3、电液转换器

合集下载

电液转换器原理与调试

电液转换器原理与调试

电液转换器原理与调试电液转换器(Electro-Hydraulic Converter)是一种将电能转换为液压能的装置,广泛应用于工业控制系统中。

它的工作原理是通过电信号控制阀门的开关,从而改变液压系统中液压元件的工作状态,实现对液压系统的控制和调节。

液压系统中的元件包括液压缸、液压马达、液压阀等。

通过控制电动机的启动和停止,可以实现对液压泵的启动和停止。

而通过控制液压泵的工作状态和输出压力,可以实现对液压缸等液压元件的运行速度、位置和力度的调节。

为了能够更好地控制液压系统,通常还需要使用电子控制器。

电子控制器通过接收电信号,并进行处理、转换和放大等操作,将电信号转换为适合液压系统的控制信号。

控制信号通过控制液压阀的开关,从而实现对液压系统的精确控制。

调试电液转换器需要根据具体的应用需求和设计要求进行。

首先,需要检查液压系统中液压油的质量和量,确保系统正常工作。

同时,还需要检查液压泵的工作状态和压力参数,确保其输出符合要求。

在调试过程中,还需要对液压系统中的液压元件进行校准。

校准包括对液压阀的开关状态进行调节,以及对液压泵的输出压力和流量进行调节。

调节液压元件的工作参数可以通过改变电子控制器的工作状态和参数实现。

在进行调试时,还需要密切关注液压系统中的压力和流量参数。

通过检测压力和流量的变化情况,可以判断液压系统的工作状态是否正常,以及控制效果是否达到预期。

此外,在调试过程中还需要注意安全问题。

液压系统中会产生高压和高温的工作环境,需要采取相应的安全措施,防止事故发生。

总结起来,电液转换器通过电能转换为液压能,实现对液压系统的控制和调节。

在调试过程中,需要检查液压系统的各项参数,校准液压元件的工作状态,并关注压力和流量的变化情况。

同时,还需要注意安全问题,确保调试过程的顺利进行。

电液转换器使用说明书

电液转换器使用说明书

VOITH电液转换器使用说明书型号:DSG-BXX113目录1.技术数据 (1)2.安全指示 (3)2.1 提示和标志的定义2.2 正确使用2.3 重要提示2.4 担保3.功能描述 (6)3.1 设计3.2 操作特点4.包装、储存、运输 (7)5.安装 (8)5.1 组装5.2 液压连接5.3 电器连接6. 试运行 (10)6.1 运行检测6.2 参数设定7.操作 (11)7.1 用手动旋钮操作7.2 用设定信号操作7.3 故障检修和排除8. 维护和检修 (13)9. 停机 (13)10. 具有接线图的外部管线图 (14)11. 附件 (15)1.技术数据:周围环境:储存温度-40 (90)工作环境温度-20 (85)保护IP65 to EN 60529适合于在工业空间内部安装电气数据:电压:24 VCD ±15%电流:大约0.7A(对DSG-B05…DSG-B10型)大约1A(对DSG-B30型)最大3A 时间t ‹ 1 Sec输入设置:0/4…20mA输入阻抗大约25欧姆,具有抑制电路。

液压参数:最小进口油压P in min: 1.5bar+最大输出P A max(对B05…B10型)5bar+最大输出油压P A max(对B30型)最大进口油压P in max :见表压力流体:不易燃烧的原油或压力油油粘度:根据DIN51519,ISO VG32…ISO VG48油温:+10℃ (70)油纯度:根据NAS1638为7级根据ISO4406为-/16/13级泄漏量:当进口油压P in=10bar 时≤3 l/min (对DSG-B05…DSG-B10 ) 当进口油压P in=40bar 时≤5 l/min(对DSG-B30)型号参数对照表:型号DSG-BXX113B05 B07 B10 B30 输出油压p A调整范围(bar)0...5 1...7 0...10 10 (30)最大进口油压P in (bar)40 40 40 40流量P→AQ1[l/min]当∆P═1bar24 24 23 24流量A→TQ2[l/min]当∆P═1bar30 30 28 30P A最大调整范围(bar)当设点为20mA时3...5 4...7 5...10 10 (13)P A最小调整范围(bar)当设点为4mA时0…1.50 (3)0.5 (3)1 (5)0 (2)0 (5)0 (5)0 (18)P A最小值调整范围处决于P A最大值的设定值.。

工程机械电液控制系统

工程机械电液控制系统

工程机械电液控制系统简介工程机械电液控制系统是指通过电气与液压相结合的方式,对工程机械进行控制和调节的系统。

该系统使用了电气控制和液压驱动,通过电液转换器进行信号的传递和执行器的控制,从而实现对工程机械的运动、位置、力量等参数的调节和控制。

本文将详细介绍工程机械电液控制系统的结构、工作原理以及应用领域。

结构工程机械电液控制系统主要由以下几个部分组成:1.电控部分:包括控制器、传感器、执行器等电气元件。

控制器负责接收和处理输入信号,通过传感器获取机械的运动状态和环境参数,然后通过执行器输出相应的控制信号,实现对机械的控制和调节。

2.液压部分:包括液压传动系统、液压执行元件等。

液压传动系统负责将电气信号转换成液压信号,通过液压执行元件控制机械的运动、位置、力量等参数。

3.电液转换器:用于将电气信号转换成液压信号,实现电气与液压的相互转换。

常用的电液转换器包括电磁阀、电液换向阀等。

4.连接件:用于连接电气元件和液压元件,实现信号和能量的传递。

工作原理工程机械电液控制系统的工作原理如下:1.电控部分接收输入信号,并经过处理后输出控制信号。

2.控制器通过传感器获取工程机械的运动状态和环境参数。

传感器将这些参数转换成电信号,并传输给控制器。

3.控制器根据输入信号和传感器的反馈信号,进行逻辑运算和控制计算,并生成相应的控制信号。

4.控制信号通过连接件传递给电液转换器,将电信号转换成液压信号。

5.液压部分接收液压信号,并经过液压传动系统的传递和液压执行元件的作用,控制和调节工程机械的运动、位置、力量等参数。

6.工程机械根据液压部分的控制信号,进行相应的动作和运动。

应用领域工程机械电液控制系统广泛应用于各个领域的工程机械中,如挖掘机、装载机、推土机、起重机等。

它们通过电气和液压的相互协作,实现了对机械的高效控制和操作。

在工程机械的挖掘方面,电液控制系统能够精确控制挖斗的位置、速度和力量,提高挖掘效率和准确性。

在装载方面,可以根据物料的不同特性,调节装载斗的位置和倾斜角度,实现高效的装载和卸载操作。

电子刹车的原理

电子刹车的原理

电子刹车的原理电子刹车是一种电控制动系统,通过电子设备控制车辆刹车系统的工作,实现车辆的刹车功能。

它相比传统的机械刹车系统具有更快、更精准的响应速度,提高了驾驶安全性。

本文将详细介绍电子刹车的原理及其工作原理。

一、电子刹车的组成部分1. 控制单元:电子刹车的控制单元是整个系统的核心,主要由微处理器、存储器、通信接口和电源控制部分组成。

控制单元负责接收来自车辆传感器的输入信号,根据预设的刹车算法计算并输出刹车指令,同时监测系统的工作状态以保证安全性。

2. 电液转换器:电液转换器接收来自控制单元的刹车指令,并将电信号转化为液压信号,通过液压系统传递给刹车踏板执行部分。

这样一来,控制单元可以通过电信号实现对刹车力度的精确控制。

3. 刹车执行部分:刹车执行部分包括了刹车盘、刹车片、刹车缸等机械部件,通过电液转换器提供的液压信号,施加刹车力并将刹车信号传递到车辆轮胎上,实现停车或减速的功能。

二、电子刹车的工作原理1. 信号输入:电子刹车系统通过各类传感器获取车辆运行状态的实时数据。

例如,转向角速度传感器、轮速传感器、刹车踏板传感器等。

这些传感器将车辆运动信息转化为电信号,并将其传递给控制单元。

2. 信号处理:控制单元接收传感器的输入信号,通过内部的算法和逻辑电路进行计算和处理。

它会综合考虑车辆的速度、转向角度、刹车踏板的力度等因素,结合系统预设的刹车算法,确定刹车指令。

3. 刹车指令传递:控制单元通过通信接口将刹车指令传递给电液转换器。

刹车指令包括刹车力度和停车距离等信息。

这些信息将作为控制信号转化为液压信号,并通过液压系统传递到刹车执行部分。

4. 刹车执行:刹车执行部分接收到液压信号后,将产生相应的刹车力,并通过刹车盘、刹车片等机械部件将刹车力传递给轮胎。

轮胎受到刹车力的作用后,产生摩擦力,将车辆减速或停止。

5. 系统监测:电子刹车系统具备自我监测功能,控制单元会实时监测系统的工作状态和传感器的输出信号。

汽轮机电液转换器故障分析及处理

汽轮机电液转换器故障分析及处理

汽轮机电液转换器故障分析及处理摘要:详细介绍了汽轮机数字电液调节系统的基本原理,并从实际使用的角度阐述了汽轮机电液转换器故障发生情况,同时结合实例对汽轮机电液转换器产生的故障如何处理进行了分析说明。

关键词:液压调节系统;CPC;DEH;Woodward1 研究对象与工作原理美克化工有限责任公司25 MW 汽轮机组调速系统为数字电液调节系统(简称DEH)。

主要由Woodward 505E 数字式调节器、电液转换器、液压伺服机构、调节汽阀等组成。

它能实现汽轮机冲转升速、配合电气并网、负荷控制、抽汽热负荷控制及其他辅助控制,并与DCS 接通,实现控制参数在线调整和超速保护等功能。

Woodward 505E 数字式调节器具有以下功能:转速调节、转速目标值设定、抽汽压力调节、负荷分配、功率目标值设定、不等率设定、冷热态自动启动程序设定、跨越临界转速控制、超速试验及保护、自动同期、外部停机输入、RS232/RS422/RS485 通讯接口,手动/ 自动模式转换。

液压伺服机构由调节滑阀、错油门、油动机、启动阀等组成。

调节信号油压经液压伺服机构放大,控制油动机活塞移动,通过调节杠杆,改变调节汽阀的开度、调节汽轮机高压段、供热抽汽段的进汽量。

汽轮机高、低压段进汽量的调节是通过改变调节汽阀的开度实现。

根据电负荷和抽汽热负荷的需要,调节油动机带动配汽机构,改变横梁的位置,装在横梁上的阀碟,按配汽升程曲线顺序开启关闭,从而改变汽轮机各段的进汽量。

抽汽式汽轮机既可作凝汽运行也可作抽汽式运行。

在运行时为不带抽气按凝汽的方式时,可以不投低压油动机,让低压抽汽调门全开。

2 汽轮机电液转换器故障分析在2010 年9 月25 日汽轮机开机后投入到工业抽汽并汽的过程之中,出现负荷在3~27 MW 大范围的波动过程,高低调节汽阀也在20~70 mm 范围产生异常波动,这时就要将工业抽汽推出,将外网热负荷由减温减压器调整供给后正常投入;随后由于我厂生产的需要,汽轮机一直仅能在凝汽工况下运行,2011 年2 月8 日03:49,汽轮机跳闸报警显示CPC2(电液转换器)故障,当时负荷为28 MW,汽轮机转速飞升至3 343 r/min;随即对汽轮机CPC2 进行了故障检查处理,发现低调电液转换器内电路模块烧毁,失去了控制作用,505E 检测到故障后自动跳闸停机;立即更换汽轮机低压调门电液转换器,在22:22 开机负荷升至19 MW 时,在抽汽未投情况下,再次出现电负荷在10~20 MW之间大幅度波动。

第六章电液调节系统中的主要部件

第六章电液调节系统中的主要部件
第六章 电液调节系统中的主要部件
Main parts of DEH
SEPI
电 液 调 节 系 统
电子调节装置 阀位控制装置(电液伺服装置) 配汽机构 调节对象
SEPI
第一节
电子调节装置
Electric control equipment
1、转速测量元件 转速信号转变为直流电压模拟信号后发送给DEH
SEPI
5、功率校正器 PI调节器
6、调节级压力校正器
PI调节器
SEPI
第二节
阀位控制装置
Valve control equipment
1、电液转换器 阀位偏差信号(电信号);转换放大; 液压信号(调节油压);控制油动机 断流式电液转换器 继流式电液转换器 蝶阀型电液转换器
SEPI
2、油动机 调节信号的最后一级放大 双侧进油式油动机 单侧进油式油动机 指标:提升力 油动机时间常数
SEPI
第三节配汽机构源自Executive body
1、传动机构 杠杆式传动机构
凸轮式传动机构
2、调节阀 单阀、双阀 调节阀升程流量特性 调节阀升程提升力特性
SEPI
第四章 跟踪滑阀
Tracking
存在于电调与液调并存的控制方式 中
切换时无扰动
SEPI
转 速 测 量 元 件
磁阻发讯器(永久磁钢、铁芯、线圈)
频率(转速)变送器
SEPI
n
N
S
SEPI
整形
微分
单稳
滤波
SEPI
2、功率测量元件 霍尔定律:半导体薄片置于磁场中,当沿薄片 的一对边通以电流,则另一对边就 会产生电势。
3、功率反调校正元件 转速变化信号落后于功率变化信号

汽轮机调速系统自动控制技术研究与应用

汽轮机调速系统自动控制技术研究与应用

汽轮机调速系统自动控制技术研究与应用摘要大庆炼化公司聚合物一厂丙烯腈装置空压机组调速系统由原系统更改为新的以505调速系统为核心的电子控制系统,同时增加了就地控制柜、速关阀、行程监视开关,原有的油系统管路改造为液压集成的速关控制系统。

该方案的实施,将原来该系统中单一部件组合在一起,克服了管路繁多、安装复杂等缺陷,在运行中有效避免了监控困难和减少产生漏油着火的概率,增加了汽轮机运行可靠性和安全性,加强了控制方面操作性,更加便捷,更加利于控制平稳率。

关键词汽轮机;505调速系统:速关系统;平稳率引言随着对机组运行状况的要求越来越高,同时自动控制系统所涉及的内容也越来越广,因此要求其安全性和经济性必须提高到一个新的高度,在汽轮机及其控制系统对保证正常生产和整套设备的平稳运行有着特别重要的作用。

汽轮机调节系统的形式很多,有机械调速系统、液动调节系统、电液调节系统等,但它的被调量不外乎是转速、功率及压力等信号,问题在于设计一个具有最佳的调节规律的控制系统,对这些调节变量进行运算和修正,保证汽轮机在各种工况下稳定运行,协调汽轮机和压缩机之间的控制,并能满足正常生产的要求。

1 调节和控制系统1.1 调节系统概述调节系统主要由转速传感器、转速控制系统、电液转换器、油动机和调节汽阀组成。

转速控制系统同时接收两个转速传感器变松的汽轮机转速信号,将收到的信号与设定值进行比较后输出执行信号(4-20mA),经过电液转换器转换成二次油压(1.5bar-4.5bar),二次油压通过油动机操纵调节汽阀。

1.2 汽轮机运行监视和保护汽轮机就地仪表柜显示油压和汽压信号,并装有转速表。

汽轮机保护系统由速关阀、危急遮断器及连杆机构、电磁阀组成。

危急遮断器及其连杆机构组成汽轮机机械超速保护装置。

当汽轮机达到超速转速时,危急遮断器的飞锤在离心力的作用下,迅速击出,打击连杆机构挂钩,使其脱落,速关阀快速关闭,切断气源[1]。

电磁阀受到外部综合停机信号后,立即切断速关油路,使速关阀关闭。

电液转换器工作原理

电液转换器工作原理

电液转换器工作原理
电液转换器,也被称为液电转换器,是一种将电能转换为液压能的装置。

其工作原理基于电磁效应和液压技术。

电液转换器通常由电磁铁、钢柱、弹簧、阀芯、油缸和油液等部件组成。

当电液转换器接通电源时,电磁铁会产生电磁场,使得钢柱受到电磁力的作用而被吸引,压缩弹簧。

由于阀芯与钢柱相连,它也会随之下压,从而打开阀门。

当阀门打开时,油液可以流过油缸。

在油液流动的过程中,由于液体的不可压缩性,使得流动的液体会产生一定的压力。

这种压力会驱动液压缸的活塞运动,从而实现力的输出。

当断开电源时,由于电磁铁失去电流,电磁铁产生的磁场消失,钢柱失去吸引力,恢复到原来的位置,阀门关闭。

这样,油液就无法流过油缸,液压能也不再产生。

电液转换器具有响应速度快、功率密度高、力量调节方便等优点,广泛应用于工业自动化、机械制造和航空航天等领域。

电液转换器原理与调试

电液转换器原理与调试

电液转换器工作原理:(见图)
当信号电流为零时, 芯棒与滑阀处于左端极限位置, 压力油腔与控制油压之间节流口关闭.腔经阀芯中地内孔与回油腔相通,所以腔处于卸压状态.资料个人收集整理,勿做商业用途
当信号电流()增加时,芯棒在磁场作用力下,或比例地产生一个向右作用力,推动滑阀向右移动,使控制油腔与回油腔地流通面积减小,与压力油腔地流通面积增大,根据流量平衡原理,控制油压升高,随着油压地升高,与油腔相通地腔压力也升高.当产生地油压力与相抵消时,滑阀达到平衡,控制油压稳定.腔油压值即是成比例地对应输入信号地相应值. 资料个人收集整理,勿做商业用途
当信号电流减小时,芯棒在磁场作用力下,产生一个向左作用力.这时,由于与油腔相通地腔油压力大于芯棒作用力,滑阀向左移动,使得控制油腔与回油腔地流通面积增大,与压力油腔地流通面积减小,控制油压降低.同时,腔油压亦降低,芯棒上地磁场力与油压力相等,滑阀达到平衡,控制油压稳定.资料个人收集整理,勿做商业用途
在手动工作状态,旋动手轮,经传动杆推动芯棒移动,即能调到所要求地控制油压.
一般对应-控制电流输出地二次脉冲油压为,在这一段范围内控制特性地线形度较高. 资料个人收集整理,勿做商业用途
电液转换器调试过程:。

电液转换器工作原理

电液转换器工作原理

电液转换器工作原理
电液转换器是一种将电能转化为液压能的装置,通常用于控制液压系
统的动作执行机构。

其工作原理可以简单描述为:通过电控信号控制电磁
阀的开关,使得液体能流通或截断,从而达到控制液压执行元件(如液压缸、液压马达等)运动的目的。

1.电源供电:电液转换器通过外部电源提供所需的电能,一般为直流
电源。

2.控制电磁阀:电磁阀是电液转换器的核心部件,其通过电磁力控制
阀芯的开关状态。

当电磁阀闭合时,阀门被打开,液体能够从液体进口进
入液压执行元件,执行元件开始运动;当电磁阀断开时,阀门关闭,液体
流通被截断,执行元件停止运动。

3.液压执行元件:液压执行元件是电液转换器输出的动力部分,它接
受液压能的驱动以完成工作。

常用的液压执行元件包括液压缸和液压马达。

当电磁阀控制液体流进液压执行元件时,液压执行元件受到压力作用而发
生相应的运动,如液压缸的伸缩、液压马达的旋转等。

4.油箱:油箱是电液转换器中的液压容器,用于储存液体以及散热降温。

油箱中通常配有滤芯、冷却装置等,以保证液体的质量和温度。

通过
油路的设计,液体能够顺利地从油箱中流出、进入液压执行元件,形成闭
合的液压系统。

综上所述,电液转换器的工作原理主要是通过控制电磁阀的开关状态
来实现液体的流通和截断,并通过液压执行元件将液压能转化为机械能。

通过电源供给电能,使得电磁阀的开关控制能够根据需要进行动态调整,
从而实现对液压执行元件运动的精确控制。

电液转换器被广泛应用于液压
传动系统的自动化控制、工程机械等领域,提高了系统的灵活性和精确性。

电液转换器使用说明

电液转换器使用说明

电液转换器使用说明
一、基本原理
二、使用前的准备
1.检查电源供电是否正常,确保电压和频率符合电液转换器设备的要求。

2.检查液压泵和液压执行器的连接是否牢固,并确保密封件完好。

3.检查液压油的油位和质量,必要时进行添加或更换。

三、操作步骤
1.打开电液转换器的电源开关。

2.按下启动按钮,电动机开始驱动液压泵运转,液压油开始流动。

3.观察液压设备的工作情况,如果需要调整液压设备的工作状态,可
以通过液压阀门实现调节。

4.当不需要使用电液转换器时,按下停止按钮,电动机停止运转。

四、注意事项
1.在正常使用电液转换器时,应保持设备清洁,定期检查和清洗液压
泵和液压执行器。

2.在长时间不使用电液转换器时,应关闭电源,并保持设备在干燥通
风的环境中。

3.运行中出现异常情况(如异响、温度过高等)时,应立即停止使用,并查明原因后再进行维修或更换部件。

4.在检查和维修电液转换器时,务必断开电源,以免发生电击或安全事故。

五、维护保养
1.定期检查液压油的油位和质量,根据使用情况及时添加或更换液压油。

2.定期检查液压泵和液压执行器的密封件、阀门等部件的磨损情况,并进行必要的维修或更换。

3.定期清洗液压管路,防止堵塞和泄漏。

六、常见故障排除
1.电动机无法启动:检查电源供电是否正常,电动机是否存在故障。

2.液压泵不工作:检查电动机和液压泵之间的连接是否牢固,以及电动机是否正常运行。

3.液压设备工作不正常:检查液压阀门的调节是否正确,液压油是否正常流动。

汽轮机电液转换器调整技术

汽轮机电液转换器调整技术

5科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008N O .24SC I ENC E &TEC HN OLO GY I NFO RM ATI O N 工业技术电液转换器是汽轮机调节系统的一部分,也是实现热工指令的重要环节,该装置既是电液转换元件,又是功率放大元件,它能把微小的热工信号转换成大功率的液压能输出,其性能的优劣对电液调节系统有很大影响。

1系统简介我厂七号135M W 中间再热、凝汽式汽轮机,采用电液调节系统,共有四只高压调门两只中压调门,作为D EH 控制器的执行机构,设置六个可控制调门的油动机,六只调门及油动机,结构动作原理完全相同。

每一个油动机配置一个电液转换器,将电调装置输出的电信号转换成控制油压的装置,其主要部件由力矩马达、杠杆组、碟阀、弹簧和阻尼器等组成。

2存在的问题在2006年大修以后,反复多次出现左侧中联门和高压调门开不足甚至开不出来的现象,几乎每次机组停役后即会出现此种情况,从运行方面讲其危害很大。

在开机过程中会导致机组左右侧进汽不均衡,左右侧汽缸法兰受汽量不平衡,引起左右温差增大、膨胀不均。

尤其是在机组热态快速启动中,危害更大,严重时可使滑销系统发生卡煞现象,加剧机组振动。

在带负荷的过程中,由于主调门单侧不能正常开启,会使负荷不能带满,或在高负荷下,圆周状态进汽不均衡,调节阀产生一种节流损失,较大程度的降低了机组的效率。

从检修角度来看,调门长时间节流,使得调门阀芯线因气流冲刷磨损,导致不能关闭严密,不但损坏了设备,而且增加新的安全隐患。

在没有根本处理此缺陷以前,采取了松反馈弹簧的临时处理方案,虽然能使调门正常开足,但安全系数在一定程度上降低了,因为由于调门开启受油动机控制,油动机的动作受继动器活塞动作控制,继动器的活塞又受作用在活塞上部控制油压向下的作用力与活塞顶部弹簧向上的作用力是否平衡所决定,由于顶部弹簧已放松了部份拉力,这对调门向上开启方向上是有利的,能保证调门能顺利开启,但在调门关闭方向上存在着一定的迟缓,当机组运行中突然甩负荷或发电机油开关突然跳闸,OPC 电磁阀动作后,通往继动器顶部控制油压下降时,该两只调门肯定存在着延时关闭。

电液伺服阀VS电液转换器

电液伺服阀VS电液转换器

一、如何将电子调节器输出的“电”信号,转换成能被液压执行器接受的“液”信号,让液压执行器按照电子调节器的要求调节进汽调节阀开度,改变汽轮机进汽流量?答案就是电液转换器,它是将“电”信号转换成“液”信号的中间媒介,是整个电液系统中的关键部件。

二、电液转换器的工作原理及分类按照电液转换器的工作原理,它由力矩马达和液压放大两部分组成。

力矩马达的作用是将“电”信号转换成机械力或机械位移信号,而液压放大部分则将机械信号进一步放大并以“油压”或“流量”的“液”信号形式输出。

力矩马达利用电动机原理,将磁场中通电线圈的电流转换成机械力,并以通电线圈或磁铁产生的机械位移输出。

从线圈位移输出还是磁铁位移输出来分,力矩马达有动圈式和动铁式两种基本类型。

电液转换器的液压放大部分,从“液”信号输出的形式来分又有“油压”输出和“流量”输出两种形式。

从电液转换器供油压力等级来分,又有高压电液转换器和低压电液转换器两种。

目前,高压电液转换器的供油压力为13~14Mpa;低压电液转换器的供油压力为1Mpa左右。

三、电液转换器目前有多种结构形式动圈式力矩马达用十字片弹簧平衡的电液转换器;动铁式力矩马达带二级液压放大的电液伺服阀;动铁式力矩马达直接动作的直动式电液伺服阀;动铁式力矩马达采用碟阀控制的电液转换器。

这里介绍的是上海汽轮机厂采用比较多的动铁式力矩马达带二级液压放大的电液伺服阀和动铁式力矩马达采用碟阀控制的电液转换器。

习惯上,我们把“油压”输出的称为电液转换器;把“流量”输出的称为电液伺服阀。

1、动铁式力矩马达带二级液压放大的电液伺服阀:电液伺服阀是二战期间由于飞行器等军事装备对控制系统提出快速响应以及更高的动态精度要求而发展起来的,并在战后逐渐用于民用和工业设备。

它是一种能接受模拟量的“电”信号输入,并随电控信号大小和极性的变化,以“流量”或“压力”作为输出的液压控制阀。

常用的电液伺服阀带有两级液压放大器。

第一级液压前置放大器有滑阀、喷嘴挡板阀和射流管阀三种形式,喷嘴挡板型是常用的选择,而第二级液压功率放大器则无一例外地都采用断流式四通滑阀。

Voith电液转换器

Voith电液转换器

目录1.技术数据2.安全信息2.1 符号的意义2.2使用方法2.3重要标识2.4保修3.功能描述3.1机械构造3.2运行特性4.包装、储存和运输5.安装5.1安装5.2液压通讯5.3电通讯6.试运行6.1运行测试6.2参数设定7.操作7.1手动按钮操作7.2信号设置操作8.维护和修理9关闭10.主要线路图11.附录1.技术数据环境条件:保存温度-40℃ (90)环境温度:-正常操作-20℃ (85)-气体爆炸危险-20℃ (60)防爆等级EEx d IIC温度等级T4,在Ta=-20℃ (60)设备组别II类别2G防护等级IP 65 to EN 60529适合在工业内部环境中安装电气数据供电电压24VDC±10%能耗0.7A左右最大一秒内3A输入设置W=0/4…20mA带抑流器时输入电阻25 Ohm液压数据:最小输入压力比输出压力信号上限值大1.5bar最大输入压力见表格液压矿物油或液体油(要求不可燃液体)压力流体粘度ISO VG 32…ISO VG 48 to DIN 51519压力流体温度+10℃ (60)油品纯度纯度等级要求NAS1638 7级ISO4406 class-/16/13漏量≤5l/min ——————————————————————————————————类型DSG-BXX212B03…B07…——————————————————————————————————输出压力信号范围P[bar] 0..3 0..7A —————————————————————————————————— [bar] 40 40 输入压力P(max)——————————————————————————————————流量速率线 P→A 17 17 (l/min) Q1 [l/min]△P=1 bar时——————————————————————————————————流量速率线 A→T 18 18 (l/min) Q1 [l/min]△P=1 bar时——————————————————————————————————大致调节范围 1..3 5..7Pmax [bar]A设定为w=20mA时——————————————————————————————————大致调节范围0..0.8 1..3Pmin [bar]A设定为w=4mA时0..2 1.5..5压力下限值取决于压力上限值的设置压力下限值在最小值的第一条线里显示出来机械数据:尺寸,配置见第10章液压通讯见第10章装置位置见第10章密封材料 FPM重量大约12kg2.安全信息2.1符号意义危险!这个符号表明对人的生命安全有重大威胁。

voith电液转换器原理

voith电液转换器原理

voith电液转换器原理
摘要:
1.Voith 电液转换器的概述
2.Voith 电液转换器的工作原理
3.Voith 电液转换器的应用领域
4.Voith 电液转换器的优势与局限性
正文:
【概述】
Voith 电液转换器,是一种将电气信号转换为液压信号的装置。

它的核心部件是电气- 液压转换器,这种转换器通过控制电气信号,实现对液压系统的精确控制。

Voith 电液转换器在工业领域中被广泛应用,例如在钢铁、汽车制造、船舶等重工业领域,以及一些大型工程项目中。

【工作原理】
Voith 电液转换器的工作原理主要分为两部分:电气信号的输入和液压信号的输出。

首先,电气信号输入部分,Voith 电液转换器接收来自控制系统的电气信号。

这些信号经过转换器内部的电路处理,转换为转换器可以识别和执行的信号。

然后,液压信号输出部分,转换器根据输入的电气信号,通过内部的液压元件,产生相应的液压信号。

这个液压信号可以被转换器连接的液压系统识别和执行。

【应用领域】
Voith 电液转换器的应用领域非常广泛,几乎涵盖了所有需要精确控制液压系统的工业领域。

例如,在钢铁工业中,Voith 电液转换器可以用于控制轧钢机的压力和速度;在汽车制造中,它可以用于控制机器人手臂的运动;在船舶中,它可以用于控制舵机的转动等等。

【优势与局限性】
Voith 电液转换器的主要优势在于,它能够将电气信号精确地转换为液压信号,从而实现对液压系统的精确控制。

这使得Voith 电液转换器在需要高精度、高效率的工业领域中具有广泛的应用前景。

然而,Voith 电液转换器也存在一些局限性。

水轮机调节考试要点

水轮机调节考试要点

第一章衡量电能质量优劣主要有频率偏差和电压偏差。

水力发电过程控制分:设备层级控制、电站层级、电网层级。

调速器按元件结构分:机械液压型和电气液压型。

电气液压型分模拟电气液压型和数字电气液压型按系统结构分:辅助接力器型、中间接力器型和调节器型。

按控制策略的不同分:PI调节型、PID调节型和智能控制型。

按执行机构数目分:单/双调节调速器按工作容量分:大型、中型、小型、特小型大型主要用配压阀的直径表示工作容量,其它以调速工表示。

发展:机调——电调——微机调速器调速系统包括调速器和调节对象;调节对象包括水轮机及引水系统,发电机及其负荷。

第二章离心摆是测量元件作用是将转速信号转换为相应的机械位移信号。

主要参数是离心摆不均衡度,它指离心摆的测速范围。

放大元件作用是把测量元件输出的机械位移量进行功率放大。

分第一级和第二级液压放大。

配压阀分为通流式和断流式。

配压阀阀盘与阀套孔口正好处于对称位置时,称几何中间位置。

配压阀阀芯在某位置满足接力器平衡方程,称此位置为工作中间位置。

减小配压阀死区的措施:在配压阀结构上采取减少局部搭叠量的方法;减小导水机构的干摩擦力。

调节系统工作特性无反馈作用:缓冲器节流孔全开;硬反馈作用:缓冲器节流孔全关;软反馈作用:缓冲器节流孔处于某一合适开度。

单机运行不允许切除缓冲器。

无反馈作用时调节静特性是一条水平线,称为无差静特性,表示无论机组带多少负荷,稳定下来后的机组转速相同。

1,软反馈作用:缓冲器节流孔处于某一合适开度。

单机运行不允许切除缓冲器。

采用硬反馈时,调节系统会有很大的稳态误差,而软反馈调节过程结束后反馈量消失,不会造成静态偏差,从而能实现恒值调节和无差调节,因此系统需要软反馈,维持系统稳定。

2,采用软反馈的调速器既可以保证调节系统动态过程稳定,又可获得无差静态特性。

§31,为什么需要有差静特性:并列机组间使负荷分配明确,若均为误差调节,会形成负荷摆动。

2,调差机构作用:获得调节系统有差静特性。

汽轮机油系统设备原理、工作流程及事故处理

汽轮机油系统设备原理、工作流程及事故处理

1 、典型油系统介绍汽机的油系统按功能可以分为:调节油部分,保安油部分,润滑油部分。

汽轮机的油系统是一套分厂完整的液压油系统,其组成:储油装置-油箱,动力单元-油泵,输送装置-管道,冷却单元-冷油器,净化单元-过滤器,控制单元-电调装置,执行单元-油动机。

下面以电调式汽轮机油系统为例分别来介绍:(1)调节油系统电调型汽轮机通过电子调节器(即DEH)输出电信号,经过电液转换装置,改变成液压信号,控制油动机动作。

目前国内小型汽轮机用的电液转换器主要有三种分别是:VOITH,CPC,DDV(MOOG)。

作用是将接收到的电信号转换成相应的液压信号。

动力油(EH油)从注油泵出其中一路进入电液转换器,经过电液转换器变压后,成为调节油,进入错油门底部,控制错油门阀芯移动,改变动力油进入油动机活塞的油路,进而改变油动机活塞的位置。

油动机能够在一个特定的位置挺住,电调系统需要感知油动机目前的位置,这就需要有反馈信号的存在。

(2)润滑油系统动力油来自主油泵出口,经过一射油器后,形成一股较低压力的油,这股油经过冷油器冷却至40℃(该温度下油的粘度最佳,工程实践中一般要求油温在40~45℃)后直接进入各个轴承,在转子轴颈和轴瓦之间形成一层油膜,起到润滑作用,同时,通过油将轴承处产生的热量带走。

(3)保安油系统保安油系统,顾名思义,对汽轮机的起到安全保护作用的一股油。

保安油是由一股动力油在经过危机遮断装置后形成的。

保安油在汽轮机运行中,几乎不消耗油量,保安油压力与动力油一致。

只有当外部原因促使危机遮断装置动作,或者AST电磁阀动作,将保安油卸掉,保安油失压,使得汽轮机保安设备动作,起到关闭和保护汽轮机的作用。

例如汽轮机的主汽门液压缸上就接有保安油,当保安油失压后,主汽门会迅速关闭以切断汽轮机进汽。

2 、润滑油系统的组成系统主要由汽轮机主轴驱动的主油泵、冷油器、注油器、顶轴油系统、排烟系统、集装油箱(主油箱)、润滑油泵、事故油泵、密封油备用泵、滤网、电加热器、阀门、逆止门和各种监测仪表等构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与505/505E配套使用的电液转换器为两种:VOITH和CPC 1、VOITH
1 - 控制磁性调节阀体P in -进口油压
2 –动力传输杆P A -输出信号油压
3 - ×0和×1电位计
4 - 手动操作旋钮T1-回油
5 - 电气接线T2 -回油
6 - 控制壳体F Mag -磁力
7 - 带阻尼活塞的控制活塞F Hyd-液压力
8 –端盖F Fed-弹簧力
9 –控制弹簧
手动操作旋钮的功能:
通过手动操作旋钮来控制电液转换器的磁铁,依靠这个旋钮,能设定一个可调的弹簧力以替代磁力F Mag。

弹簧力通过电枢和传输杆控制活塞,液压力F Hyd与输出信号压力P A成正比,但作用力方向与弹簧力相反,这样输出压力的调节不需要电气就可实现。

用手动旋钮操作时,由电液转换器控制的液压元件的行程位移不受控制,其输出发生变化是由于输出信号压力的增加。

只有把弹性挡圈从手动操作旋钮上移开时才能手动操作。

完成手动操作以后,顺时针转动计数器,使手动操作旋钮回到原来位置,再把弹性档圈推到原来位置。

作用方向:顺时针旋转输出压力增加。

电位计的作用:
×0-在电位计×0 的帮助下,可以调节最小的输出压力P A min ,当设定值为4mA时。

电位计顺时针旋转,压力增加。

×1-在电位计×1 的帮助下,可以调节最大的输出压力P A max ,当设定值为20mA时。

电位计顺时针旋转,压力增加。

电位计×1先于×0 调整。

电位计×1的调节将影响×0的调整。

4~20mA对应油压为0.15MPa~0.45MPa
VOITH接线
CPC
压力输出大小(LEVEL) 此调整量改变压力的输出大小,调整它对各个点都起作用,顺时针调整将增大压力输出。

压力范围(RANGE) 此调整量改变压力输出的范围,即压力曲线的斜率,顺时针调整将增大压力输出曲线的斜率。

标定
一、输入电流和输出压力
1. 将输入电流置于12mA 测量输出压力
2. 调整压力Level电位器将输出压力调整到所需值
3. 将输入电流置于20mA 测量输出压力
4. 调整压力范围Range 电位器将输出压力调整到所需值
5. 再次将输入电流置于12mA 调整压力Level电位器
6. 将输入电流置于4mA 调整压力 Range 电位器注意顺时针调整Range 电位器将减小输出压力
7. 重复1-6 步操作直至输出压力在极限值的公差范围内
注意压力Level电位器和压力 Range 电位器为多圈电位器, 25转
二、动态调整
1. 将输入电流置于12mA
2. 顺时针慢慢将增益Gain 电位器至中间位置如果输出压力不稳定则逆时针调整电位器通常50%的增益将适用于各种类型的负载
3. 对于小型或闭锁的伺服机构稳定电位器Stability 通常设定为10%-20% 对于大型的伺服机构通常设定为50%-60% 如果油温比较低或油的粘质比较大请适当增加稳定值的调整
如果发现输出压力有高频抖动现象, 则应减小稳定值同时可适当增大增益
4. 从4 mA 到20mA 逐步增大电流检查输出压力是否稳定
4~20mA对应油压为0.25MPa~0.6Mpa
CPC与VOITH相比的优缺点:
优点:反应灵敏,有超限报警
缺点:调节麻烦,对油质要求高(5um滤网),无法脱机试验
针对这一问题,woodward公司新研发了CPCII产品
CPCII
改进:1、去掉滤网
2、提高功率,提高动作的灵敏性和可靠性。

3、增设试验用电位计(使用手动测试功能,机组必须处于停机状态,但要保持液压油油压。

设定信号必须在4mA或4mA以下,这样才能激活手动功能。


4、采用232通讯与电脑连接,能在线设置PI值,压力输出大小和压力范围。

并能在线监视CPC状态。

(温度、电源、反馈、输入、输出)
5、采用冗余配置,可接受双路模拟量和开关量输入
接线时注意:
1、采用屏蔽线
2、屏蔽层单端接地
3、注意VOITH接线
4、油循环时,不要安装转换器,用盖板将进油管与回油管接通,待油循环合
格后,才能安装。

相关文档
最新文档