华东师大版初二数学课件13.2.1单项式与单项式相乘

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

× 6 =2.37 ×10 2 答:卫星绕地球运行3×10 秒走 6 过的路程约是2.37 ×10 米。
解: 5 =23.7 ×10
3 7.9×10
2 3×10
练一练 8 2.光的速度每秒约为3 10 千米,太阳光射到地球上需要
的时间约为5 10 秒, 地球与太
2
阳的距离约是多少千米?
几 何 意 义
2 2 3 4a x · (-3a bx)可 以表达
得更简单些吗?为什么?
计算:
2 2 (1)2x y· 3xy
2 2 ( 乘法交换 =(2· 3)· (x · x)· (y· y) 3 3 =6x y
(有理数乘法和同底数幂的乘法法则)
律,结合律)
计算:
Hale Waihona Puke 2 2 3 (2)4a x · (-3a bx)
= [ 4 · ( 3)· 2· 3)]· (a2· a (x x)· b 5 3
=(-12)· a· x· b =-12a5x3b.
-
你知道单项式 与单项式怎样 相乘吗?
单项式与单项式相乘法则:
(1)各单项式的系数相乘; (2)相同字母的幂按同底数的幂相乘; (3)只在一个单项式因式里含有的字母, 连同它的指数作为积的一个因式.
单项式与单项式相乘
复习: 1、下列整式中哪些是单项 式?哪些是多项式?
a,
2 5
x by ,
3
2 2
2r , x xy y , 2 x 1. 1 2 单项式: a, 3 x y, 2r , 2 2x 1 多项式: 2 x by3 , 2 x xy y , 5
1 2 x y, 3
复习:
2、利用乘法的交换律,结合律计算:
6×4×13×25
解:原式= (6 ×13) ×(4×25)
=78 ×100
=7800
复习:
3、前面学习了哪三种幂的运算?
运算方法分别是什么?
复习
1、同底数幂相乘,底数不变,指数相加。
一般形式: ( n ,m 为正整数)
n m n m a a a
练一练
1、计算: ①3x5·5x3 ②(-5a2b3)(-3a) ③ (4×105)·(5×106)·(3×104) ④(-5an+1b)·(-2a) ⑤(2x)3·(-5x2y) ⑥(-xy2z3)4 ·(-x2y)3
例2:卫星绕地球运动的速度约 3 是7.9×10 米/秒,则卫星绕地球 2 运行3×10 秒走过的路程约是多少?
2 ·a
3 · (b
2 · b)
· c
=20
c
口答:
①3x · 5x2 15x3 -6xy6 10x2 x3 y2 z4 4×1010
②(-2y)·(3xy5)
③(-2.5x)·(-4x) ④x2yz · xyz3 ⑤(2×105)(2×105)
⑥(-2x)3(-4x2) =(-8x3) · (-4x2) =32x5 ⑦xm+1y · 6xym-1 6xm+2ym
x

1 8
X米 X米
mx米
1 8
1、第一幅画的画面面积是 x 米2
(mx) 米2 3 x 第二幅画的画面面积是 (mx)( ) 4
结果可以表达得更简单些吗?
x m 3 3 2 3 m· (x· x) (mx)( 4 x )= 4 · = mx 4
2 =x
X )· m (mx)= (X·
2 2 2、类似地, 2x y· 3xy 和
例1、计算:

2 3 3x y· (-2xy )
3 2 解:3x y· (-2x )
y
2 3 =[3· (-2)]· (x · x)· (y · y
)
= -6
3 x
4 y
2 3 例1、计算:②(-5a b 2 3 解:(-5a b 2 a 5 b
2 )· (-4b c)
2 )· (-4b c)
=[(-5)· (-4)]
2、幂的乘方,底数不变,指数相乘 一般形式: (a m ) n a mn (m,n为正整数)
3、 积的乘方等于各因数乘方的积
一般形式: (ab)
n
a b
n n
(n为正整数)
京京用两张同样大小的纸,制作了两 幅画,如图,第一幅画大小与纸的大 小相同,第二幅画的画面在纸的上、 1 x 米的空白, 下各留有 8 两幅画的画面面积各是多少?
单 项 式 与 单 项 式 相 乘 的
3a 2b可以看作是长为3a,宽为2b
的长方形的面积,那么 x xy 又怎么理解呢?
相关文档
最新文档