三角函数求值域方法小结

合集下载

三角函数的值域

三角函数的值域

三角函数的值域-CAL-FENGHAI.-(YICAI)-Company One1如何求三角函数的值域 濮阳外国语学校 王艳敏 电话:摘要:三角函数的最值是中学数学的一个重要内容,归纳这一内容,有助于学生进一步掌握已经学过的三角知识,沟通三角、代数、几何的联系,培养学生的思维能力。

关键词:函数最值 三角函数三角函数最值问题是高中数学的重点内容之一,也是高考命题的热点,由于三角函数和代数、几何等知识联系紧密,故求解这类问题的方法灵活多变,能力要求高,具有一定的综合性.本文介绍三角函数值域问题的一些常见类型和解题方法。

一. 基本型: 或 cos y a x b =+解决策略:利用sinx 和cosx 的有界性,即sin 1x ≤和cos 1x ≤解:x R∈ 2sin(3y x π=+)[]sin()113x π∴+∈- ,∴函数的值域为分析:引入辅助角,再利用正弦函数的有界性sin y a x b =+1≤分析:利用 sinx 的有界性1sin 1x -≤≤解: 12sin 13x ∴-≤+≤ []2sin 113y x ∴=+- 函数的值域为,2sin 1y x =+例1.求 值域。

sin cos y a x b x c=++),tan bx c aϕϕ=++=y 其中二、形如 引入辅助角转化为基本型解决策略:例2、求函数sin y x x=+[]22-,三、形如22sin sin cos cos y a x b x x x =++ 型的函数解决策略:通过降幂再转化为sin()y A x ωϕ=+ 来求解例3.求 22sin 2sin cos 3cos y x x x x =++ 的值域解: 212sin cos 2cos y x x x =++sin 2cos 22)24x x x π=++=++1sin(2)14x π-≤+≤所以所求函数的值域为2⎡-⎣ 四、反比例型:形如 sin sin a x b y c x d+=+ 或cos cos a x b y c x d+=+解决策略:用反表示法,再利用有界性或数形结合。

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。

【三角函数值域的求法】 求三角函数值域图解

【三角函数值域的求法】 求三角函数值域图解

所以t∈[-3,3].
六、三角函数也是函数,所以其他一些函数值域的求法对于求三角
函数的值域照样适用
如分别常数法:
例6 若cos2x+2msinx-2m-2sin2x+1sinx-1,
sinx-1=t∈[-1,0)
所以2m>t+2t+2,因为(t+2t+2)max=-1.
所以m>-12.
巧用“对比法〞解题
江苏靖江季南初中(214523) 陈一平
对比法:把两个或两个以上的事物进行比较,找其共同点与不同点的进行解题的方法.对比法是最基本的思维,也是解题方法.它有时会使思维、解题一清二楚,直接明了.
例1 横河九年级物理兴趣小组的同学在讨论“沙子和水谁的吸热本事大〞时,选用了两只完全相同的酒精灯分别给质量都是200 g的沙子和水加热.他们绘制出沙子与水的温度随加热时间改变的图象如图1所示. 已知酒精的热值是3.0×107 J/kg,水的比热容4.2×103 J/(kg·℃),加热时酒精灯平均每分钟消耗0.8 g酒精.那么请问:
(1)图中a图和b图哪个是沙子吸热升温的图象?为什么?
(2)请依据图象说出水在受热过程中温度改变的特点.
(3)加热满2 min时,水汲取了多少热量?
(4)给水加热持续了10 min时间,共消耗了多少酒精?这些酒精假如完全燃烧将放出多少热量?
(5)试求出沙子的比热容.
图1解:(1) 图a表示的是沙子吸热升温的过程,因为沙子的比热比水小,汲取相同热量时沙子温度升得多.。

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

求三角函数值域

求三角函数值域

求三角函数值域三角函数是数学中一类重要的函数,其值域是重要的概念。

在此,我们将讨论如何求解三角函数值域。

首先,要正确理解三角函数的值域,就必须首先弄清楚三角函数本身。

三角函数是指可以表示三角形内角度及边长关系的函数,主要有正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

它们都可以根据角度将其映射到另一个定义域内的值。

比如,正弦函数的值域是-1到1,余弦函数的值域是-1到1,正切函数的值域是全体实数。

3角函数值域是一组定义域上三角函数可以取得有限个值的集合,这些值经过映射可以转换为克利夫值域。

克利夫值域是三角函数的值域的更广泛的版本,它代表了实际的三角函数的结果不需要被映射的情况。

比如,克利夫值域对于正弦函数的值域是从-∞到+∞,而正弦函数的值域只是-1到1。

求三角函数值域的方法主要有两种。

首先,我们可以根据三角函数特性,通过角度变换计算正弦、余弦和正切函数的值域。

一般情况下,给定三角函数的值域也可以转换为克利夫值域,但是也有一些特殊情况,比如当角度超过180度时,需要进行特殊处理。

其次,我们还可以根据特定函数的图形来求三角函数的值域。

比如,当正弦函数x的值域是[m,n]时,y所在的值域就是[0,1]。

此外,余弦函数的值域也可以从其图形中得出,从而确定其x、y值域范围。

另外,由于正切函数的图像没有任何界限,因此它的x、y值域也是无穷的。

总而言之,三角函数的值域可以通过角度变换和图形观察两种方法来求解。

计算正弦、余弦和正切函数的值域时,都可以从克利夫值域推出具体的值域。

而且,计算三角函数值域可以使用数学表达式。

为了更好地理解三角函数的值域,我们还可以通过举例来更深入地讨论这一问题。

例如,给定一个角为60度的三角形,三条边的长度分别为a、b和c,根据余弦定理可以求出三角函数的值域。

下面列出的函数就是求出的三角函数的值域:正弦函数:sin(60°) = b/c = 0.86602540378余弦函数:cos(60°) = a/c = 0.5正切函数:tan(60°) = b/a = 1.73205080757最后,对于三角函数的值域计算更加深入,我们可以使用积分和微分法,考虑函数更一般的情况,比如,三角函数的变换、函数的无穷值递增以及函数的微分关系等。

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。

一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。

具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。

而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。

二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。

具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。

而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。

三、正切函数值域的求法正切函数的值域为实数集。

具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。

因此,正切函数的值域为实数集。

2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。

这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。

3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。

正切函数值域为实数集,可以表示所有可能的长度。

综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。

(完整版)三角函数化简求值证明技巧

(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。

练习:已知sin(α+β)=,cos(α-β)=,求的值。

2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

三角函数值域求解题技巧

三角函数值域求解题技巧

三角函数值域求解题技巧解题步骤:1. 确定三角函数的定义域。

三角函数的定义域通常是整个实数集或者某个区间。

例如,对于正弦函数sin(x),它的定义域为整个实数集,而对于余弦函数cos(x),它的定义域为整个实数集。

确定了三角函数的定义域之后,我们可以确定其值域的范围。

2. 确定三角函数的周期。

三角函数通常是周期函数,其周期可以根据函数的图像或公式推导得到。

例如,正弦函数的周期是2π,即sin(x+2π) = sin(x)。

通过确定周期,我们可以推导出三角函数的值在一个周期内的变化规律。

3. 分析三角函数的图像。

通过绘制三角函数的图像,我们可以直观地看到它的变化规律,从而确定值域。

根据三角函数图像的特点,可以得到以下结论:- 正弦函数的值域在[-1,1]之间,即sin(x) ∈ [-1,1]。

- 余弦函数的值域在[-1,1]之间,即cos(x) ∈ [-1,1]。

- 正切函数的值域是整个实数集,即tan(x) ∈(-∞,∞)。

- 反正弦函数的值域在[-π/2,π/2]之间,即arcsin(x) ∈ [-π/2,π/2]。

- 反余弦函数的值域在[0,π]之间,即arccos(x) ∈[0,π]。

- 反切函数的值域在(-π/2,π/2)之间,即arctan(x) ∈(-π/2,π/2)。

4. 利用三角函数的性质。

三角函数具有一些特殊的性质,可以用来求解值域。

下面列举一些常用的性质:- 正弦函数的值域是闭区间[-1,1]。

- 余弦函数的值域是闭区间[-1,1]。

- 在同一周期内,正弦函数和余弦函数在相同的x值处取到最大值和最小值。

- 反正弦函数的值域是闭区间[-π/2,π/2]。

- 反余弦函数的值域是闭区间[0,π]。

- 反切函数的值域是开区间(-π/2,π/2)。

通过利用这些性质,结合函数的定义域、周期和图像,可以求解三角函数的值域。

范例:1. 求sin(2x)的值域。

首先确定sin(2x)的定义域,由于正弦函数的定义域是整个实数集,因此sin(2x)的定义域也是整个实数集。

求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法

求三角函数最值的常用解题方法
一. 转化为二次函数求解三角函数的最值,适用于题目中出现的三角函数分别为一次和二次时
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。

二. 使用辅助角公式(化一法)求解三角函数的最值
适用于题目中出现的三角函数同次时
—1—
例2.求函数的值域。

分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。

解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。

—2—
三.利用函数值域的有界性,求解三角函数的最值
例3.求函数的值域
解:
—3—
四.使用换元法求解三角函数的最值
例4.求函数的最值。

分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。

解:
—4—。

三角函数最全知识点总结

三角函数最全知识点总结

三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。

下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。

一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。

正弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。

其中π为圆周率。

3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。

4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。

5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。

二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。

余弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。

3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。

4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。

5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。

三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。

正切函数的定义域为实数集,值域为实数集。

2. 周期性:tan(θ+π)=tanθ。

3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。

4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。

四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。

记作arcsin x或sin⁻¹x。

2. 反余弦函数:定义域为[-1,1],值域为[0,π]。

三角函数值域的求法

三角函数值域的求法

三角函数值域的求法三角函数是数学中的重要概念之一,它在几何学、物理学、工程学等领域中有着广泛的应用。

在学习三角函数时,我们不仅需要了解它们的定义和性质,还需要掌握它们的值域。

本文将围绕三角函数值域的求法展开讨论。

我们来回顾一下三角函数的定义。

在直角三角形中,我们可以定义三个基本的三角函数:正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

对于一个给定的角度θ,这些函数的值可以通过三角形的边长比例来计算。

接下来,我们将重点讨论三角函数的值域。

值域是函数在定义域上所有可能的输出值的集合。

对于正弦函数和余弦函数来说,它们的值域是[-1, 1]。

换句话说,对于任意的θ,-1 ≤ sinθ ≤ 1,-1 ≤ cosθ ≤ 1。

这是因为在单位圆上,正弦函数和余弦函数的取值范围都在-1到1之间。

而正切函数的值域则是整个实数集。

也就是说,对于任意的θ,tanθ可以取到任意的实数值。

这是因为正切函数是通过sinθ除以cosθ得到的,而在某些角度上,cosθ可能等于0,导致无法除以0。

因此,我们可以得到tanθ的值域是整个实数集。

除了这三个基本的三角函数,还存在其它的三角函数,如余切函数(cot)、正割函数(sec)和余割函数(csc)。

这些函数的值域与它们的定义有关,但可以通过基本的三角函数进行推导和计算。

在实际问题中,我们经常需要根据已知条件来求解三角函数的值域。

这时,我们可以利用三角函数的性质和定义来推导。

例如,当给定θ的范围时,我们可以确定sinθ和cosθ的取值范围。

然后,根据这些取值范围来确定三角函数的值域。

我们还可以利用三角函数的周期性来求解值域。

正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

这意味着在一个周期内,三角函数的值会重复出现。

因此,我们可以利用周期性来确定三角函数的值域。

总结起来,三角函数的值域是根据其定义和性质来确定的。

正弦函数和余弦函数的值域是[-1, 1],而正切函数的值域是整个实数集。

三角函数求值域专题(最新整理)

三角函数求值域专题(最新整理)

(0, ] ,则当△OAB 的面积达最大值时,
2
__________2___ .
10.已知函数 f (x) 2 cos x(sin x cos x) 1, x R .
(Ⅰ)求函数
f
(x)
的最小正周期;(Ⅱ)求函数
f
(x)
在区间
π, 8
3π 4 上的最小值和最大值.
解:(Ⅰ) f (x) 2 cos x(sin x cos x) 1 sin 2x cos 2x
②利用万能公式求解;
③采用数形结合法(转化为斜率问题)求最值。
例 1:求函数 y sin x 的值域。 cos x 2
解法 1:数形结合法:求原函数的值域等价于求单位圆上的点 P(cosx, sinx)与定点 Q(2, 0)所确定的
直线的斜率的范围。作出如图得图象,当过 Q 点的直线与单位圆相切时得
3
3
sin y cos2 x (sin x 1)2 11 ,当 sin x 1 时, sin y cos2 x 有最小值 11 ;当 sin x 2
2 12
2
12
3
时, sin y cos2 x 有最小值 4 . 9
例 2:已知 3sin 2 2 sin 2 2 sin ,求 y sin 2 sin 2 的取值范围。
f
(x)
1 cos 2x 2sin( x)
sin
x
a2
sin( x
)
4
的最大值为
2 3 ,试确定常数 a 的值.
2
解:
f
(x)
1 2 cos2 x 1
2 sin(
x)
sin
x
a2
sin( x

三角函数知识点归纳

三角函数知识点归纳

三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1) 角的概念推广根据旋转方向的不同,角可分为正角、负角、零角。

正角:按逆时针方向旋转形成的角。

负角:按顺时针方向旋转形成的角。

零角:不作任何旋转形成的角。

根据终边位置的不同,角可分为象限角和轴线角。

以角α的顶点为原点,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。

第一象限角的集合为αk·360 < α < k·360 + 90,k∈Z。

第二象限角的集合为αk·360 +90 < α < k·360 + 180,k∈Z。

第三象限角的集合为αk·360 + 180 < α < αk·360 + 270,k∈Z。

第四象限角的集合为αk·360 + 270 < α < αk·360 + 360,k∈Z。

终边在x轴上的角的集合为α= k·180,k∈Z。

终边在y轴上的角的集合为α= k·180 + 90,k∈Z。

终边在坐标轴上的角的集合为α= k·90,k∈Z。

2) 终边与角α相同的角可写成α+k·360°(k∈Z)。

终边与角α相同的角的集合为β= k·360 + α,k∈Z。

3) 弧度制1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。

弧度与角度的换算:360°=2π弧度;180°=π弧度。

半径为r的圆的圆心角α所对弧的长为l,则角α的弧度数的绝对值是α=l/r。

若扇形的圆心角为α(弧度制),半径为r,弧长为l,周长为C,面积为S,则l=rα,C=2r+l,S=lr=αr²/2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r=√(x²+y²),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法(一)一次函数型或利用:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512y x π=--+,x x y cos sin =(3)函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .(4)函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是 (,1][1,)-∞-⋃+∞(二)二次函数型利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。

(2)函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于43.(3).当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .(4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 .(5).若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为____2____.(三)借助直线的斜率的关系,用数形结合求解型如dx c bx a x f ++=cos sin )(型。

此类型最值问题可考虑如下几种解法:①转化为c x b x a =+cos sin 再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1:求函数sin cos 2xy x =-的值域。

解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。

作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。

结合图形可知,此函数的值域是33[,]33-。

求三角函数的值域的方法

求三角函数的值域的方法

求三角函数的值域的方法三角函数是数学中的重要概念,其值域(或最值)在数学中起到了重要的作用。

在解决三角函数的值域问题时,我们需要了解三角函数及其基本特性,并运用一些基本的数学方法来求解。

首先,我们需要了解一些关于三角函数的基本知识。

在直角三角形中,正弦函数(sin)表示的是对边与斜边的比值,余弦函数(cos)表示的是邻边与斜边的比值,正切函数(tan)表示的是对边与邻边的比值。

1. 正弦函数(sin)的值域:正弦函数的值域在$[-1,1]$之间,即$-1 \leq \sin(x) \leq 1$。

最小值为$-1$,当$x$为$\frac{\pi}{2} +2k\pi$($k$为整数)时取到;最大值为$1$,当$x$为$-\frac{\pi}{2} + 2k\pi$($k$为整数)时取到。

2. 余弦函数(cos)的值域:余弦函数的值域也在$[-1,1]$之间,即$-1 \leq \cos(x) \leq 1$。

最小值为$-1$,当$x$为$k\pi$($k$为整数)时取到;最大值为$1$,当$x$为$(2k+1)\frac{\pi}{2}$($k$为整数)时取到。

3. 正切函数(tan)的值域:正切函数是一个无界函数,其值域为$(-\infty,\infty)$,即$\tan(x) \in (-\infty,\infty)$。

正切函数的最小值和最大值是在其不连续点出现,当$x$为$k\pi$($k$为整数)时,$\tan(x)$不存在。

除了上述基本的三角函数外,还存在一些其他的三角函数,如余切函数(cot)、正割函数(sec)和余割函数(csc)等,它们也具有类似的值域。

在求解三角函数的最大值和最小值时,我们可以运用一些基本的数学方法:1.寻找定义域:首先,我们需要确定三角函数的定义域,即取哪些值作为变量。

对于一般情况下的三角函数,其变量可以是实数,因此我们只需要考虑定义域。

2. 寻找连续区间:在定义域中,我们需要确定三角函数的连续区间。

求三角函数最值及值域常用的策略

求三角函数最值及值域常用的策略

师说新语332019年第25期求三角函数最值及值域常用的策略◎ 任彩霞/平遥现代工程技术学校三角函数的最值问题是三角函数中重要的一个知识点,题型较多、方法较碎,是同学们学习的一个难点,由于题型灵活,容易考查思维能力,因而也是高考中热点题型,现对三角函数最值求法中常见的策略加以归类,常用方法加以总结,以达快速正确求解。

一、利用三角函数的有界性求最值1、形如y=asinx+bcosx+c 型,引入辅助角公式化为22b a +sin(x+φ)+c ,再求值域。

例1、求函数f(x)=2sinx+cos(x+3π)的值域解:f(x)=2sinx+21cosx -23sinx=(2-23)sinx+21cosx=)sin()21()232(22φ++−x ,故f(x)∈[]2、形如y=asin 2x+bsinxcosx+ccos 2x 型,通过降幂转化为Asinx+Bcosx ,再求值域。

例2、f(x)=23asinx·cosx-2asin 2x+1(a>0)的值域解:f(x)= 3asin2x+acos2x-a+1=2asin(2x+6π)-a+1∵a>0,sin(2x+6π)-a+1∴f(x)∈[-3a-1,a+1]二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型,令sinx=t 转化为二次函数再求值域。

例3、k<-4,求y=cos 2x+k(cosx-1)的值域解:y=2cos 2x-1+kcosx-k y=2cos 2x+kcosx-k-1,设t=cosx ,t ∈[-1,1]则y=2t2+kt-k-1,对称轴x=-4k,由于k<-4,则-4k >1,故当t=1时,ymin=1,当t=-1时,ymax=1-2k ,即y ∈[1,1-2k]2、形如y=asinx·cosx+b (sinx ±cosx )+c 型,令sinx ±cosx=t转化为二次函数在]2,2[−上的值域问题例4、求函数y=sinx·cosx+sinx+cosx 的值域。

三角函数解题技巧和公式(已整理)

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中.面对三角函数内容的相关教学时.积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±.必可推出)2sin (cos sin ααα或.例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中.θθcos sin -已知.只要求出θθcos sin 即可.此题是典型的知sin θ-cos θ.求sin θcos θ的题型。

解:∵θθθθcos sin 21)cos (sin 2-=-故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ.sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ.θθcos sin ±.sin θcos θ三者中知其一可推出其余式子的值。

例2 若sin θ+cos θ=m 2.且tg θ+ctg θ=n.则m 2 n 的关系为( )。

最全高中三角函数总结

最全高中三角函数总结

三角函数做题技巧与方法总结知识点梳理1.正弦函数、余弦函数、正切函数的图像2、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3、三角函数的诱导公式sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinαcos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosαtan (2kπ+α)=tanα tan (π+α)=tanα tan (-α)=-tanαsin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosαcos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinαtan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotαsin 2(α)+cos 2(α)=14、两角和差公式5、 二倍角的正弦、余弦和正切公式sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosαsin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:2cos 12sinαα-±=; 2cos 12cos αα+±=; αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=7、函数Bx A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数求值域方法小结
冯樊 (襄阳市第二十四中学)
在高中数学中,三角函数的值域或最值问题是非常重要的内容之一,也是近几年来高考的一个热点问题,所以本文就其求值域的方法归纳如下:
一、转化为利用正、余弦函数的有界性求解的最值问题。

例1. 求函数2sin 1
sin 2
x y x +=
-的值域。

解一:2sin 1sin 2x y x +=-=2 +5
sin 2
x -
∵1sin 1x -≤≤∴55
5sin 23
x -≤
≤--
∴1
33
y -≤≤
解二:由2sin 1sin 2x y x +=
-得21
sin 2
y x y +=-
∵|sin |1x ≤ ∴21
|
|12
y y +≤- ∴133y -≤≤
∴函数的值域为[3-,1
3
]
例2. 求函数y =
的值域。

解:由2sin x
y x
=
+得sin 2y x x y =-
)2(x y ϕϕ+=-为辅助角) ∴
sin()x ϕ+=
∵1sin()1x ϕ-≤+≤得
11-≤≤由此解得11y -≤≤
∴函数的值域为[1,1-]
例3. 已知函数2()2sin sin cos f x a x x x a b =-++定义域是[0,]2π
,值域
是[5-,1],求,a b 的值。

分析:本例为求参数的逆向问题,需先用倍角公式降次再利用利用正、余弦函数的有界性求解。

解:2()2sin sin cos f x a x x x a b =-++=1cos 22sin 22
x
a x a
b -⋅
-++
sin 2cos22x a x a b =-++2sin(2)26
a x a
b π
=-+++
∵02x π≤≤ ∴1sin(2)126
x π
-≤+≤
∴当0a >时, ()3b f x a b ≤≤+ ∴5b =-,31a b += 此时2a =,5b =-;
当0a <时 ,3()a b f x b +≤≤ ∴35a b +=-,1b = 此时2a =-,1b =。

二、转化为求二次函数2y at bt c =++在闭区间[1,1]-上的最值问题。

例4. 已知2223sin 2sin 2sin αβα+=,求22sin sin y αβ=+的值域。

解: ∵2223sin 2sin 2sin αβα+=
∴223sin sin sin 02βαα=-≥ ∴2
0sin 3
α≤≤
∴22sin sin y αβ=+=22231
sin sin sin sin sin 22
ααααα+-=-+
=211
(sin 1)22
α--+
由图象可知,2
[0,]3
是单调递增区间
∴当sin 0α=时,min 0y = 当2sin 3α=时,max 4
9
y =
∴所求函数的值域为4
[0,]9。

例5. 求函数(sin )(cos )y x a x a =++的最值。

(0a <≤ 分析:本题中sin cos x x +与sin cos x x ⋅同时出现,所以需要换元。

解: (sin )(cos )y x a x a =++2sin cos (sin cos )x x a x x a =⋅+++
令sin cos x x t +=,则[t ∈ ∴21
sin cos 2t x x -⋅=
故22
11()22
a y t a -=++
由a ∈知当t a =-时,2min
1
2
a y -=,
当t =
2max 12y a =++。

三.转化为利用函数的单调性最值问题。

例6. 求函数sin y x x =-在[,]2π
π上的最大值。

解: 容易判断sin y x x =-在[,]2π
π上为单调递增函数
∴当x π=时,max sin y πππ=-=。

例7. 求(1sin )(3sin )
2sin x x y x
++=
+的最值及相应的x 的集合。

解: (1sin )(3sin )2sin x x y x ++=+2(sin 2)1sin 2
x x +-=+1
(sin 2)sin 2x x =+-+
令sin 2(13)x t t +=≤≤,则1
()y f t t t
==-
设1213t t ≤<≤
则121212*********
()()()()()()0t t f t f t t t t t t t t t +-=---=-<
∴()f t 在[1,3]t ∈上单调递增
∴当1t =时,min ()0f t =,此时sin 1x =-,{|2,}2
x x x k k Z π
π∈=-

当3t =时,max 8()3f t =,此时sin 1x =, {|2,}2
x x x k k Z π
π∈=+∈。

相关文档
最新文档