双稳态电路图
555定时器双稳态电路
555定时器双稳态电路1.引言1.1 概述概述部分的内容是对文章主题进行简要介绍和概括。
在本文的概述部分中,需要对555定时器双稳态电路进行简要描述,以便引起读者的兴趣并明确文章的方向和目的。
以下是概述部分的内容示例:概述:555定时器双稳态电路是一种常用的集成电路,广泛应用于各种电子设备和电路设计中。
双稳态电路是指在两个稳定状态之间自动切换的电路,能够产生一系列的稳定脉冲信号。
而555定时器,作为一种多功能定时器,能够以其简单的结构和灵活的应用而备受青睐。
本文将详细介绍555定时器双稳态电路的原理、工作方式以及其在实际应用中的重要性。
首先,我们将对555定时器进行全面的介绍,包括其结构、内部原理以及主要特性。
然后,我们将深入探讨双稳态电路的基本概念和原理,解释其在电子电路设计中的重要作用。
通过本文的阅读,读者将能够了解555定时器双稳态电路的工作原理和应用领域,以及掌握其在电子电路设计中的实际应用技巧。
此外,我们还将总结定时器555双稳态电路的应用,并展望其未来的发展方向。
让我们一同深入研究555定时器双稳态电路,探索其在电子领域中的精彩应用吧!1.2文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的组织框架和主要内容,以帮助读者更好地理解文章的内容安排。
本文将按照以下章节展开讨论:引言、正文和结论。
引言部分将在开始时提供概述,介绍文章的背景和主题,引起读者的兴趣。
接着会分别阐述文章的结构和目的,以引导读者对文章内容的整体认识。
正文部分是本文的核心,分为两个小节。
首先,我们将详细介绍定时器555的原理和特点。
其次,我们将深入探讨双稳态电路的原理,包括其基本工作原理、应用场景和性能特点等。
结论部分总结了定时器555双稳态电路的应用,并对其在未来的发展方向提出展望。
我们将通过回顾本文的主要观点和实证研究的结果,对该电路在现实世界中的应用前景进行评估,并提出未来研究的方向和建议。
通过以上章节的构建,本文将全面系统地介绍定时器555双稳态电路的相关知识,以期为读者提供一个清晰的理解框架和全面的知识视角。
双稳态电路
双稳态电路一、工作原理图一为双稳态电路,它是由两级反相器组成的正反馈电路,有两个稳定状态,或者是BG1导通、BG2截止;或者是BG1截止、BG2导通,由于它具有记忆功能,所以广泛地用于计数电路、分频电路和控制电路中,原理,图2(a)中,设触发器的初始状态为BG1导通,BG2截止,当触发脉冲方波从1端输入,经CpRp微分后,在A点产生正、负方向的尖脉冲,而只有正尖脉冲能通过二极管D1作用于导通管BG1的基极是。
ic1减小使BG1退出饱和并进入放大状态,于是它的集电极电位降低,经电阻分压器送到截止管BG2的基极,使BG2的基极电位下降,如果下降幅度足够时,BG2将由截止进入放大状态,因而产生下列正反馈过程(看下列反馈过程时,应注意:在图一的PNP电路中,晶体管的基极和集电极电位均为负值,所以uc1↓,表示BG1集电极电位降低,而uc1↑则表示BG1集电极电位升高,当BG1基极电位降低时,则ic1↑,反之当BG1基极电位升高时,ic1↓ic1越来越小,ic2越来越大,最后到达BG1截止、BG2导通;接差触发脉冲方波从2端输入,并在t=t2时,有正尖脉冲作用于导通管BG2的基极,又经过正反馈过程,使BG1导通,BG2截止。
以后,在1、2端的触发脉冲的轮流作用下,双稳电路的状态也作用相应的翻转,如图一(b)所示。
图一、双稳态电路由上述过程可见:(1)双稳态电路的尖顶触发脉冲极性由晶体管的管型决定:PNP管要求正极性脉冲触发,而NPN管却要求负极性脉冲触发。
(2)每触发一次,电路翻转一次,因此,从翻转次数的多少,就可以计算输入脉冲的个数,这就是双稳态电路能够计算的原理。
双稳态电路的触发电路形式有:单边触发、基极触发、集电极触发和控制触发等。
图二给出几种实用的双稳态电路。
电路(a)中D3、D4为限幅二极管,使输出幅度限制在-6伏左右;电路(b)中的D5、D6是削去负尖脉冲;电路(C)中的ui1、ui2为单触发,ui 为输入触发表一是上述电路的技术指标。
双稳态电路图简介
NE555为8脚时基集成电路,各脚主要功能(集成块图在下面)1地GND 2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛,可装如下几种电路:1。
单稳类电路作用:定延时,消抖动,分(倍)频,脉冲输出,速率检测等。
2。
双稳类电路作用:比较器,锁存器,反相器,方波输出及整形等。
3。
无稳类电路作用:方波输出,电源变换,音响报警,玩具,电控测量,定时等。
我们知道,555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
下面将分别介绍这3类电路。
单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。
pmos倒相器交叉耦合的双稳态触发器电路
pmos倒相器交叉耦合的双稳态触发器电路PMOS倒相器交叉耦合的双稳态触发器电路是一种常见的数字电路。
本文将介绍它的原理、特点和应用。
一、原理PMOS倒相器交叉耦合的双稳态触发器电路由两个PMOS倒相器组成。
它的原理基于两个PMOS倒相器的交叉耦合。
其中一个PMOS倒相器的输出被用作另一个PMOS倒相器的控制电压,这样就形成了一个正反馈回路。
当输入信号为低电平时,输出会保持在高电平状态,这时第一个PMOS倒相器的输出为高电平,被用作第二个PMOS倒相器的控制电压,使第二个PMOS倒相器的输出为低电平。
这就完成了一个稳态,称为“SET”。
当输入信号由低电平变成高电平时,第一个PMOS倒相器的输出互相反转,输出变为低电平,控制第二个PMOS倒相器的输出也从低电平变成高电平。
这就完成了另一个稳态,称为“RESET”。
因此,输出状态可以通过输入信号的变化控制,是一种非常稳定的状态。
这种双稳态触发器电路可以用于时序逻辑电路的设计,如计数器、频率分频器等。
二、特点1.稳态清晰:PMOS倒相器交叉耦合的双稳态触发器电路具有稳态清晰的特点。
它能够在输入电平发生由低到高的变化时,自动产生SET或RESET两种稳态状态。
2.工作简单:该电路仅由两个PMOS倒相器和三个电阻器组成,结构简单,电路规模小,易于制作和维护。
3.应用范围广泛:由于其结构简单,该电路可广泛应用于各种数字电路中,例如计数器、频率分频器、位移寄存器等。
4.抗干扰能力强:由于该电路本身具有正反馈作用,具有较强的抗干扰能力。
对于噪声信号的干扰,该电路更加稳定可靠。
三、应用PMOS倒相器交叉耦合的双稳态触发器电路广泛应用于数字电路中,主要用于时序逻辑电路的设计。
例如,它可以用于设计二进制计数器、位移寄存器、频率分频器等。
此外,该电路还可以应用于实际电路设计中,例如超大规模集成电路(VLSI)的设计等。
四、总结PMOS倒相器交叉耦合的双稳态触发器电路具有稳态清晰、工作简单、应用范围广泛、抗干扰能力强等优点,在数字电路中得到广泛应用。
双稳态电路工作原理
双稳态电路工作原理双稳态电路是一种特殊的电路,它具有两个稳定的工作状态。
在这种电路中,当输入信号发生变化时,电路会自动切换到另一个稳定状态,而不需要外部的干预。
这种特性使得双稳态电路在数字逻辑电路和存储器中得到广泛应用。
双稳态电路的工作原理可以通过一个简单的电路来解释。
假设我们有一个由两个晶体管和几个电阻组成的电路,其中一个晶体管的基极连接到另一个晶体管的集电极,而另一个晶体管的基极连接到第一个晶体管的集电极。
这种电路被称为双基极电路,它可以实现双稳态的工作状态。
当没有输入信号时,两个晶体管都处于截止状态,电路处于低功耗状态。
当输入信号到达时,其中一个晶体管会进入饱和状态,导通电流,而另一个晶体管则会进入截止状态。
这样,电路就会切换到另一个稳定状态,保持在这个状态直到下一个输入信号到来。
双稳态电路的工作原理可以通过一个简单的逻辑门电路来进一步解释。
假设我们有一个由两个晶体管和一个电阻组成的门电路,其中一个晶体管的基极连接到另一个晶体管的集电极,而另一个晶体管的基极连接到第一个晶体管的集电极。
这种电路被称为双基极门电路,它可以实现与门的功能。
当输入信号为高电平时,其中一个晶体管会进入饱和状态,导通电流,而另一个晶体管则会进入截止状态。
这样,输出信号就会为低电平。
当输入信号为低电平时,另一个晶体管会进入饱和状态,导通电流,而第一个晶体管则会进入截止状态。
这样,输出信号就会为高电平。
这种逻辑门电路就可以实现与门的功能,即只有当两个输入信号都为高电平时,输出信号才为高电平。
双稳态电路的工作原理还可以通过一个更复杂的电路来解释。
假设我们有一个由多个晶体管和电阻组成的电路,其中一些晶体管的基极连接到其他晶体管的集电极,而其他晶体管的基极连接到前面的晶体管的集电极。
这种电路被称为双稳态触发器,它可以实现存储器的功能。
当输入信号到达时,其中一个晶体管会进入饱和状态,导通电流,而另一个晶体管则会进入截止状态。
这样,电路就会切换到一个稳定状态,保持在这个状态直到下一个输入信号到来。
双稳态电路工作原理
双稳态电路工作原理双稳态电路是一种常见的电子电路,其主要功能是在两个稳态之间切换。
它能够在任何一个稳态时保持稳定,只有接受到一个刺激才会从一个稳态切换到另一个稳态。
双稳态电路通常由两个互补的放大器(比如P型和N型MOSFET电路)组成,这两个放大器又分别连接到两个稳态。
此时,一个输入信号可以直接触发双稳态电路从一个稳态切换到另一个稳态。
举例来说,当电路处于高电位稳态时,只有当输入信号的电压大于某个阈值电压时,电路才会切换到低电位稳态。
反之亦然,当电路处于低电位稳态时,只有当输入信号的电压小于某个阈值电压时,电路才会切换到高电位稳态。
这种性质使得双稳态电路可以被应用于许多电路应用中,如时钟换通路、触发器、开关等。
具体来说,当一个输入信号施加在双稳态电路的输入端口时,其中一部分信号被馈回到电路的输出端口,形成一个反馈回路。
这个反馈回路可以引起电路从一个稳态(如高电位稳态)到另一个稳态(如低电位稳态)的切换。
当电路工作在其中一个稳态时,某些基本的物理现象会导致电荷聚集在某些区域,即形成一个电荷袋。
在这个电荷袋里,电路的输入电压与输出电压之间是负反馈的,使得任何微小的干扰都被消除。
当输入信号增加到某个特定点时,电路稳态将突然发生变化,这是因为电荷袋突然改变形状,并由此形成了一个新的平衡状态。
在这个平衡状态下,电路的输入电压与输出电压之间也是负反馈的,这使得电路保持稳定。
这种现象称为反转和维持的条件。
总之,双稳态电路的工作原理可以总结为以下几个步骤:(1)电路处于某个稳态状态,此时输入信号的幅度不足以使电路跳变到另一个稳态状态。
(2)随着输入信号幅度的增加(或减小),电路的电荷袋发生了变化,电路向另一个稳态状态跳变。
(4)电路稳定在第二个稳态状态,除非再次受到来自输入端口的幅度足够大的信号。
总之,双稳态电路是一种非常有用的电路,可以在稳定状态下保持稳定,而且具有切换到另一个稳定状态的能力。
这种电路在很多应用中具有很大的价值,如时钟换通路、触发器、开关等领域。
第十一章双稳态触发器
二. T触发器
将JK触发器的J、K端连接在一起作为T端,就构成了T 触发器,因此T触发器没有专门设计的定型产品。
特性方程 Qn+1 = T Qn +T Qn Qn+1=T + Qn
特性表
T Qn Qn+1 000 011 101 110
由特性方程可知,T=1,Qn+1=Qn,触发器为计数状态, T=0,Qn+1= Qn,触发器为保持状态。
三. 集成JK触发器
TTL双JK触发器74LS76 JK触发器74LS76功能表
输入
预置SD 清零RD 时钟CP J
K
0
1
×
×
×
1
0
×
×
×
1
1
0
0
1
1
1
0
1
1
0
1
1
1
1
1
输出
Qn+1 Q n+1
1
0
0
1
Qn
Qn
1
0
0
1
Qn
Qn
逻辑符号和引脚分布图
• 该器件内含两个相同的JK触发器,它们都带有预置和清零输 入,属于负跳沿触发器。如果在一片集成器件中有多个触发 器,通常在符号前面(或后面)加上数字,以示不同触发器的 输入、输出信号。
S
10 0 ×
t
10 1 1
R
11 0 0
t
11 1 1
Q
• 卡诺图化简
t
SR
Q
Q0n
00 X
01 1
11
10
t
1X 1 1
宽度相等的负脉冲从S和R端同时消失后,触发器状态不定。
光电耦合器组成的脉冲电路
光电耦合器组成的脉冲电路这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。
由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。
所以应用日益广泛。
一、用光电耦合器组成的多谐振荡电路用光电耦合器组成的多谐振荡电路见图1。
当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。
三极管饱和后,C放电(由C→F→E1→Er和由C→R F→+Ec→Re两条路径放电),uo减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。
三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时):T=C(RF+Re)In2图1(b)是原理相同的另一种形式电路。
图1、用光电耦合的多谐振荡器二、用光电耦合器组成的双稳态电路精品用光电耦合器组砀双稳态电路如图2所示。
电路接通电源后的稳态是BG截止,输出高电位。
在触发正脉冲作用下,ib 增加使BG进入放大状态,形成ib↑→i f↑→i b↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。
若设BG的极限电流Ic=6毫安,则R2=取为:R2≥(13-1)/(6×10)=24欧限流电阻R1可按下式计算R1≥(E-IbmRce2min)/Ibm式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值。
图2、用光电耦合的双稳态电路三、用光电耦合器组成的整形电路由于用光电耦合器组成的脉冲耦合电路,其前后沿时间都比较大,因此在耦合器后面接一级晶体管的整形放大电路。
见表一列出几种整形电路的应用实例。
表一用光电耦合器组成的整形电路光电耦合-晶体管整形电路光电耦合-固定组件整形反相整形快速整形电路说明这是一种施密特整形电路,因为不管输入是失真方波、正弦波还是锯齿波,在输出端均得到方波光电耦合顺的输出接一与非门时行整形光电耦合器的输出端后面连接两级与非门,构成反相整形光电耦合器的输出端后面连接两只晶体管,构成同相整形电路四、用光电耦合器组成的斩波电路用光电耦合器组成的斩皮电路见表二表二用光电耦合器组成的斩波电路直接斩波电路隔离式斩波电路(I)隔离式斩波电路(II)精品电路说明输出Ei被测电压,经斩波取样后送到编码器里进行编码测量,当A点是低电位,B点为高电位时,GD1导通,GD2截止,被测电压Ei直接送到输出端,反之,A点高电位,B点低电位,GD1截止,GD2导通,C经GD2放电,输出端回到零。
双稳态电路图
双稳态电路图————————————————————————————————作者:————————————————————————————————日期:NE555为8脚时基集成电路,各脚主要功能(集成块图在下面)1地 GND 2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛,可装如下几种电路:1。
单稳类电路作用:定延时,消抖动,分(倍)频,脉冲输出,速率检测等。
2。
双稳类电路作用:比较器,锁存器,反相器,方波输出及整形等。
3。
无稳类电路作用:方波输出,电源变换,音响报警,玩具,电控测量,定时等。
我们知道,555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
下面将分别介绍这3类电路。
单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
3、单、双稳态电路(面包板)
课题三单、双稳态电路一、目的1.掌握分立元件单、双稳态电路的组成和工作原理2.掌握单、双稳态电路在面包板上设计安装,元件布局均匀,跳线合理。
无重叠、歪斜现象。
3.学会电路的测试和电路的调整,进一步掌握电路的结构和工作原理。
二、器材准备1.元件清单二极管1N4007 4只三极管9013 4只电阻470Ω4只47K 4只电解电容220UF 1只47UF 1只发光二极管红色4只按键开关3只2. 工具;万用表一块,尖嘴钳一把,镊子一把。
三、步骤1.绘制多谐振荡器电路的原理图2.绘制面包板的模型图3.在面包板的模型图上设计多谐振荡器电路4.按照模型图上设计的电路在面包板上先安装跳线、后安装元器件5.确定无误后再通电调试四、原理图单稳态电路双稳态电路五、面包板电路元件接线图单稳态双稳态六、习题1.发光管LD1亮时VT1的Ub__________、Uc__________。
2.发光管LD2亮时VT2的Ub__________、Uc__________。
3.发光管LD3亮时VT3的Ub__________、Uc__________。
4.发光管LD4亮时VT4的Ub__________、Uc__________。
5.S1接通时,LD2点亮,延时一段时间后LD1亮,LD2熄灭为什么?____________________________________。
6.双稳态为什么能够稳态地工作?______________________________________________________。
双稳态振荡器电路工作原理
双稳态振荡器电路工作原理
一、阈值判定
双稳态振荡器电路中包含两个稳定状态,通常由两个阈值电压来判定。
这两个阈值电压通常由运放器的正负输入端电位决定。
当输入信号的电压超过正阈值时,电路将从一个稳定状态翻转到另一个稳定状态,反之亦然。
二、正反馈机制
双稳态振荡器电路中的正反馈机制是实现状态翻转的关键。
正反馈使得电路中的信号幅度不断放大,当放大到超过阈值电压时,电路发生翻转。
正反馈可以是电流反馈或电压反馈,具体实现方式取决于电路的拓扑结构。
三、动态平衡维持
双稳态振荡器电路在两个稳定状态之间切换时,必须维持动态平衡。
这意味着在每个状态中,电路的能量损失必须与能量增益相平衡,以保持持续振荡。
为了维持动态平衡,电路参数必须精确匹配,以确保在每个状态中都能实现有效的能量补充和释放。
综上所述,双稳态振荡器电路的工作原理主要依赖于阈值判定、正反馈机制和动态平衡维持。
通过这些机制的协同作用,双稳态振荡器电路能够实现从一个稳定状态到另一个稳定状态的快速切换,产生矩形波或脉冲信号等输出。
555双稳态电路图
NE555为8脚时基集成电路,各脚主要功能(集成块图在下面)1地 GND 2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛,可装如下几种电路:1。
单稳类电路作用:定延时,消抖动,分(倍)频,脉冲输出,速率检测等。
2。
双稳类电路作用:比较器,锁存器,反相器,方波输出及整形等。
3。
无稳类电路作用:方波输出,电源变换,音响报警,玩具,电控测量,定时等。
我们知道,555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
下面将分别介绍这3类电路。
单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。
双稳态电路的仿真分析故障检测
双稳态电路的仿真分析故障检测基本双稳态电路此电路有两个互补的IO端。
假如我们将Q置为
1,那么Q‘自然就会通过G2反相输出
Q置
1,那么Q’=
0。
这叫做基本双稳态电路的 1状态Q置
0,那么Q’=
1。
这叫做基本双稳态电路的0状态像上面讲的这样,该
电路拥有1和0两种状态,一旦进入一种状态,将会持续保持。
所以它又叫做双稳态存储电路。
此电路功能和结构极其简单,接通电源后,他会随机的进入一种状态,具有状态不可控的性质,我们无法在后续的过程中对他的状态进行改变和控制,因此它不可以作为实用型存储电路。
但是它可以作为锁存器、触发器等实用存储单元的基础电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双稳态电路图————————————————————————————————作者:————————————————————————————————日期:NE555为8脚时基集成电路,各脚主要功能(集成块图在下面)1地 GND 2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛,可装如下几种电路:1。
单稳类电路作用:定延时,消抖动,分(倍)频,脉冲输出,速率检测等。
2。
双稳类电路作用:比较器,锁存器,反相器,方波输出及整形等。
3。
无稳类电路作用:方波输出,电源变换,音响报警,玩具,电控测量,定时等。
我们知道,555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
下面将分别介绍这3类电路。
单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。
555双稳电路可分成2种。
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。
单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。
第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。
双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。
这是双稳工作方式的结构特点。
2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。
无稳类电路第三类是无稳工作方式。
无稳电路就是多谐振荡电路,是555电路中应用最广的一类。
电路的变化形式也最多。
为简单起见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。
其中第1个单元电路(3.2.1)是应用最广的。
第2个单元电路(3.2.2)是方波振荡电路。
第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。
第三种(见图3)是压控振荡器。
由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。
图中举了两个应用实例。
无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。
只有一个振荡电阻的可以认为是特例。
例如:3.1.2单元可以认为是省略RA的结果。
有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。
以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。
各种应用电路555触摸定时开关集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
相片曝光定时器附图电路是用555单稳电路制成的相片曝光定时器。
用人工启动式单稳电路。
工作原理:电源接通后,定时器进入稳态。
此时定时电容CT的电压为:VCT=VCC=6V。
对555这个等效触发器来讲,两个输入都是高电平,即VS=0。
继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。
按一下按钮开关SB之后,定时电容CT立即放到电压为零。
于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。
继电器KA吸动,常开接点闭合,曝光照明灯点亮。
按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。
当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:R=1、S=1,于是输出又翻转成低电平:V0=0。
继电器KA释放,曝光灯HL熄灭。
暂稳态结束,有恢复到稳态。
曝光时间计算公式为:T=1.1RT*CT。
本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。
电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。
单电源变双电源电路附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1的方波。
3脚为高电平时,C4被充电;低电平时,C3被充电。
由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC 的双电源。
本电路输出电流超过50mA。
简易催眠器时基电路555构成一个极低频振荡器,输出一个个短的脉冲,使扬声器发出类似雨滴的声音(见附图)。
扬声器采用2英寸、8欧姆小型动圈式。
雨滴声的速度可以通过100K电位器来调节到合适的程度。
如果在电源端增加一简单的定时开关,则可以在使用者进入梦乡后及时切断电源。
直流电机调速控制电路这是一个占空比可调的脉冲振荡器。
电机M是用它的输出脉冲驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲占空比越小,电机电驱电流就越大,转速加快。
因此调节电位器RP的数值可以调整电机的速度。
如电极电驱电流不大于200mA 时,可用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。
图中VD3是续流二极管。
在功放管截止期间为电驱电流提供通路,既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功放管。
电容C2和电阻R3是补偿网络,它可使负载呈电阻性。
整个电路的脉冲频率选在3~5千赫之间。
频率太低电机会抖动,太高时因占空比范围小使电机调速范围减小。
用555制作的D类放大器我们知道D类放大器具有体积小、效率高的特点。
这里介绍一个用555电路制作的简易D类放大器。
它是利用555电路构成一个可控的多谐振荡器,音频信号输入到控制端得到调宽脉冲信号(如图),基本能满足一般的听音要求。
由IC 555和R1、R2、C1等组成100KHz可控多谐振荡器,占空比为50%,控制端5脚输入音频信号,3脚便得到脉宽与输入信号幅值成正比的脉冲信号,经L、C3接调、滤波后推动扬声器。
风扇周波调速电路夏天要来了,电风扇又得派上用场。
这里介绍一个电风扇模拟阵风周波调速电路,可以为将我们家里的老式风扇增加一个实用功能,也算是一个迎接夏天到来的准备吧。
下面介绍其工作原理。
电路见图1a。
电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。
在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。
在NE555的3脚输出低电平期间,双向开关关断,风扇停转。
MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用MOC3061的内部双向开关来控制电风扇电机的运转。
RW为占空比调节电位器,亦即电风扇单位时间内(本电路数据约为20秒)送风时间的调节,改变C2的取值或RW的取值可改变控制周期。
图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。
制作时,可参考图示参数选择器件。
由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。
电热毯温控器一般电热毯有高温、低温两档。
使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时醒来会觉得温度不够。
这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。
工作原理:电路如图所示。
图中IC为NE555时基电路。
RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。
220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。
室温下接通电源,因已调V2Vz,V6≥Vf时,IC翻转,3脚变为低电平,BCR截止,电热丝停止发热,温度开始逐渐下降,BG1的ICEO随之逐渐减小,V2、V6降低。
当V6元件选择:BG1可选用3AX、3AG等PNP型锗管;BCR用400V以上的小型双向可控硅,其它元件按图标选用。
制作要点:热敏传感器BG1可用耐温的细软线引出,并将其连同管脚接头装入。
一电容器铝壳内,注入导热硅脂,制成温度探头。
使用时,把该温度探头放在适当部位即可。
多用途延迟开关电源插座家用电器、照明灯等电源的开或关,常常需要在不同的时间延迟后进行,本电源插座即可满足这种不同的需要。
工作原理:电路如图所示,它由降压、整流、滤波及延时控制电路等部分组成。
按下AN,12V工作电压加至延迟器上,这时NE555的②脚和⑥ 脚为高电平,则NE555的③ 脚输出为低电平,因此继电器K得电工作,触点K1-1向上吸合,这时“延关”插座得电,而“延开”插座无电。
这时电源通过电容器C3 、电位器RP、电阻器R3至“地”,对C3进行充电,随着C3上的电压升高,NE555的②、⑥脚的电压越来越往下降,当此电压下降至2/3Vcc 时,NE555的③脚输出由低电平跳变为高电平,这时继电器将失电而不工作,则其控制触点恢复原位,则“延关”插座失电,而“延开”插座得电。