STM32 高级定时器-PWM简单使用
stm32高级定时器使用教程

STM32 高级定时器-PWM简单使用2010-04-14 14:49:29| 分类:STM32 | 标签:|举报|字号大中小订阅高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。
共有4个通道有死区有互补。
先是配置IO脚:GPIO_InitTypeDef GPIO_InitStructure;/* PA8设置为功能脚(PWM) */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);/*PB13 设置为PWM的反极性输出*/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);/*开时钟PWM的与GPIO的*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);/*配置TIM1*/TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;void Tim1_Configuration(void){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;TIM_DeInit(TIM1); //重设为缺省值/*TIM1时钟配置*/TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18KTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不懂得不管 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值不懂得不管TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure); //初始化TIMx的时间基数单位/* Channel 1 Configuration in PWM mode 通道一的PWM */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效PA8 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效 PB13TIM_OCInitStructure.TIM_Pulse = 40; //占空时间144 中有40的时间为高,互补的输出正好相反 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态不管 TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx通道1这里2.0库为TIM_OCInit/* TIM1 counter enable开定时器*/TIM_Cmd(TIM1,ENABLE);/* TIM1 Main Output Enable 使能TIM1外设的主输出*/TIM_CtrlPWMOutputs(TIM1,ENABLE);}//设置捕获寄存器1void SetT1Pwm1(u16 pulse){TIM1->CCR1=pulse;}/*操作寄存器改变占空时间*//*****************************************************************************************************************TIM1的定时器通道时间1到4 分别为PB8 PA9 PA10 PA11 而互补输出分别为PB13 PB14PB15中止PB12 。
STM32高级定时器TIM1输出六路带死区互补PWM波形

本文讲述如何配置单片机STM32F407VET6高级定时器TIM1输出六路带死区互补PWM波形。
一、高级定时器TIM1介绍
高级定时器TIM1有5种计数模式:
TIM_CounterMode_Up、TIM_CounterMode_Down
TIM_CounterMode_CenterAligned1
TIM_CounterMode_CenterAligned2
TIM_CounterMode_CenterAligned3
PWM输出有2种模式:
TIM_OCMode_PWM1、TIM_OCMode_PWM2
查看ST官方RM0090参考手册,高级定时器TIM1框图如下:
本文以高级定时器TIM1工作在TIM_CounterMode_Up模式,PWM工作在TIM_OCMode_PWM1为例,讲述如何配置输出六路带死区互补PWM波形。
二、配置代码示例
1.IO配置
硬件IO说明
TIM1_CH1---->PE9 TIM1_CH1N---->PE8
TIM1_CH2---->PE11 TIM1_CH2N---->PE10
TIM1_CH3---->PE13 TIM1_CH3N---->PE12
IO配置具体代码如下:
2. 定时器配置
三、实验测试
1. 测试硬件平台接线
2.测试结果
由测试结果可以看到高级定时器TIM1可以输出六路带死区互补PWM波形。
具体死区时间如何计算,下篇文章会讲解,敬请关注!。
STM32的PWM控制

Pwm输出最基本的调节就是频率和占空比。频率当然又和时钟信号扯上了关系。高级定时器是挂接到APB2上,而通用定时器是挂接到APB1上的。APB1和APB2的区别就要在于时钟频率不同。APB2最高频率允许72MH,而APB1最高频率为36MHZ。这样是不是通用定时器只最高36MHZ频率呢,不是的;通用定时器时钟信号完整的路线应该是下面这样的:
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM2; //设置为pwm1输出模式
TIM_OCInitStructure.TIM_Pulse=500; //设置占空比时间
IState = TIM_OSSIState_Disable;//空闲模式下输出选择
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF; //锁定设置
我先用STM32的通用定时器用PWM模式产生四路相同占空比,不同频率的PWM波,配置如下:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//使能TIM2时钟
TIM_InternalClockConfig(TIM2);//使用内部时钟
TIM_BaseInitStructure.TIM_Prescaler=3; //设置TIM时钟频率除数的预分频值
先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。
所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。
stm32 pwm调节转速原理

STM32的PWM调节转速原理主要基于PWM(Pulse Width Modulation)脉冲宽度调制。
通过编程控制输出方波的频率和占空比(高低电平的比例),可以实现对电机转速的控制。
在直流电机驱动中,PWM调速的基本原理是通过控制电机通电的电压来实现转速的调节。
当提高电压时,反电势升高,进而转速升高。
因此,通过控制PWM信号的占空比,可以实现对电机通电电压的调节,从而控制电机的转速。
在STM32中,可以通过定时器产生PWM信号,并通过调节占空比来控制电机的转速。
具体实现方式如下:
1.设置定时器工作模式为PWM模式,并配置相应的PWM通道和占空比。
2.根据需要调节占空比的值,以控制电机通电的电压。
3.将PWM信号输出到电机驱动器,从而实现对电机转速的控制。
需要注意的是,具体的PWM调速实现方式可能会因电机的类型、驱动器的型号等因素而有所不同。
因此,在实际应用中,需要根据具体情况进行相应的调整和配置。
第六章-STM32-定时器的使用-《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用 通用定时器配置步骤
1)TIM3时钟使能 这里我们通过APB1ENR的第1位来设置TIM3的时钟,因为 Stm32_Clock_Init函数里面把APB1的分频设置为2了, 所以我们的TIM3时钟就是APB1时钟的2倍,等于系统时 钟(72M)。 2)设置TIM3_ARR和TIM3_PSC的值 通过这两个寄存器,设置自动重装的值及分频系数。这 两个参数加上时钟频率就决定了定时器的溢出时间。
计数器寄存器:TIMx_CNT 预分频器寄存器:TIMx_PSC 自动装载寄存器:TIMx_ARR
第六章 STM32 定时器的使用 通用寄存器时基单元 1)计数器寄存器:TIMx_CNT
16位的计数器,设定值从1~65535
第六章 STM32 定时器的使用 计数器模式 向上计数模式:计数器从0计数到设定的数值,然后 重新从0开始计数并且产生一个计数器溢出事件。
在定时器配置完了之后,因为要产生中断,必不可少的 要设置NVIC相关寄存器,以使能TIM3中断。
6)编写中断服务函数 编写定时器中断服务函数,通过该函数处理定时器 产生的相关中断。中断产生后,通过状态寄存器的 值来判断此次产生的中断属于什么类型。然后执行 相关的操作。
第六章 STM32 定时器的使用 通用寄存器时基单元
第六章 STM32 定时器的使用
2)预分频器寄存器:TIMx_PSC 预分频器可以讲计数器的时钟频率按1到65536之间的任 意值分频,它是一个16位寄存器。 这个寄存器带有缓冲区,它能够在工作时被改变。新的 预分频器参数在下一次更新事件到来时被采。
第六章 STM32 定时器的使用 预分频器寄存器在事件更新时采用
定时器的工作频率计算公式为 CK_CNT=定时器时钟/(TIMx_PSC+1) 其中CK_CNT表示定时器工作频率 TIMx_PSC表示分频系数
STM32使用HAL库输出连续可调的PWM信号

STM32使用HAL库输出连续可调的PWM信号1.配置GPIO引脚作为PWM输出。
选择一个合适的GPIO引脚,并将其配置为复用模式,用于PWM输出。
例如,若使用TIM1作为PWM输出定时器,则可以选择GPIO引脚PA8,其复用功能为TIM1_CH12.配置定时器。
使用HAL库初始化和配置所选定的定时器(例如TIM1)作为PWM输出的时基。
设置定时器的时钟源、预分频因子和计数周期。
可以通过修改这些参数来调整PWM信号的频率。
3.配置PWM输出通道。
使用HAL库初始化和配置所选定的PWM输出通道(例如TIM1_CH1)。
设置通道的输出模式和占空比。
可以通过修改占空比来调整PWM信号的高电平时间,从而改变输出电压。
4.启动定时器。
通过调用HAL库中的相关函数,启动所选定的定时器开始计数。
定时器计数到达设定的计数周期后,将会产生一个PWM信号。
5.调整PWM信号的占空比。
通过修改PWM输出通道的占空比,可以改变PWM信号的高电平时间。
通过调整占空比的大小,可以控制PWM信号的输出电压。
6.实时调整PWM信号的频率和占空比。
通过修改定时器的预分频因子和计数周期,可以调整PWM信号的频率。
通过修改PWM输出通道的占空比,可以调整PWM信号的占空比。
可以根据特定的应用需求,实时调整这些参数,来实现连续可调的PWM信号输出。
下面是一个示例代码,演示如何利用HAL库配置和控制STM32的PWM输出:```c#include "stm32f4xx_hal.h"TIM_HandleTypeDef htim1;void SystemClock_Config(void);static void MX_GPIO_Init(void);static void MX_TIM1_Init(void);int main(void)HAL_Init(;SystemClock_Config(;MX_GPIO_Init(;MX_TIM1_Init(;HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);while (1)uint16_t dutyCycle = 500; // 设置占空比为50%__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, dutyCycle); HAL_Delay(1000); // 延时1sdutyCycle = 1000; // 设置占空比为100%__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, dutyCycle); HAL_Delay(1000); // 延时1s}void SystemClock_Config(void)RCC_OscInitTypeDef RCC_OscInitStruct;RCC_ClkInitTypeDef RCC_ClkInitStruct;__HAL_RCC_PWR_CLK_ENABLE(;__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1 );RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)Error_Handler(;}RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK ,RCC_CLOCKTYPE_PCLK1RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct,FLASH_LATENCY_5) != HAL_OK)Error_Handler(;}void MX_GPIO_Init(void)GPIO_InitTypeDef GPIO_InitStruct;__HAL_RCC_GPIOA_CLK_ENABLE(;GPIO_InitStruct.Pin = GPIO_PIN_8;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);void MX_TIM1_Init(void)TIM_MasterConfigTypeDef sMasterConfig;TIM_OC_InitTypeDef sConfigOC;htim1.Instance = TIM1;htim1.Init.Prescaler = 0;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 1000; // 设置计数周期为1000htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)Error_Handler(;}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1,&sMasterConfig) != HAL_OK)Error_Handler(;}sConfigOC.OCMode = TIM_OCMODE_PWM1;sConfigOC.Pulse = 0; // 初始化占空比为0sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC,TIM_CHANNEL_1) != HAL_OK)Error_Handler(;}```这是一个基本的示例,演示了如何使用HAL库配置和控制STM32的PWM输出。
stm32定时器的使用流程

STM32定时器的使用流程1. 简介STM32定时器是STM32系列微控制器中重要的外设之一。
定时器可以用于生成特定的定时器事件,实现计时、测量时间间隔、产生PWM信号等功能。
本文将介绍STM32定时器的使用流程。
2. STM32定时器的基本工作原理STM32定时器通常由一个或多个计数器和若干个通道组成。
计数器用于计算时间的流逝,而通道用于控制输出。
计数器的计数范围和分辨率可以根据需求进行配置。
通常情况下,定时器通过外部时钟源进行计数,也可以使用内部时钟源。
3. STM32定时器的使用流程使用STM32定时器通常需要以下步骤:3.1 初始化定时器在使用定时器之前,需要初始化定时器的相关参数,包括计数器的计数范围、分频系数等。
通常可以通过寄存器的设置来完成初始化工作。
使用HAL库的话,可以使用HAL_TIM_Base_Init()函数进行初始化。
3.2 配置定时器的工作模式定时器可以根据需求配置为不同的工作模式,常见的模式包括单脉冲模式、连续模式、PWM输出模式等。
可以使用TIM_CR1、TIM_CR2等寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.3 配置定时器的中断和DMA定时器可以配置中断和DMA功能,在特定的条件下触发相应的中断或DMA请求。
可以使用TIM_DIER寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.4 启动定时器在配置完成后,需要启动定时器开始计数。
可以使用TIM_CR1寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.5 处理定时器中断如果配置了定时器中断,当定时器达到设定的计数值时,会触发中断。
在中断服务函数中可以根据需求进行相应的处理。
3.6 设置定时器输出如果配置了定时器的通道输出模式,可以在定时器计数到一定值时,通过通道输出相应的信号。
可以使用TIM_CCR1、TIM_CCR2等寄存器进行配置。
3.7 停止定时器如果需要停止定时器的计数,可以使用TIM_CR1寄存器进行配置。
STM32++定时器与+PWM+快速使用入门

STM32 定时器与 PWM 快速使用入门要求:在万利的开发板 EK-STM32F 上产生周期为1秒,占空比分别为 50% 10%的 PWM 并且点亮板上的 LD1,LD2 灯闪烁。
做法很简单。
STM32的PWM是由定时器来产生的。
可以看出。
定时器3的通道1至4在GPIO端口的映像。
如果是完全映射。
各通道的连接引脚如下:CH1=PC6, CH2=PC7, CH3=PC8, CH4=PC9这样,刚好与板上的LD1,LD2灯符合,因为LD1连接到PC7,LD2连接到PC6引脚。
关于PWM一些知识.STM32的TIMx 是 TIMx_ARR 寄存器确定频率(周期)、由TIMx_CCRx 寄存器确定占空比的信号。
使用定时器3。
而TIM2、3、4的时钟源是 APB1 即是 PCLK1 ( APB1 对应 PCLK1 )PCLK1 = APB1 = HCLK/2 = SYSCLK/2 = 36MHZ (36,000,000 HZ)但是注意:倍频器会自动倍2,即是【72MHZ】!代码如下:voidSTM32_PWM_GPIO_Configuration(void){// 11:完全映像STM32_Afio_Regs->mapr.bit.TIM3_REMAP=3;// LD1 =P7 LD2=PC6/*GPIOA Configuration: ( PC6 PC7 ) TIM3 channel 1 and 2 as alternate function push -pull */STM32_Gpioc_Regs-&F6=Output_Af_push_pull; // PC.06 复用功能推挽输出模式STM32_Gpioc_Regs->crl.bit.MODE6=Output_Mode_50mhz; // PC.06 输出模式,最大速度50MHzSTM32_Gpioc_Regs-&F7=Output_Af_push_pull; // PC.07 复用功能推挽输出模式STM32_Gpioc_Regs->crl.bit.MODE7=Output_Mode_50mhz; // PC.07 输出模式,最大速度50MHz}//end subvoidSTM32_TIM3_Configuration(void){// TIM_DeInit( TIM3);//复位TIM3定时器STM32_Rcc_Regs->apb1rstr.all |= RCC_TIM3RST;STM32_Rcc_Regs->apb1rstr.all &= ~RCC_TIM3RST;//时钟使能STM32_Rcc_Regs->apb1enr.all |=RCC_TIM3EN;/* TIM3 base configuration *///TIM_TimeBaseStructure.TIM_Period = 9999;//TIM_TimeBaseStructure.TIM_Prescaler = 7200;//TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;//TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);STM32_Tim3_Regs->arr.all=9999; // 定时周期,PWM频率! 10毫秒*100=1秒STM32_Tim3_Regs->psc.all=720; // 7200分频 72MHZ/72,00 72,000,000/72,00=10,000STM32_Tim3_Regs->cr1.bit.CKD=0; // 时钟分频因子STM32_Tim3_Regs->cr1.bit.DIR=0; // 0:计数器向上计数/* Clear TIM3 update pending flag[清除TIM3溢出中断标志] *///TIM_ClearFlag(TIM3, TIM_FLAG_Update);STM32_Tim3_Regs->sr.bit.UIF=0; //更新中断标记由软件清0 ,例如当上溢或下溢时,软件对CNT重新初始化/* PWM1 Mode configuration: Channel1 Channel2 *///TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//TIM_OC1Init(TIM3, &TIM_OCInitStructure);// timer3 的通道1 是 PC6 引脚, AFIO完全映射STM32_Tim3_Regs-&1P=0; // 输入/捕获1输出极性 0:OC1高电平有效 1:OC1低电平有效STM32_Tim3_Regs-&1E=1; // 输入/捕获1输出使能 1:开启- OC1信号输出到对应的输出引脚。
stm32中定时器产生不同PWM的基本思路

在stm32中利用定时器TIM调制PWM的几种方法:说说我的学习经历:从开始接触到现在有好几个月了,但是学习还是比较的费劲,而且速度也比较的缓慢,当然相比之前还是有很大的进步,记得刚刚学习的时候,建工程都是大四学长手把手教的。
废话不多说先来讲讲定时器的配置:STM32F10系列最少3个、做多有8个定时器,都是16位定时器,且相互之间是独立的,计数范围为0x0000-0xffff,最大计数值为65535.可以用于测量输入信号的脉冲长度或者产生输出波形(输出比较和PWM)分为通用定时器,高级定时器,以及看门狗定时器下面主要讲通用定时器的配置问题:以定时器TIM1为例:先进行函数的配置void timer1_config(){TIM_TimeBaseInitTypDef TIM_TimeBaseStructure;//开定时器1外设时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM1,ENABLE);//计时50000次时间为50000/10M=500msTIM_TimeBaseStructure.TIM_Period=50000 ;TIM_TimeBaseStructure.TIM_Prescaler = 720-1;//720分频TIM_TimeBaseStructure.TIM_ClockDivision =0;//时钟分割为0;//计数模式向上计数TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure)//初始化TIM1TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);//开启定时器中断TIM_Cmd(TIM1,ENABLE); //使能定时器}关于时间的计算问题:外设系统时钟的频率为72M,进行720分频以后,频率f=72M/720=100khz. 如果要定时0.1s则计数值为10000,计算公式为:时间(t)=计数值(n)/频率(f).注意计数值n介于0到65535之间有定时器则一定会有中断发生,所以要配置中断优先级,对于中断优先级函数配置如下:V oid nvic_config(){NVIC_InitTypDef NVIC_InitStructure;//抢占优先级为1位,从优先级为3位NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ;NVIC_InitStructure.NVIC_IRQChannel=TIM1_IRQn; //定义定时器1为请求通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; //抢占式优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority=2; //从优先级为2NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断优先级NVIC_Init(&NVIC_InitStructure); //初始化中断}对于优先级中的抢占式和从优先级做如下解释:抢占式优先级:是可以抢占的中断,比如正在执行的优先级为10的中断,突然来了一个优先级为5的中断,此时cpu会转向优先级为5的中断;从优先级:从优先级不会抢占正在执行的中断程序,但是如果两个事件同时发生,那么cpu 会执行优先级高的事件,但是已经执行就不会再更改了,即使优先级比正在执行的高,这正好和抢占式优先级不同,抢占式优先级不论程序是否在执行,只要现在发生的中断优先级比正在执行的要高,就会更改。
使用STM32的定时器产生两路相位互为180度的PWM输出波形

④计数器继续向下计数,减到0时开始调头向上计数;当计数器的数值上升到TIMx_CC2时,CC2再次匹配成功,CC2的输出电平再次翻转;
如此循环,得到连续的相位互为180度的两路输出波形。
基本设置如下:
1)配置定时器的计数器为中间对齐计数,即先向上计数再向下计数。
2)在该定时器上选择2个通道,并分别配置为输出比较模式,并配置在比较成功时翻转对应的引脚输出。
3)配置自动重装载寄存器TIMx_ARR为要求输出频率的一半。
4)假定CC1为第一个输出信号的通道,再假定第一个信号的正脉冲宽度对应为W1,则配置TIMx_CCR1为TIMx_ARR-W1/2。
5) 同4),假定CC2为第二个输出信号的通道,正脉冲宽度对应为W2,配置TIMx_CCR2为W2/2。
----------------------------------------------
下面以一个例子说明:
假设要求输出的信号频率为10kHz,占空比为1:3。
再假设定时器的输入时钟为72MHz。
按照上述5),设置TIMx_CC2=W2/2=450
参照下图,图中红线表示计数器的数值变化:
①当计数器的数值从0向上计数,达到TIMx_CC1时,CC1匹配成功,CC1的输出电平翻转;
②计数器继续向上计数,达到TIMx_ARR时开始调头向下计数;当计数器的数值下降到TIMx_CC1时,CC1再次匹配成功,CC1的输出电平再次翻转;
输出信号的频率10kHz,换算为计数器的数值为7200。
按照上述电平时间W1,换算为计数器的数值为W1=7200/4=1800
基于寄存器操作的STM32高级定时器TIM1的四路PWM输出程序讲解

基于寄存器操作的STM32高级定时器TIM1的四路PWM输出程序讲解STM32高级定时器TIM1具有四个独立的PWM输出通道,可以用来控制四个不同的设备或驱动器。
在本篇文章中,我们将详细讲解如何使用寄存器操作实现TIM1的四路PWM输出。
首先,需要了解几个相关的概念。
STM32的定时器是通过寄存器进行配置和操作的,其中TIM1是高级定时器,具有更高级的功能和更多的寄存器。
PWM(脉冲宽度调制)是一种常见的控制技术,可实现模拟信号的数字化控制,通过调整高电平和低电平的时间比例来控制目标设备或驱动器的动作。
在开始编写程序之前,我们首先需要对TIM1进行初始化和配置。
以下是一个基本的初始化函数示例:```void TIM1_PWM_Init//开启TIM1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//初始化TIM1的配置TIM_TimeBaseInitTypeDef TIM_BaseStruct;TIM_OCInitTypeDef TIM_OCStruct;TIM_BaseStruct.TIM_Prescaler = 0;TIM_BaseStruct.TIM_CounterMode = TIM_CounterMode_Up;TIM_BaseStruct.TIM_Period = 999; // 设置周期为1000TIM_BaseStruct.TIM_ClockDivision = TIM_CKD_DIV1;TIM_BaseStruct.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_BaseStruct);//配置输出比较通道TIM_OCStruct.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCStruct.TIM_OutputState = TIM_OutputState_Enable;TIM_OCStruct.TIM_Pulse = 0; // 设置脉冲宽度,0表示低电平TIM_OCStruct.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OC1Init(TIM1, &TIM_OCStruct);TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);TIM_OC2Init(TIM1, &TIM_OCStruct);TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);TIM_OC3Init(TIM1, &TIM_OCStruct);TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);TIM_OC4Init(TIM1, &TIM_OCStruct);TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);//启动定时器TIM_Cmd(TIM1, ENABLE);```上述代码是一个初始化TIM1的函数示例,其中包含了基本的配置步骤。
STM32HAL库学习系列第4篇定时器TIM-----开始定时器与PWM输出配置

STM32HAL库学习系列第4篇定时器TIM-----开始定时器与PWM输出配置基本流程:1.配置定时器2.开启定时器3.动态改变pwm输出,改变值HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);函数总结:1 __HAL_TIM_SET_COMPARE()// 是设置CCRx,⼀般是⽤在PWM输出的,控制PWM占空⽐2 __HAL_TIM_GET_COMPARE // 是⽤来读取CCRx的,⼀般⽤于捕获处理PWM输出配置:频率设置:1static void MX_TIM2_Init(void)2 {3 TIM_MasterConfigTypeDef sMasterConfig;4 TIM_IC_InitTypeDef sConfigIC;5 TIM_OC_InitTypeDef sConfigOC;6 htim2.Instance = TIM2;7 htim2.Init.Prescaler = (36-1); //实际时钟频率为 72M/36=2MHz /40000=50H,-----490HZ,改变观察电机输出状态定时器预分频器8 htim2.Init.CounterMode = TIM_COUNTERMODE_UP;9 htim2.Init.Period = (4082-1); //定时器周期配置 PWM频率为 490KHz 定义定时器周期,PWM频率为:168MHz/ (L298N_TIMx_PRESCALER+1)/ (L298N_TIM_PERIOD+1)10//⾼级定时器重复计数寄存器值11 **⾼级才有12// 定义⾼级定时器重复计数寄存器值13//实际PWM频率为:72MHz/(L298N_TIMx_PRESCALER+1)/(L298N_TIM_PERIOD+1)/(L298N_TIM_REPETITIONCOUNTER+1)14#define L298N_TIM_REPETITIONCOUNTER 015 **刹车和死区配置:1/* 刹车和死区时间配置 */2 sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;3 sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;4 sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;5 sBreakDeadTimeConfig.DeadTime = 0;6 sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;7 sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;8 sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;9 HAL_TIMEx_ConfigBreakDeadTime(&htimx_L298N, &sBreakDeadTimeConfig);基于通信的pwm频率和脉宽的更新控制算法:1/*2** pwm是否需要更新,⽐较上⼀次的频率和脉宽值,如果不同,则更新3*/4void pwm_update_loop( void )5 {6/*1,第⼀路判断: 频率或占空⽐发⽣变化 */7if( (HLM_SOKO_I_FREQ != HLM_SOKO_I_FREQ_LAST ) ||8 HLM_SOKO_I_DUTY != HLM_SOKO_I_DUTY_LAST )9 {10/* 更新频率和占空⽐的记录值 */11 HLM_SOKO_I_FREQ_LAST = HLM_SOKO_I_FREQ;12 HLM_SOKO_I_DUTY_LAST = HLM_SOKO_I_DUTY;13/* 更新当前通道的PWM波形 */14 pwm_update( PWM_I,HLM_SOKO_I_FREQ, HLM_SOKO_I_DUTY );15 }1617/*2,第⼆路判断 */18if( (HLM_SOKO_II_FREQ != HLM_SOKO_II_FREQ_LAST ) ||19 HLM_SOKO_II_DUTY != HLM_SOKO_II_DUTY_LAST )20 {21/* 更新频率和占空⽐的记录值 */22 HLM_SOKO_II_FREQ_LAST = HLM_SOKO_II_FREQ;23 HLM_SOKO_II_DUTY_LAST = HLM_SOKO_II_DUTY;24/* 更新当前通道的PWM波形 */25 pwm_update( PWM_II,HLM_SOKO_II_FREQ, HLM_SOKO_II_DUTY );26 }2728/*3,第三路判断 */29if( (HLM_SOKO_III_FREQ != HLM_SOKO_III_FREQ_LAST ) ||30 HLM_SOKO_III_DUTY != HLM_SOKO_III_DUTY_LAST )31 {32/* 更新频率和占空⽐的记录值 */33 HLM_SOKO_III_FREQ_LAST = HLM_SOKO_III_FREQ;34 HLM_SOKO_III_DUTY_LAST = HLM_SOKO_III_DUTY;35/* 更新当前通道的PWM波形 */36 pwm_update( PWM_III,HLM_SOKO_III_FREQ, HLM_SOKO_III_DUTY );37 }38 }补充:开起定时器功能只要在相应的定时器下开始内部时钟源即可使⽤定时器功能定时器内部动能:定时器时钟配置:M是10的6次⽅微秒是10的-6次⽅内部时钟设置为不分频(CKD),则CK_PSC的时钟频率等于APB1的时钟频率108MHz,即108000 000Hz。
STM32 TIMER 产生PWM的具体操作方法

定时器的配置定时器用于PWM脉冲输出时的配置:(1)首先定义一个TIM_TimeBaseInitTypeDef的结构体变量用于配置TIME时基如下:TIM_TimeBaseInitTypeDefTIME_BaseConstructure;(2)再定义一个TIM_OCInitTypeDef的结构体变量用于配置定时器输出模式如下:TIM_OCInitTypeDefTIM_OCInitStructure;(3)调用定时器初始化函数将定时器初始化到默认模式如下:TIM_DeInit(TIMx);(4)配置TIME时基下的四个参数①TIM_Period即定时周期实际上是存储到重载寄存器TIMx_ARR的数值M;②TIM_Prescaler即对定时器时钟TIMx_CLK的预分频值也就是定时器时钟频率除以该值(N+1)③TIM_ClockDivision即时钟分频因子,使用内部时钟时配置为0,使用外部时钟可以配置为1,2,4用来对外部时钟进行滤波④TIM_CounterMode用来为脉冲计数器的计数模式,(有向上计数,向下计数,中央对齐模式);(5)填充好上面的配置参数后调用TIM_TimeBaseInit(TIMx,&TIME_BaseConstructure);把这些控制参数写到寄存器中,这样定时器时钟配置就基本完成了。
(6)现在开始配置定时器输出模式参数①TIM_OCMode:输出模式配置,总共6种模式参考资料选择(TIM_OCMode_Timing 输出比较时间模式,TIM_OCMode_Activ输出比较主动模式,TIM_OCMode_Inactive输出比较非主动模式,TIM_OCMode_Toggle 输出比较触发模式,TIM_OCMode_PWM1 向上计数时,当TIMx_CNT <TIMx_CCR*时,输出电平有效,否则为无效,向下计数时,当TIMx_CNT > TIMx_CCR*时,输出电平无效,否则为有效,TIM_OCMode_PWM2 与PWM1模式相反)②TIM_OutputState:(TIM_OutputState_Disable禁止OC*输出,TIM_OutputState_Enable 开启OC*输出到对应引脚)③TIM_OutputNState:(互补输出同上)④TIM_Pulse:(该成员值即为比较寄存器TIMx-CCR的数值,当脉冲计数器TIMx-CNT与TIMx-CCR的比较结果发生变化时,输出脉冲将发生变化)⑤TIM_OCPolarity:(有效电平的极性)⑥TIM_OCNPolarity:(有效电平的极性)⑦TIM_OCIdleState:(TIM_OCIdleState_Set 当MOE=0时,如果实现了OC*N,则死区后OC*=1,TIM_OCIdleState_Reset 当MOE=0时,如果实现了OC*N,则死区后OC*=0)⑧TIM_OCNIdleState:(同上) 注意:通过配置TIM_OutputState和TIM_OutputNState可使能或者失能主输出和互补输出,如果二路的极性配置(OCPolarity和OCNPolarity)相同,则输出互补;如果输出极性配置相反,则二路输出相同。
STM32的PWM精讲

第 2 章 STM32 处理器概述 STM32F103xx 增强型系列产品中内置了多达 3 个同步的标准定时器。每个定 时
器都有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个 独立的 通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出, 在最大的 封装配置中可提供最多 12 个输入捕获、输出比较或 PWM 通道。它们还 能通过定时器 链接功能与高级控制定时器共同工作,提供同步或事件链接功能。
它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术其控制简单灵活和动态响应好等优点而成为电力电子技术最广泛应用的控制方式其应用领域包括测量通信功率控制与变换电动机控制伺服控制调光开关电源甚至某些音频放大器因此研究基于pwm技术的正负脉宽数控调制信号发生器具有十分重要的现实意义
STM32 的 PWM 精讲
器中的计数器使能位(CEN)时,CK_CNT 才有效。(有关更多的计数器使能的 细节,请参见控制器的从模式描述)。
注:真正的计数器使能信号 CNT_EN 是在 CEN 后的一个时钟周期后被设置。 预分 频器描述 。
预分频器可以将计数器的时钟频率按 1 到 65536 之间的任意值分频。它是
stm32pwm初始化函数详解

stm32pwm初始化函数详解标题:STM32 PWM初始化函数详解摘要:本文将深入探讨STM32 PWM初始化函数的各个方面,包括工作原理、配置参数、常用的初始化函数和实际应用场景。
通过对这些内容的全面解析,读者将能够更好地理解和使用STM32 PWM模块,从而实现各种应用需求。
引言:作为嵌入式系统中常见的功能模块之一,PWM(脉宽调制)在许多电子设备和项目中起着至关重要的作用。
针对STM32系列微控制器,其具备强大的PWM功能,提供了灵活多样的配置选项。
本文将详细介绍STM32 PWM初始化函数的各个方面,包括工作原理、配置参数、相关函数和实际应用案例。
一、PWM工作原理在开始了解STM32 PWM初始化函数之前,我们先对PWM的工作原理进行简要说明。
PWM信号由周期性的脉冲构成,其脉冲宽度决定了信号的占空比。
通过改变占空比,可以调节输出信号的平均电平或功率。
在STM32微控制器上,PWM输出通常用于驱动电机、LED灯和产生音频信号等。
二、PWM初始化参数在配置STM32 PWM模块之前,我们需要了解一些常用的初始化参数。
这些参数包括:1. 定时器选择:选择相应的定时器单元,用于产生PWM信号。
2. PWM通道选择:选择使用哪些PWM通道作为输出。
3. 周期设置:设置PWM信号的周期长度。
4. 脉冲宽度设置:设置PWM信号的占空比。
5. 触发信号设置(可选):设置外部触发事件来控制PWM信号的开始和结束时间。
三、常用的PWM初始化函数以下是一些常用的STM32 PWM初始化函数:1. TIM_TimeBaseInit():用于配置定时器的基本参数,如时钟分频、计数模式和周期长度等。
2. TIM_OCInitStructure():用于配置PWM输出通道的工作模式和占空比等。
3. TIM_ARRPreloadConfig():用于使能或禁用周期寄存器预装载功能。
4. TIM_OCxPreloadConfig():用于使能或禁用PWM输出通道的预装载功能。
STM32中的PWM的频率和占空比的设置

STM32 中的PWM 的频率和占空比的设置下面的这个是STM32 的定时器逻辑图,上来有助于理解:
TIM3 的ARR 寄存器和PSC 寄存器,确定PWM 频率。
这里配置的这两个定时器确定了PWM 的频率,我的理解是:PWM 的周期(频率)就是ARR 寄存器值与PSC 寄存器值相乘得来,但不是简单意义上的相乘,例如要设置PWM 的频率参考上次通用定时器中设置溢出时间的算法,例如输出100HZ 频率的PWM,首先,确定TIMx 的时钟,除非APB1 的时钟分频数设置为1,否则通用定时器TIMx 的时钟是APB1 时钟的2 倍,这时的TIMx 时钟为72MHz,用这个TIMx 时钟72MHz 除以(PSC+1),得到定时器每隔多少秒涨一次,这里给PSC 赋7199,计算得定时器每隔0.0001 秒涨一次,即此时频率为10KHz,再把这个值乘以(ARR+1)得出PWM 频率,假如ARR 值为0,即0.0001*(0+1),则输出PWM 频率为10KHz,再假如输出频率为100Hz 的PWM,则将ARR 寄存器设置为99 即可。
如果想调整PWM 占空比精度,则只需降低PSC 寄存器的值即可。
TIMx_CCRx 寄存器,确定PWM 的占空比。
TIMx_CCR1TIMx_CCR4 确定定时器的CH1CH4 四路PWM 的占空比。
直接给该寄存器赋065535 值即可确定占空比。
占空比计算方法:TIMx_CCRx 的值除以ARR 寄存器的值即为占空比,因为占空比在0100%之间,所以一。
STM32学习笔记(5):通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出1.TIMER输出PWM基本概念脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
简单一点,就是对脉冲宽度的控制。
一般用来控制步进电机的速度等等。
STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM 输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。
1.1PWM输出模式STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。
模式1和模式2的区别如下:110:PWM模式1-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
111:PWM模式2-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电平。
由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。
而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。
1.2PWM输出管脚PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7定时器复用功能重映射”一节。
在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。
基于寄存器操作的STM32高级定时器TIM1的四路PWM输出程序讲解

基于寄存器操作的STM32高级定时器TIM1的四路PWM输出程序讲解经过一天的努力,终于把stm32tim1的四路pwm输出搞了出来,为了使大家快速的用起tim1,打算写这篇文档与大家分享。
stm32tim1功能丰富。
针对pwm输出与tim2只有细小的差别,之前在网上找了一些网友的程序,发现大部分都是基于库文件写的,不能对tim1的pwm输出有深层次的理解,个人认为一个合格的程序员,想要最大程度的用好一个片子的话还是要针对寄存器直接操作,完全了解定时器的运行过程,可以对片子的结构有一定的了解。
高级掌控定时器(tim1和tim8)由一个16位的自动装载计数器共同组成,它由一个可编程的预分频器驱动。
它适宜多种用途,涵盖测量输出信号的脉冲宽度(输出捕捉),或者产生输入波形(输入比较、pwm、内嵌死去区时间的优势互补pwm等)。
采用定时器进度表分频器和rcc时钟掌控进度表分频器,可以同时实现脉冲宽度和波形周期从几个微秒至几个毫秒的调节。
高级控制定时器(tim1和tim8)和通用定时器(timx)是完全独立的,它们不共享任何资源。
恳请读者仔细阅读一下信息:脉冲宽度调制模式可以产生一个由timx_arr寄存器确定频率、由timx_ccrx寄存器确定占空比的信号。
在timx_ccmrx寄存器中的ocxm位写入’110’(pwm模式1)或’111’(pwm模式2),能够独立地设置每个ocx输出通道产生一路pwm。
必须通过设置timx_ccmrx寄存器的ocxpe位使能相应的预装载寄存器,最后还要设置timx_cr1寄存器的arpe位,(在向上计数或中心对称模式中)使能自动重装载的预装载寄存器。
仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置timx_egr寄存器中的ug位来初始化所有的寄存器。
ocx的极性可以通过软件在timx_ccer寄存器中的ccxp位设置,它可以设置为高电平有效或低电平有效。
STM32直流电机控制程序简明教程

STM32直流电机控制程序简明教程
STM32是一款功能强大的微控制器,可以用于控制各种外设,例如直流电机。
在本教程中,我们将介绍如何使用STM32控制直流电机。
本教程面向有一定STM32开发经验的开发者。
以下是实现电机控制的基本步骤:
1.硬件连接:首先,将STM32与直流电机连接起来。
一般来说,直流电机有两个引脚,一正一负,以控制运动的方向。
将这两个引脚与STM32的GPIO引脚连接,并确保引脚的方向正确。
2. 配置GPIO引脚:使用STM32的开发工具,如Keil或
STM32CubeIDE,配置GPIO引脚。
将引脚配置为输出模式,并设置为默认状态下关闭电机。
3.配置定时器:使用STM32的定时器来生成PWM信号以控制电机的速度。
配置定时器的时基和计数值,以获得所需的PWM频率。
4.生成PWM信号:设置定时器的通道和占空比,以生成PWM信号。
根据电机的要求,设置合适的占空比来控制电机的转速。
5.控制电机方向:根据需要,将GPIO引脚设置为高电平或低电平,以确定电机的运动方向。
6.启动电机:启动定时器,开始生成PWM信号。
此时,电机将按照所设定的方向和速度运动。
7.监控电机状态:使用STM32的输入捕获功能,可以读取电机的实际转速或电流等信息。
根据需要,可以对电机进行实时监控和调整。
8.程序优化:通过调整PWM频率、占空比和电机控制算法等参数,对电机控制程序进行优化,以实现更好的控制效果。
用STM32定时器中断产生PWM控制步进电机

⽤STM32定时器中断产⽣PWM控制步进电机控制步进电机可以使⽤PWM、定时器中断、延时,这⾥⽤的就是定时器中断来让它转动。
⼀、硬件部分1.使⽤的硬件板⼦⽤的是正点原⼦的STM32F103 mini板,驱动器是DM420(DM420驱动器资料),⽤开关电源供电,电机就是普通的42步进电机,步距⾓为1.8°,虽然按照图⽚来看它是个蠕动泵。
如下图2.硬件连接PUL+——PB0,脉冲输⼊DIR+——PB1,⽅向使能ENA+——PB2,脱机使能,共阴极接法的话,输⼊低电平,让它⽆效。
这⾥连接驱动器采⽤共阴极接法,如图3.总硬件连接图⼆、控制步进电机转动 想让它转,简单的说就是⾼电平,低电平循环输⼊,产⽣脉冲,让它转动。
其转速与产⽣脉冲频率有关: arr:⾃动重装载寄存器的值 psc:定时器频率 α为步距⾓(1.8°),x为驱动器细分倍数(设置为2,也就是说转动⼀圈需要400个脉冲,每个脉冲转动0.9度) 脉冲频率 = Fck_int(72MHZ) / ((arr+1)*(psc+1)) 转速(r/min)= 脉冲频率 * 60 / ((360/α)*x)假如我将arr设置为100-1,psc设置为7200-1,则脉冲频率为100Hz,转速为15r/min.三、电机驱动代码 1.GPIO.h#ifndef __GPIO_H#define __GPIO_H#include "sys.h"#define LED0 PAout(8) // PA8,测试是否进⼊中断#define PUL PBout(0) //脉冲输出#define DIR PBout(1) //⽅向使能#define ENA PBout(2) //脱机使能void GPIO_Init(void);//端⼝初始化#endif 2.timer.c#include "timer.h"#include "led.h"void TIM3_Int_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能TIM_TimeBaseStructure.TIM_Period = arr;TIM_TimeBaseStructure.TIM_Prescaler =psc;TIM_TimeBaseStructure.TIM_ClockDivision = 0;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //初始化TIMx的时间基数单位TIM_ITConfig(TIM3,TIM_IT_Update ,ENABLE);NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure); //初始化外设NVIC寄存器TIM_Cmd(TIM3, ENABLE); //使能TIMx外设}void TIM3_IRQHandler(void){if(TIM_GetITStatus(TIM3,TIM_IT_Update)!=RESET)//是否发⽣中断{PUL = !PUL;LED0 = !LED0;}TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除TIMx的中断待处理位:TIM 中断源} 3.main.c#include "GPIO.h"#include "delay.h"#include "sys.h"#include "timer.h"int main(void){NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);// 设置中断优先级分组2GPIO_Init(); //初始化连接的硬件接⼝ENA = 0; //脱机使能失效TIM3_Int_Init(99,7199);//72MHz / ((99+1)*(7199+1)) =100Hz while(1) { ; }}如果想要完整代码,可以下⽅评论区留下邮箱,我看到就会发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32 高级定时器-PWM简
单使用
高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。
共有4个通道有死区有互补。
先是配置IO脚:
GPIO_InitTypeDef
GPIO_InitStructure;
/* PA8设置为功能脚(PWM) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,
&GPIO_InitStructure);
/*PB13 设置为PWM的反极性输出*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB,
&GPIO_InitStructure);
/*开时钟PWM的与GPIO的*/
RCC_APB2PeriphClockCmd(RCC_A PB2Periph_TIM1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_A PB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_A PB2Periph_GPIOB, ENABLE);
/*配置TIM1*/
TIM_TimeBaseInitTypeDef
TIM_TimeBaseStructure;
TIM_OCInitTypeDef
TIM_OCInitStructure;
void Tim1_Configuration(void)
{
TIM_TimeBaseInitTypeDef
TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_DeInit(TIM1); //重设为缺省值
/*TIM1时钟配置*/
TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18K TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
TIM_TimeBaseStructure.TIM_Period =
144; //装载值18k/144=125hz 就是说向上加的144便满了
TIM_TimeBaseStructure.TIM_ClockDivision =
TIM_CKD_DIV1; //设置了时钟分割 不懂得不管 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值 不懂得不管
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructu re); //初始化TIMx 的时间基数单位
/* Channel 1 Configuration in PWM mode 通道一的PWM */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM 模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效 PA8 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效 PB13
TIM_OCInitStructure.TIM_Pulse = 40; //占空时间
144 中有40的时间为高,互补的输出正好相反
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态 不管
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管
TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx 通道1这里2.0库为TIM_OCInit
/* TIM1 counter enable 开定时器 */ TIM_Cmd(TIM1,ENABLE);
/* TIM1 Main Output Enable 使能TIM1外设
的主输出*/
TIM_CtrlPWMOutputs(TIM1,ENABLE); }
void SetT1Pwm1(u16 pulse) //设置捕获寄存器1
{
TIM1->CCR1=pulse; }
/*操作寄存器改变占空时间*/
/*****************************************************************************************************************
TIM1的定时器通道时间 1到4 分别为 PB8 PA9 PA10 PA11 而互补输出分别为 PB13 PB14 PB15
中止 PB12 。
如果输出与互补输出极性相同的话 就刚好
输出高 互补低 至于PWM 模式1 与模式2的区别
在下图:
这个是模式1的 了绿为输出 黄为互补
*************************************************************************************************
上图是模式2的情况 正好和模式1的反过来了 144中有40 为高 互补的有40为低。
*************************************************************************************************/
/************************************************************
**实验名称:PWM
**功能:是PA8产生PWM 输出,PA8为驱动LED1和马达的IO,
通过UP DOWN 键,可以改变占空比,从而让ED1和小马达的产生变化
**注意事项:LED 是低有效,马达则是高有效,所以LED 全灭的时候马达转速达到最高. **作者:电子白菜
*************************************************************/
#include "STM32Lib\\stm32f10x.h" #include "hal.h"
extern void SetT1Pwm1(u16 pulse); int main(void) {
u16 pulse=40;
ChipHalInit(); //片内硬件初始化 ChipOutHalInit(); //片外硬件初始化 for(;;) {
if(GET_UP()) {
while(GET_UP());
if(pulse<=144) {
pulse+=5;
SetT1Pwm1(pulse);
} }
if(GET_DOWN()) {
while(GET_DOWN()); if(pulse>30) {
pulse-=5;
SetT1Pwm1(pulse); } } } }。