
文石
对贝壳珍珠层的结构分析表明其并不是单纯的层片结 构,而可以看成两级尺度结构的藕合。在珍珠层的一级 细观结构上,增强元文石薄片的面层与贝壳表面平行, 具有(5~10)m× (5~10) m ×(0.3~1.5) m的典型尺寸, 整个薄片在同一层面内以小于15nm的有机物粘合,形成 所谓硬层(即文石晶片层)。这些硬层再以厚约30 nm的 有机物粘合起来,形成软硬相间的层状结构。
▪ 在生物医疗领域,仿照天然生物材料制备出具有 生物功能,甚至是真正有生物活性的材料成为生 物材料科学极为活跃的前沿研究领域。
7.2 天然生物材料的特性
▪ 复合特性 ▪ 功能适应性 ▪ 创伤愈合性 ▪ 多功能性
人们从天然生物的研究中得到启示,天 然的生物材料,如竹、木、骨骼、贝壳等, 它们虽然具有简单的组成,但是通过复杂 结构的精细组合,赋予这些生物材料具有 非常好的综合性能。
▪ 贝壳的结构一般可分为3层: ✓ 最外一层为角质层,很薄,透明,
有光泽,由壳基质构成,不受酸碱 的侵蚀,可保护贝壳。 ✓ 中间一层为壳层,又称棱柱层,占 贝壳的大部分,由极细的棱柱状的 方解石(CaCO3, 三方晶系)构成。 ✓ 最内一层为壳底,即珍珠质层,富 光泽,由小平板状的结构单元累积 而成、成层排列,组成成分是多角 片 系型 )的 。文石结晶体(CaCO3, 斜方晶
▪ 自然界中的物质和天然生物材料,如贝壳、骨骼、 蚕丝、竹、木材等都是经数亿年进化的产物,迄 今已具有适应其环境与功能需求的最佳结构,表 现出传统人工合成材料无法比拟的优异的强韧性、 功能适应性及损伤愈合能力。
▪ 因此,材料科学工作者试图揭示天然生物材料的 结构特征和形成机制,从而应用于现代材料的设 计与制备。
Si3N4/BN-Al2O3纖維獨石陶瓷材料裂紋擴展路徑
▪ 模仿珍珠层的结构和增韧机理,采用两级尺度的 增韧结构,可以在保持较高强度的前提下,较大 幅度地提高材料的韧性。
Biblioteka Baidu
二、骨骼的分级结构与仿生 ▪ 松质骨和密质骨 例:长骨 两端骨骺(松质骨)
中间骨干(密质骨) 骨的主要有机相:胶原纤维(三股螺旋结
构) 松质骨,羟基磷灰石+胶原基体 密质骨,薄层胶原纤维+矿物晶体
长骨的分级结构示意图
皮质骨具有一种由厚薄两层交替而成的层状结构。薄层 中胶原纤维与矿物晶体c轴垂直于骨的长轴方向,厚度约 为0.3m,厚层中胶原纤维相互平行,并且与骨的长轴呈 一角度。这种结构与哈佛氏系统内的厚、薄骨板相对应。
层状骨结构示意图 (a)矿物相排列;(b)胶原纤维排列方向
▪ 材 合料 后制,备轧是制将 成薄Si片3N4,粉模、仿Si珍C晶珠须层和中添的加文剂石混 晶片层,其中SiC晶须作为二级增韧元。以 B仿N珍和珠Al层2O3中的的混有和机浆基料质涂层覆,在涂轧层膜后片的上薄,片模 在 压烧石墨结模成瓷中叠。块,经排胶后在N2气氛下热
▪裂紋沿結構單元間的間隔層中發生階梯狀的偏轉 和分叉的擴展過程
贝壳和珍珠在断裂前能经受较 大的塑性变形,具有优异的高 韧性。其主要原因是由于裂纹 偏转、纤维(晶片)拔出以及 有机基质桥接等各种韧化机制 协同作用的结果。而这些韧化 机制又与珍珠层的特殊组成、 结构密切相关。
陶瓷强韧化设计:
▪ 简单组成、复杂结构; ▪ 引入弱界面层; ▪ 非均质精细结构设计
▪ 针对珍珠层特有的生物特征,清华大学模 仿珍珠层的两级增韧机制,设计制备出仿 珍珠层的具有较高强度和韧性的复合陶瓷。
相关文档
最新文档