材料的基本物理性质1
土木工程材料第1章第1节——材料的基本物理性质
解:
实体体积 V实=170cm3 V实+V闭=190cm3
表观体积 V0=V实+=450/170=2.65 g/cm3;
V实
表观密度ρ0= m=450/230=1.956 g/cm3=1956 kg/m3
V0
开口孔隙率PK
=
V开 V0
×100%=(230-190)/230×100%=17.4%
分为若干个强度等级。如烧结普通砖按抗压强度值分为MU30、MU25 、MU20、MU15、MU10五个强度等级。
2、 比强度 由于不同材料的强度、表观密度均存在较大差异,为了便
于比较不同表观密度材料的强度,常用比强度指标来评价材料 强度与表观密度的综合性状。比强度是按单位体积质量计算的 材料强度,其值等于材料的抗压强度与其表观密度之比,它是 衡量材料轻质高强性能的重要指标。
l 韧性材料特征 韧性材料的特点是变形大,特别是塑性变形大,破坏前有明显预兆;
抗拉强度与抗压强度接近。
抗震结构、承受动荷载的结构需要考虑材料的韧性 静荷载——作用时不产生加速度的荷载。如结构自重; 动荷载——作用时产生加速度的荷载。如冲击、振动荷载;
指标——渗透系数、抗渗等级 材料的抗渗性主要与材料内部的孔隙率(尤其是开口孔隙率) 和材料的憎水性或亲水性等因素有关。材料的抗渗能力直接或间接 影响材料的耐久性、抗冻性和耐腐蚀性。 6、材料的含水状态——干燥、气干、饱和面干及湿润状态
三、与热有关的性质
1、 导热性 导热性是指当材料的两侧存在温度差时,热量由高温侧向低温
常将防止室内热量向室外散失称为保温;把防止外部热量进 入室内称为隔热。工程上把导热系数小于0.23W/(m·K)的材料称为 保温隔热材料。
在热工学中,将导热系数的倒数称为材料的导热阻。导热系数和导 热阻均是评定材料导热能力的重要指标,材料的导热系数越小或导热阻 越大,其保温隔热及其节能效果越好。
1.材料的基本性质
材料润湿边角
如果材料分子与水分子间的吸引力小于水分 子之间的内聚力,则表示材料不能被水润湿。 此时,润湿角90°<θ<180°,这种材料称为 憎水性材料。 憎水材料具有较好的防水性、防潮性、抗渗 性,常用作防潮防水材料, 也可用于亲水性材 料的表面处理,以减少吸水率,提高抗渗性。 大多数建筑材料,如石材、砖瓦、陶器、混 凝土、木材等都属于亲水性材料,而沥青、石 蜡和某些高分子材料属于憎水性材料。
孔隙率与密实度的关系:P+D=1 材料的密实度和孔隙率是从不同方面反映材料 的密实程度,通常采用孔隙率表示。
注意两点:
1.密度 和表观密度 单位统一 2. 1g / cm 10 kg / m
0
3 3 3
孔隙特征
孔隙构造
连通的孔:
彼此连通且与外界相通
封闭孔
封闭的孔:
相互独立且与外界隔绝
解1: 石子的孔隙率P为: 石子的空隙率P’为:
[评注] 材料的孔隙率是指材料内部孔隙的体积 占材料总体积的百分率。空隙率是指散粒材料在 其堆集体积中, 颗粒之间的空隙体积所占的比例 。计算式中ρ—密度;ρ0—材料的表观密度; ρ,—材料的堆积密度。
例2: 有一块烧结普通砖,在吸水饱和状态下重 2900g , 其 绝 干 质 量 为 2550g 。 砖 的 尺 寸 为 240×115×53mm,经干燥并磨成细粉后取50g, 用排水法测得绝对密实体积为18.62 cm3 。试计
第一章 建筑材料的ຫໍສະໝຸດ 本性质本章内容 第一节 第二节 第二节
材料的物理性质 材料与水有关的性质 材料的力学性质
第四节
第五节
材料的热工性质
材料的耐久性
土木工程材料-材料的基本性质-表观密度
1.3
' 式中: 0 ——材料的堆积密度,kg/m3; m ——材料的质量,kg; V0' ——材料的自然(松散)堆积体积(包括材料颗粒 体积和颗粒之间空隙的体积),m3。
m V m 0 V0 m 0 ' V0
'
密度
表观密度
堆积密度
★ 几种密度的区别:
相同点:指单位体积质量。(质量/体积) 区别:测试方法不同,获得体积大小不同
体积的测试方法:
实体体积 ——李氏比重瓶法(粉末)
表观体积(实体+内部孔隙)
——规则试件:计算法; ——不规则试件:封蜡排液法
堆积体积(实体+内部孔隙+颗粒间空隙)——密度筒法
7
材料的表观密度
材料在自然状态下,单位体积的质量。按下式计算:
m 0 V0
1.2
式中:ρ0——表观密度,kg/m3; m ——材料的质量,kg; V0——材料在自然状态下的体积,m3。
材料的堆积密度
材料为散粒或粉状,如砂、石子、水泥等,在堆积状态下 ,单位体积的质量。按下式计算:
m ' V0
材料的密度
材料在绝对密实状态下,单位体积的质量。按下 式计算:
m V
1.1
式中:ρ——密度,g/cm3; m ——材料在干燥状态的质量,g; V ——材料的绝对密实体积,cm3。
李氏比重瓶法
测定步骤
1 将无水煤油注入李氏瓶中到0 至1mL刻度线后,记下初始(第一次 )读数。 2 称取水泥60g,称准至0.01g 。 3 用小匙将水泥样品李氏瓶中 ,反复摇动,至没有气泡排出,记 下第二次读数。 4 水泥体积应为第二次读数减 去初始(第一次)读数,即水泥所 排开的无水煤油的体积(mL)。
材料的基本物理性质1
项目一建筑材料基本性质(1)真实密度(密度)岩石在规定条件(105土5)℃烘干至恒重,温度20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。
真实密度用ρt表示,按下式计算:式中:ρt——真实密度,g/cm3 或kg/m3;m s——材料的质量,g 或kg;Vs——材料的绝对密实体积,cm3或m3。
因固测定方法:李氏比重瓶法将石料磨细至全部过的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。
(2)毛体积密度岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体积)质量。
毛体积密度用ρd表示,按下式计算:式中:ρd——岩石的毛体积密度, g/cm3或kg/m3;m s——材料的质量,g 或kg;Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。
(3)孔隙率岩石的孔隙率是指岩石内部孔隙的体积占其总体积的百分率。
孔隙率n按下式计算:式中:V——岩石的总体积,cm3或m3;V0——岩石的孔隙体积,cm3或m3;ρd——岩石的毛体积密度,g/cm3或kg/m3ρt——真实密度, g/cm3或kg/m3。
2、吸水性岩石的吸水性是岩石在规定的条件下吸水的能力。
岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和孔隙率大小)。
为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性。
(1)吸水率岩石吸水率是指在室内常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。
吸水率wa的计算公式为:式中:m h——材料吸水至恒重时的质量(g);m g——材料在干燥状态下的质量(g)。
(2)饱和吸水率在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。
吸水率wsa 的计算公式为:式中:m b——材料经强制吸水至饱和时的质量(g);m g——材料在干燥状态下的质量(g)。
材料的物理性质
• 例题: • 某石灰岩块干燥状态下的பைடு நூலகம்量980克,,自然 状态下的体积为450立方厘米,其粉末密实的 体积为350立方厘米,将其敲成碎块装在容器 内的标示容积为0.6升。试求该块石灰岩的密 度、表观密度及堆积密度? • 解:ρ= m/v =980g/350cm3=2.8g/cm3
•
ρ0=m/v0 = 980g/450cm3=2.18g/cm3 ρ0´=m/V 0´ = 980g/600cm3=1.63g/cm3
ρ =m/v
• 堆积密度:指疏松状(小块、颗粒、纤维)材料 在堆积状态 堆积状态下,单位体积的质量。 堆积状态 堆积状态;材料的实体积、孔隙体积、空隙体积 堆积状态 • 公式:ρ0´=m/V 0´ • ρ0´:堆积密度,kg/m3; • m:材料的质量,kg ´ • V 0´:材料的堆积体积(包括材料的实体积、 • 孔隙体积、空隙体积)。 • V 0´=V材+V孔+V空 • 举例:施工现场堆放的砂的密度。
•
习题
• 某普通粘土砖,其干燥状态下的质量为 2500克,磨细后其粉末排开水的体积为 970立方厘米,若砖的孔隙全部为被水充 满的开口孔的体积,试计算砖的密度、 表观密度及吸水饱和状态下吸入水的质 量是多少?
总结
• 1、材料的密度、表观密度、堆积密度的 定义、公式。 • 2、灵活运用公式进行相关计算。 • 3、分析同种材料的三个密度值相等说明 什么问题?
第一节 材料的物理性质
一、与质量有关的性质 •1、密度 •2、表观密度 •3、堆积密度 • 二、与水有关的性质
• 密度:材料在绝对密实 绝对密实状态下,单位体积的 绝对密实 质量。 • “绝对密实 绝对密实”:指不包括孔隙在内的体积或 绝对密实 指材料的实体积。 • • • • • • 计算公式:ρ=m/v ρ :材料的 密度,g/cm3 m:材料在 干燥状态下的质量, g v:材料的实体积, cm3 V=V 材 举例:金属、玻璃
第二章 建筑材料的基本性质(1)
m 0 V0
材料的表观体积是指包含孔隙的体积。一般 是指材料长期在空气中干燥,即气干状态下的 表观密度。称为气干表观密度。在烘干状态下 的表观密度,称为干表观密度。
一、测定材料的干质量m:
取材料样品
烘干
冷却到室温
烘箱1050C~1100C
干燥器 天平
称量质量 m
二、测定材料的自然体积Vo-----分两种情况:
比较项目 材料状态
近似密度 近似绝对 密实状态
表观密度 自然状态Байду номын сангаас
堆积密度 堆积状态
V0
材料体积 计算公式
应用
V
m V
V
m ' V'
V0
0 m0
V0
0'
m0 V0'
判断材料性质
材料用量及体积的计 算
2、材料的密实度与孔隙度
1) 密实度 密实度是指材料体积内被固体物质所充实 的程度,也就是固体物质的体积占总体积的 比例。密实度反映材料的致密程度。以D表示:
材料的抗渗性也可用抗渗等级表示。抗渗 等级是以规定的试件,在标准试验方法下所 能承受的最大水压力来确定,以符号“Pn” 表示,如P4、P6、P8等分别表示材料能承受 0. 4、0. 6、0.8MPa的水压而不渗水。 例如:某防水混凝土的抗渗等级为P6,表 示该混凝土试件经标准养护28d后,按照规定 的试验方法在0.6MPa压力水的作用下无渗透 现象。
憎水性孔壁难以使水吸入。
拓展思考—— 1、为什么房屋一楼特别潮湿? 2、如何解决?
1、地下水沿材料毛细管上升,然后 在空气中挥发。 2、解决问题的原理与办法 阻塞毛细通道,技术措施? 对材料中的毛细管壁进行憎水 处理
建筑材料 第一章 建筑材料的基本性质
解: 孔隙率
P V0 V 100% V0
1
0
100%
ρ0=m/V0=2420/(24×11.5×5.3)=1.65g/cm3
ρ=m/V=50/19.2=2.60g/cm3
P
1
1.65 2.6
100%
36.5%
§1.2 材料的力学性质
一、材料的强度
材料在外力作用下抵抗破坏的能力称为材料 的强度,以材料受外力破坏时单位面积上所承受 的外力表示。材料在建筑物上所承受的外力主要 有拉力、压力、剪力和弯力,材料抵抗这些外力 破坏的能力,分别称为抗拉、抗压、抗剪和抗弯 强度。
§1.3 材料与水有关的性质
建筑物中的材料在使用过程中经常会直接或 间接与水接触,如水坝、桥墩、屋顶等,为防 止建筑物受到水的侵蚀而影响使用性能,有必 要研究材料与水接触后的有关性质。
§1.3 材料与水有关的性质
(一)材料的亲水性与憎水性 材料容易被水润湿的性质称为亲水性。具有
这种性质的材料称为亲水性材料,如砖、石、 木材、混凝土等。
§1.2 材料的力学性质
课堂练习: 3、已知甲材料在绝对密实状态下的体积为40cm3,
在自然状态下体积为160 cm3;乙材料的密实度为 80%,求甲、乙两材料的孔隙率,并判断哪种材料 较宜做保温材料?
解:(1)甲材料的孔隙率
P甲=(V0-V)/V0×100%=(160-40)/160×100% =75%
§1.1 材料的基本物理性质
(一)密度 钢材、玻璃等少数密实材料可根据外形尺
寸求得体积。
大多数有孔隙的材料,在测 定材料的密度时,应把材料磨成 细粉,干燥后用李氏瓶测定其体 积(排液法)。材料磨的越细, 测得的密度数值就越精确。砖、 石等材料的密度即用此法测得。
材料的三大参数
剪切弹性模量(elastic shear modulus)G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊松比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
其定义为:G=τ/γ,其中G(M pa)为切变弹性模量;τ为剪切应力(M pa);γ为剪切应变(弧度)。
剪切模量:材料常数,是剪切应力与应变的比值。
又称切变模量或刚性模量。
材料的力学性能指标之一。
是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。
它表征材料抵抗切应变的能力。
模量大,则表示材料的刚性强。
剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。
剪切应力shear stress物体由于外因(载荷、温度变化等)而变形时,在它内部任一截面的两方出现的相互作用力,称为“内力”。
内力的集度,即单位面积上的内力称为“应力”。
应力可分解为垂直于截面的分量,称为“正应力”或“法向应力”;相切于截面的分量称为“剪切应力”。
作用在构件两侧面上的外力的合力是一对大小相等,方向相反,作用线相距很近的横向集中力。
在这样的外力作用下,构件的变形特点是:以两力之间的横截面为分界线,构件的两部分沿该面发生相对错动。
构件的这种变形形式称为剪切,其截面为剪切面。
截面的单位面积上剪力的大小,称为剪应力。
剪切应力的计算:在实用计算中,假设在剪切面上剪切应力是均匀分布的。
若以A表示剪切面面积,则应力是τ 与剪切面相切,故称:切应力剪切应变shear strain剪切时物体所产生的相对形变量。
即指在简单剪切的情况下,材料受到的力F是与截面A0相平行的大小相等、方向相反的两个力,在此剪切力作用下,材料将发生偏斜。
偏斜角θ的正切定义为剪切应变γ:即γ=tanθ。
当剪切应变足够小时,γ=θ,相应地剪切应力为τ=F/A。
杨氏弹性模量杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
第1章 土木工程材料的基本性质
(2) 砖浸水后强度下降
某地发生历史罕见的洪水。洪水退后,许 多砖房倒塌,其砌筑用的砖多为未烧透的 多孔的红砖,见下图。请分析原因。
原因分析:这些红砖没有烧透,砖
内开口孔隙率大,吸水率高。吸水
后,红砖强度下降,特别是当有水
进入砖内时,未烧透的粘土遇水分
散,强度下降更大,不能承受房屋
未烧透的的重红量,砖从而导致房屋倒塌。
保温层的目的是较少外界温度变化对住户的 影响,材料保温性能的主要描述指标为导热 系数和热容量,其中导热系数越小越好。观
A B 察两种材料的剖面,可见A材料为多孔结构, B材料为密实结构,多孔材料的导热系数较 小,适于作保温层材料。
7.其它性质
1 耐火性
耐火材料、难熔材料、易熔材料
2 耐燃性
韧性材料:低碳钢、木材、玻璃钢等。
1.2.4 材料的硬度和耐磨性(了解性内容)
1.硬度——抵抗外物压入或刻划的能力。 可采用:莫氏硬度(石料、陶瓷等); 布氏、洛氏硬度(金属材料)。 特点:硬度高,耐磨性强,但不易加工。
2.耐磨性——材料表面抵抗磨损的能力。
(路面材料要求)
1.3 材料的耐久性
材料在各种环境因素作用下,在长期使用过程中 保持其性能稳定的性质。
5. 材料的抗冻性
——材料饱水状态下<,思能考经>:受孔多隙次率冻越融交替作用, 既不破坏,强度又不大显,著材降料低的的抗性冻质性。
抗冻等级:能经受冻融是否循越环差的?最大次数,
记为F50、F100、F200、F300 …
材料的孔隙包括开口孔隙和闭口孔隙两种,材料的孔 隙率则是开口孔隙率和闭口孔隙率之和。材料受冻融 破坏主要是因其孔隙中的水结冰所致。进入孔隙的水 越多,材料的抗冻性越差。水较难进入材料的闭口孔 隙中。若材料的孔隙主要是闭口孔隙,即使材料的孔 隙率大,进入材料内部的水分也不会很多。在这样的
土木工程材料学
第一章土木工程材料的基本性质第一节建筑材料的基本物理性质包括与重量、构造状态有关的性质(密度、孔隙率);与水有关的性质(亲水性、吸水性、耐水性);与热有关的性质(导热性);与声有关的性质(吸声性)。
一. 密度、表观密度、堆积密度定义1.密度:材料在绝对密实状态下,单位体积的重量。
ρ= m / V ,单位:g/cm3 。
2.表观密度:材料在自然状态下,单位体积的重量。
ρ0 = m / V,单位:g/cm3或kg/m3。
3.堆积密度:散粒状材料在堆积状态下,单位体积的重量。
ρ0’= m / V’,单位:kg/m3。
说明1.物理概念上的“质量”,在工程上常称为“重量”,以区别于品质意义上的“质量”。
2.测定密度、表观密度、堆积密度时,重量指干燥至恒重时的重量(否则须注明含水情况);体积有不同含义:绝对密实状态下,应排除材料中任何孔隙(有孔隙材料应将其磨细、干燥后,用比重瓶测定。
);自然状态下,应包含材料内部孔隙(用排水法测定);堆积状态下,应包含材料内部孔隙及颗粒间空隙(用容量筒测定)。
3.表观密度建立了材料自然体积与重量之间的关系,在工程上可用来计算材料用量、构件自重、材料堆放空间等。
4.应使用我国法定计量单位。
按现行规范,不使用容重(现为表观密度)、比重(现为密度)的称呼。
二.孔隙率、空隙率定义1.孔隙率:材料内部孔隙体积占其总体积的百分率。
P =(V0-V)/ V³100% =(1-ρ/ρ)³100%2.空隙率:散粒状材料颗粒间空隙体积占其自然堆积体积的百分率。
P ’=(V0’-V)/ V³100% =(1-ρ’/ρ)³100%说明1.孔隙率直接反映材料的密实程度,孔隙率高,则密实程度小。
2.有关材料内部孔隙的大小、形状、数量、分布、连通与否等,统称为孔隙特征。
工程上主要指孔隙的连通性,分为连通孔(开孔)、封闭孔(闭孔)。
3.开孔不仅彼此贯通还与外界相通,如毛细孔。
材料的基本物理性质
表观密度的测定(实验)
自然状态下的体积:包括材料实体积和内部孔隙(闭口和开口)的外观几何形状的体积。 测定方法:材料在包含孔隙条件下的体积可采用排液置换法或水中称重法测量。
对形状规则的材料:烘干-量测几何体积-称重-代入公式计算 对形状不规则的材料: 表观密度的测量
材料的抗渗性与其孔隙率和孔隙特征的关系:
细微连通的孔隙,水容易渗入,故这种孔隙愈多,材料的抗渗性愈差。闭口孔隙,水不能渗入,因此闭口孔隙率大的材料,其抗渗性仍然良好。开口大孔,水最易渗入,故其抗渗性最差。 材料的抗渗性还与材料的增水性和亲水性有关,憎水性材料的抗渗性优于亲水性材料。 材料的耐久性与材料抗渗性的有着密切的关系。
材料名称
密度(g/cm3)
表观密度kg/m3
堆积密度kg/m3
钢
7.85
7850
花岗岩
2.80
2500~2900
碎石(石灰石)
2.65
1400~1700
砂
2.63
1450~1700
粘土
2.60
1600~1800
水泥
3.10
1100~1300
烧结普通砖
2.70
1600~1900
材料中所含水分与空气的湿度相平衡时的含水率,称为平衡含水率
K软 值越小,材料的耐水性?
式中:K软 ---材料的软化系数; f饱 ---材料在吸水饱和状态下的抗压强度,MPa f干 ---材料在干燥状态的抗压强度,MPa 。 定义:材料抵抗水破坏作用的性质。 度量指标:软化系数,即
三、耐水性
材料的软化系数的范围在0~1之间。
式中:β ---材料质量吸水率,%; m--- 材料干燥状态下质量,g; m1--- 材料吸水饱和面干状态下质量。
土木工程材料的基本物理性质
1.1.5 材料的热工性质-导热性
导热性-材料传导热量的能力称为导热性。其大小用 热导率(λ)表示。
(T1 -T2 ) A t Q d
Qd A T1 T2 t
式中 λ-导热系数(W/m.K) Q-传导的热量(J) A-热传导面积(m2) d-材料的厚度(m) t 1 t-热传导时间(s) (T2-T1)-材料两侧温差(K) A
影响吸湿性的因素
影响吸湿性的因素:
• 材料的本身的性质,如亲水性或憎水性; • 材料的孔隙率;
• 孔隙构造特征,如孔径大小、开口与否等; • 周围空气的温度和湿度 。
3.材料的耐水性
• 定义:材料在长期饱和水作用下,其强度也不 显著降低的性质,称为耐水性。其衡量指标为: f饱 K软 f干
• 软化系数越小,说明材料吸水饱和后的强度降 低越多,其耐水性越差。
材料软化系数的要求 工程对材料软化系数的要求
• 对经常处于水中或受潮严重的重要结构物(如 地下构筑物、基础、水工结构)的材料,其K软 ≥0.85; • 受潮较轻的或次要结构物的材料,其K软≥0.75; • K软≥0.80的材料,一般称为耐水的材料。
4.材料的抗渗性
• 定义:材料抵抗压力水渗 透的性质称为抗渗性。
图1-1 材料孔隙率示意图
1.1.3 填充率与空隙率 填充率 填充率是指散粒材料 在其堆积体积中,被 其颗粒填充的程度 。
V0 0 D ' 100% 100% V0 0
图1-2 材料空隙率示意图
空隙率 空隙率是指散粒材料在 其堆积体积中,颗粒之 间的空隙体积占材料堆 积体积的百分率 。
m吸 m干 W质 100% m干
影响吸水性的因素
影响吸水性的因素:
材料的基本物理性质与力学性质
•
加强交通建设管理,确保工程建设质 量。08:27:2708:27:2708:27Wednesday, October 21, 2020
•
安全在于心细,事故出在麻痹。20.10.2120.10.2108:27:2708:27:27October 21, 2020
•
踏实肯干,努力奋斗。2020年10月21日上午8时27分 20.10.2120.10.21
90°≤θ≤180°
图1.3.1 材料润湿角(θ)示意图
Back
吸水性
定义: 指材料在水中吸收水分的性质。
指标:吸水率(W):材料吸收水分的 重量占材料干燥重量或体积的百分数。
公式: 质量吸水率
Wm m1 m2 m2
体积吸水率
Wv m1 m2 v
m1-材料在吸水饱和状态下的质量(g) m2-材料在干燥状态下的质量(g) V -材料在自然状态下的体积(cm3 ) Back
➢公式 :
P' (1 V0 ) (1 0 ') 100%
V0 '
0
Back
第二节 材料的力学性质
强度 弹性和塑性 脆性和韧性
Bac k
强度
➢定义: 强度指材料抵抗 外力作用下产生 破坏的能力。
➢强度分类及公式:
弹性和塑性
弹性及弹性材料
➢ 弹性:外力的作用下产生变形,外力取消后, 能够完全恢复原来形状的性质。
•
踏实肯干,努力奋斗。2020年10月21日上午8时27分 20.10.2120.10.21
•
追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年10月21日星期 三上午8时27分 27秒08:27:2720.10.21
材料的基本性质
2、空隙率:是指散粒材料在某堆积体积中,颗
粒间的空隙体积所占的比例 P` =( v。′- v。)/v。′100% = (1- 。′/ 。) 100%
D′ +P′ = 1
四、与水有关的性质
1、亲水性和憎水性 2、吸水性和吸湿性 3、材料的耐水性 4、材料的抗渗性 5、材料的抗冻性 6、材料的导热性
材料的密度 散粒材料在堆积状态下单位体积 的质量。 。` = m/v。` (kg/m3) 式中 。`—— 堆积密度 m—— 材料的质量,kg。 v。`—— 材料在堆积状态 下的体积,m3。
表观密度
堆积密度
二、密实度、孔隙率
1、密实度:是指材料体积内被固体物质充
实的程度。 D = v/v。100% = 。/ 100%
1、亲水性和憎水性
a、亲水性材料
b、憎水性材料
90 º亲水性 = 0 º 完全润湿
> 90 º 憎水性 =18 0 º 完全不润湿
1、 θ ≤90度时,水的内聚力小于材料 与水的作 用力,水被材料所吸收,称为亲水性材料。 不宜用于防水部位。如砂浆、砼、粘土砖 等。 2、θ >90度时,水的内聚力大于材料与 水的作用力,水不被材料所吸收,称为憎 水性水性材料。宜用于防水材料。如沥青、 橡胶等。
3、材料的耐水性
耐水性是指材料长期在饱和水作用下,而不破坏,其强 度也不显著降低的性质。用软化系数Ks表示。 软 化系数越大,耐水性越好。表观密度越大、密实度越大、 孔隙率越小、材料的耐水性越好。 Ks=fw/f 软化系数的范围波动在0--1之间,当软化系数大于0.85时, 认为是耐水性的材料。受水浸泡或处于潮湿环境的建筑 物,则必须选用软化系数不低于0.85的材料建造
材料的基本性质
D/
V0 V0 /
100%
0/ 0
100%
1
P/
(3)空隙率的大小反映了散粒材料的颗粒互相填充的致密
程度,在配置混凝土、砂浆和沥青混凝土时,为了节约水
泥和沥青,基本思路是粗集料孔隙被细集料填充,以达到
胶凝材料的效果。
2020/3/20
15
/10/29
(1)定义:材料在绝对密实状态下单位体积的密度。
(2)公式:
m
V
式中:ρ— 实际密度(g/cm3或 kg/m3 )
m— 材料在干燥状态下的质量(g或 kg)
V— 材料在绝对密实状态下的体积(cm3或 m3 )
(3)解释:绝对密实体积:不包括材料内部孔隙的固体物 的实体积。
(4)绝对密实体积的测量:磨细粉,干燥后排液测量。
2020/3/20
3
2、表观密度(容重)(Apparent density或Relative density)
1、定义:在自然状态下单位体积的质量
2、公式:
0
m V0
式中 :ρ0—材料的表观密度(g/cm3或 kg/m3 ) m —材料的质量(g或 kg ) V0—材料在自然状态下的体积,或称表观体积(cm3或 m3 )
D V 100 % 0 100 % 1 P
V0
(4)开口孔隙率与闭口孔隙率
2020/3/20
10
孔隙特征
➢ 孔隙构造 连通的孔: 彼此连通且与外界相通 封闭的孔: 相互独立且与外界隔绝
➢ 孔隙大小 微孔、细孔、大孔
连通孔
封闭孔
2020/3/20
11
(5)有关孔隙的知识: 孔隙特征直接影响材料的多种性质。 一般情况下,闭口孔隙率大的材料宜选择作为保温隔热材 料。 开口孔与大气相连,空气、水能进出,闭口孔在材料内部 ,是封闭的,有的孔在材料内部被分割成独立的,有的孔 在材料内部又是相互连通的。
材料的基本物理性质
孔隙率越小,密实度越大,强度越高,吸水率越小。
密实度
材料体积内别固体物质充实的程度,即固体物质的体积占总体积的百分比
D= *100%= *100%
材料连通孔隙率
= *100%
:材料连通孔隙率%
:饱和面干状态质量g
:干燥状态质量g
:水密度g\
:表观体积
空隙率
散粒材料在某容器的积体积中颗粒之间的空隙体积占堆积总体积的百分比
P’= *100%=(1- )*100%
填充率
散粒材料在某堆积体积内被其颗粒体积填充的程度
D’= *100%= 100%
P’+D’=1
第一页
=
:密度g\
m:材料在干燥状态下的质量g
v:绝对体积
表观密度
材料在自然状态下(含孔隙)单位体积的质量
=
:表观密度g\
M:材料质量g
:表观体积
堆积密度
散粒材料在规定的装填条件下单位体积的质量
=
:堆积密度Kg\
m:材料的质量Kg
:材料的堆积体积
孔隙率
材料内部孔隙体积占材料总体积的百分率
P= *100%=(1- )*100%
第一章建筑材料的基本性质
第一节材料的基本物理性质
材料与质量有关的性质
项目
概念
公式
备注
体积
构成
块状
块状材料的体积是由固体物质的体积和材料内部孔隙的体积构成
=V+
散粒
固体物质体积、颗粒内部孔隙体积、固体颗粒之间的空隙体积组成
=V+ +
含水状态
干燥状态、气干状态、饱和面干状态、湿润状态
密度
材料在绝对密实的状态下单位未提及的质量
第二章建筑装饰材料的基本性质
100%
②体积吸水率 是指材料体积内被水充实的 体积。即材料吸水达饱和时,所吸收水分的体积 占干燥材料自然体积的百分率,可按下式计算:
W体
V水 V0
100%=
m湿 m干 V0
1
水
100%
质量吸水率与体积吸水率有如下的关系:
W体
W质 0
1
水
W质 0
(2) 吸湿性 材料在潮湿空气中吸收水分的性质称为吸湿
材料在绝对密实状态下的体积是指不包括孔 隙在内的体积。除了钢材、玻璃等少数材料外, 绝大多数材料内部都存在一些孔隙。因此,在测 定有孔隙的材料密度时,应把材料磨成细粉,来 测定其在绝对密实状态下的体积。材料磨得越细, 测得的密度值越精确。
2、 表观密度
表观密度是指材料在自然状态下,单位体积 所具有的质量,其计算式为(见辅):
三、材料的热工性质
1、 导热性 材料传导热量的能力,称为导热性。材料导
热能力的大小可以用导热系数(λ)表示。 导热系数在数值上等于厚度为2m的材料,当
其相对两侧表面的温度差为2K时,经单位面积 (2m2)单位时间(2s)所通过的热量。
可用下式表示:
Q
At(T2 T1)
材料的导热系数除与其本身的性质、结构、 密度有关外,还与材料的含水率及环境温度等有 关。
软、熔化,可将水泥混凝土脱水粉化及爆裂脱落,可将可燃材料 烧成灰烬,可使建筑物开裂破坏、坠落坍塌、装修报废等,同时 燃烧产生的高温作用对人也有巨大的危害。
②发烟作用 材料燃烧时,尤其是有机材料燃烧时,会产 生大量的浓烟。浓烟会使人迷失方向,且造成心理恐惧,妨碍及 时逃逸和救援。
③毒害作用 部分建筑装饰材料,尤其是有机材料,燃烧 时会产生剧毒气体,这种气体可在几秒至几十秒内,使人窒息而 死亡。
建筑材料的基本物理性质
建筑材料的基本物理性质建筑材料的基本物理性质二、建筑材料的基本物理性质(一)材料的密度、表观密度和堆积密度1.密度(ρ)密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:ρ=m/V式中ρ一一密度, g/cm3;m一一材料的重量, g;V一一材料在绝对密实状态下的体积, cm3。
这里指的"重量"与物理学中的"质量"是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言, rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
2.表观密度(ρo)表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo一一表观密度, g/cm3或kg/m3;m一一材料的重量, g或kg;Vo一一材料的自然状态下的体积, cm3或m3材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
3.堆积密度(ρ'0)堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:ρ'0=m/V'0(10-1-3 )其中ρ'0一一堆积密度, kg/m3;M一一材料的重量, kg;V'0一一材料的堆积体积, m3。
这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目一建筑材料基本性质(1)真实密度(密度)岩石在规定条件(105土5)℃烘干至恒重,温度20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。
真实密度用ρt表示,按下式计算:式中:ρt——真实密度,g/cm3 或 kg/m3;m s——材料的质量,g 或 kg;Vs——材料的绝对密实体积,cm3或 m3。
➢∙因固➢∙测定方法:氏比重瓶法将石料磨细至全部过0.25mm的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。
(2)毛体积密度岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体积)质量。
毛体积密度用ρd表示,按下式计算:式中:ρd——岩石的毛体积密度, g/cm3或 kg/m3;m s——材料的质量,g 或 kg;Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。
(3)孔隙率岩石的孔隙率是指岩石部孔隙的体积占其总体积的百分率。
孔隙率n按下式计算:式中:V——岩石的总体积,cm3或 m3;V0——岩石的孔隙体积,cm3或 m3;ρd——岩石的毛体积密度, g/cm3或 kg/m3ρt——真实密度, g/cm3或 kg/m3。
2、吸水性岩石的吸水性是岩石在规定的条件下吸水的能力。
岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和孔隙率大小)。
为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性。
(1)吸水率岩石吸水率是指在室常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。
吸水率wa的计算公式为:式中:m h——材料吸水至恒重时的质量(g);m g——材料在干燥状态下的质量(g)。
(2)饱和吸水率在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。
吸水率wsa 的计算公式为:式中:m b——材料经强制吸水至饱和时的质量(g);m g——材料在干燥状态下的质量(g)。
饱水率的测定方法(JTG E41—2005):采用真空抽气法。
因为当真空抽气后占据岩石孔隙部的空气被排出,当恢复常压时,则水即进入具有稀薄残压的岩石孔隙中,此时水分几乎充满开口孔隙的全部体积;而通常认为在常压下测定的吸水率,此时水分只充填部分孔隙,所以,饱水率大于吸水率。
饱水率的计算方法与吸水率相同。
吸水率与饱和吸水率之比称为饱水系数(Kw)当Kw>90%时,抗冻性较差。
岩石的吸水率与其孔隙率有关,更与其孔特征有关。
因为水分是通过岩石的开口孔吸入并经过连通孔渗入部的。
岩石与外界连通的细微孔隙愈多,其吸水率就愈大。
3、耐久性:岩石抵抗大自然因素作用的性能。
目前已列入我国《公路工程岩石试验规程》(JTG E41—2005)的方法有:(1)抗冻性。
(2)坚固性。
(1)抗冻性:岩石抗冻性是指岩石在吸水饱和状态下,抵抗多次冻结和融化作用而不发生显著破坏,同时也不严重降低强度的性质。
Ø岩石吸水后,在负温作用条件下,水在材料毛细孔冻结成冰,体积膨胀所产生的冻胀压力造成材料的应力,会使材料遭到局部破坏。
随着冻融循环的反复,材料的破坏作用逐步加剧,这种破坏称为冻融破坏。
我国现行抗冻性的试验方法是采用直接冻融法。
该方法是将岩石加工为规则的块状试样,在常温条件下(205℃),采用逐渐浸水的方法,使开口孔隙吸饱水分,然后置于负温(通常采用-15℃)的冰箱中冻结4h,最后在常温条件下融解,如此为一冻融循环。
经过10、15、25或50次循环后,观察其外观破坏情况并加以记录。
岩石抗冻质量损失率式中:m s——试验前烘干试件的质量(g)m——试验后烘干试件的质量(g)f此外,抗冻性亦可采用未经冻融的岩石试件抗压强度与冻融循环后的岩石试件抗压强度比值(称为冻融系数)表示。
冻融破坏的原因:材料有孔且孔隙含水;水→冰体积膨胀9%,结冰压力高达100MPa ;结冰压力超过材料的抗拉强度时,材料开裂;裂缝的增加也进一步增加了材料的饱水程度;影响抗冻性的因素:1.材料的密实度(孔隙率)密实度越高则其抗冻性越好。
2.材料的孔隙特征开口孔隙越多则其抗冻性越差。
3.材料的强度强度越高则其抗冻性越好。
4.材料的耐水性耐水性越好则其抗冻性也越好。
5.材料的吸水量大小吸水量越大则其抗冻性越。
(2)坚固性:评定岩石试样经饱和硫酸钠溶液多次浸泡与烘干循环后,不发生显著破坏或强度降低的性质。
将烘干岩石试件置入饱和硫酸钠溶液中浸泡20h后,将试件取出置于105土5℃的烘箱中烘烤4h,至此完成第1个循环。
待试样冷却至20~25℃后,即开始第2个循环。
从第2个循环起,浸泡和烘烤时间均为4h。
完成5次循环后,仔细观察试件有无破坏现象,将试件洗净烘至恒重,准确称出其质量,计算坚固性试验质量损失率。
质量损失率:式中:Q冻——冻融后的质量损失率(%)m1——试验前烘干试件的质量(g)m2——试验后烘干试件的质量(g)(二)力学性质1、单轴抗压强度式中:R——岩石单轴抗压强度,MPa;P——材料破坏时的最大荷载,N;A——试件受力面积,mm2。
2、磨耗性指石料抵抗撞击、剪切和磨擦等综合作用的性质。
材料的磨耗性用磨耗率表示,计算公式如下:式中:G——材料的磨耗率,(g/cm2);m1——材料磨损前的质量,(g);m2——材料磨损后的质量,(g);3、冲击韧度石材的冲击韧度取决于岩石的矿物组成和构造。
晶体结构的岩石较非晶体结构的岩石具有较高的韧性。
4、硬度硬度取决于组成石材矿物的硬度和构造。
凡由致密、坚硬矿物组成的石材,其硬度就高。
岩石的硬度以莫氏硬度表示。
(三)化学性质按SiO2含量,将石料划分为:①酸性岩SiO2>65%②中性岩52% ≤SiO2≤65%③碱性岩SiO2<52%三、常用建筑石材1、砌筑用石材:➢料石-毛料石、粗料石、半细料石、细料石料石的宽度和厚度均不宜小于20cm,长度不宜大于厚度的4倍,形状应大致呈六面体。
毛石-乱毛石、平毛石毛石为不规则形状,但毛石的中间厚度不小于15cm,至少有一个方向的长度不小于30㎝,质量约为20-30kg,强度不宜小于10MPa,软化系数不宜小于0.75。
平毛石应有两个大致平行的面。
2、板材:天然岩石经过开采、锯切、磨光等加工而成的板状装饰材料。
较常见的是:石板材和花岗岩板材。
3、颗粒状石料(拌合混凝土用石材):碎石(粒径大于4.75mm的颗粒状石料);卵石(较光滑的颗粒状石料);石渣(天然石材破碎后加工而成,一般为人造石的骨料)。
常用装饰用石材的品种、性能及应用四、石材的选用原则1、适用性:室外、使用部位、施工方式、使用环境、周围材料的拼接等。
选定主要技术指标能满足要求的岩石。
2、经济性:天然石材投资大,尽可能做到就地取材。
选材时注意降低成本。
3、安全性:可能含有镭、钍等放射性物质,选材时应该避免。
五、人造石材人造石具有天然石材的花纹、质感和装饰效果,而且具有质量轻,强度高,耐腐蚀,耐污染,施工方便等优点。
目前常用的人造石有下述四类:1、水泥型人造石材2、聚酯型人造石材3、复合型人造石材了解石灰、石膏等常用气硬性胶凝材料的原料、生产原理及储存;理解石灰、石膏等材料的共性和各自的特性;掌握石灰、石膏等材料的硬化机理、技术性质、检测方法和用途。
项目三气硬性无机胶凝材料胶凝材料的定义:凡在一定条件下,经过一系列的物理和化学变化,能够产生凝结硬化,将块状或粉状材料胶结无机胶凝材料气硬性胶凝材料:加水拌合均匀后形成的浆体,只能在空气中凝结硬化,而不能在水中硬化的胶凝材料。
如石灰、石膏、水玻璃、镁质胶凝材料等。
水硬性胶凝材料:加水拌合均匀后形成的浆体,不仅能在干燥空气中凝结硬化,而且能更好地在水中硬化,保持或发展其强度。
通称为“水泥”。
欠火石灰:生石灰烧制过程中,往往由于石灰石原料的尺寸过大、窑中温度不均匀或时间不足等原因,生石灰中残留有未烧透的的核,这种石灰称为“欠火石灰”。
过火石灰:由于烧制的温度过高或时间过长,使得石灰表面出现裂缝或玻璃状的外壳,体积收缩明显,颜色呈灰黑色,这种石灰称为“过火石灰”。
过火石灰表面常被粘土杂质融化形成的玻璃釉状物包覆,结构致密,颜色较深,熟化很慢。
二 生石灰的熟化熟化方法:根据熟化时加水量的不同,石灰的方式分为两种: 1、化灰2、淋灰。
化灰——熟化为石灰膏1.熟化为石灰膏:将生石灰放入化灰池中,加大量的水,熟化成石灰乳经筛网储灰坑石灰膏要在水中放置两周以上,以消除过火的危害,此过程即为“伏”。
2.熟化为熟石灰粉:将生石灰块分层淋适量的水,使石灰充分熟化,又不会过湿成团,此时得到的产品就是熟石灰粉。
不同品质的石灰熟化速度不同。
对放热量大,熟化速度快的石灰要保证充足的水量,并不断搅拌,以保证热量尽快散发;对熟化慢的石灰,加水应少而慢,保持较高的温度,促使熟化尽快完成。
在操作过程中要注意安全和劳动保护。
气硬性胶凝材料只能在空气中凝结硬化,而水硬性胶凝材料既能在空气中凝结硬化,又能在水中凝结硬化。
原料:石灰岩,主要成分Caco3,其次为Mgco3生产工艺:煅烧三.石灰的硬化1.结晶过程2.碳化过程这两个过程都需要在空气中才能进行,所以石灰是气硬性胶凝材料。
结晶和碳化两个过程同时进行,但极为缓慢。
碳化过程长时间只限于表面,结晶过程主要在部发生。
原因:空气中CO2含量稀薄,使碳化反应进展缓慢,同时表面的石灰浆一旦硬化就形成,外壳阻止了CO2的渗入,同时又使部的水分无法析出,影响硬化过程的进行。
四.石灰的技术要求五.常用建筑石灰的品种1.生石灰块由石灰石煅烧的白色或灰色疏松结构的块状物,主要成分Cao. 块灰放置太久,会吸收空气中的水分而自动熟化成熟石灰粉,还会再吸收空气中的CO2生成CaCO3,失去胶结能力。
贮存生石灰,要防止受潮,且不宜贮存太久。
一般运到现场后,立即熟化,变贮存期为伏期。
2.磨细生石灰粉表面积大,水化反义快,可不经“伏”直接使用,提高了工效。
过火石灰因磨细加快了熟化,欠火石灰因磨细混合均匀,挺高了石灰的质量和利用率。
促进硬化过程合二为一,热化时产生的热量能促进硬化,克服了石灰硬化慢的缺点。
34石灰膏5.化学稳定性差:碱性物质,遇酸时易发生化学反应。
六.石灰的特性和应用 1.石灰的特征良好的可塑性好及保水性凝结硬化慢,强度低。
2.石灰的应用 拌制灰土或三合土夯实后的灰土或三合土广泛用做建筑的基础,路面或地面的垫层。
本章小结2、石灰的技术指标石灰的质量等级建筑生石灰、建筑生石灰粉、建筑消石灰粉按有效CaO+MgO的含量,可分为优等品、一等品和合格品三个等级。
具体指标见教材。
(P27表3-1/2/3)五、石灰的储存生石灰必须在干燥条件下储存,时间不宜过长,一般不超过一个月。