三角函数1.1

合集下载

高中数学:三角函数 1.1任意角和弧度制 (3)

高中数学:三角函数 1.1任意角和弧度制 (3)

1.1.2 弧度制一、知识点1.角的度量:(1)角度制:把 规定为1度的角,记作1 ,这种用度做单位来度量角的单位制叫做角度制。

(2)弧度制: 叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

这种用弧度做单位来度量角的单位制叫做弧度制。

2.正角的弧度数是一个 ,负角的弧度数是一个 .零角的弧度数是 .3.若半径为r 的圆的圆心角α所对弧的长为l ,则=α 。

这里α的正负由角α的终边的旋转方向决定。

4.角度和弧度的互化:=0180 rad =01 rad ≈ rad =rad 1 ≈5.角与实数的对应关系:在弧度制下, 与 之间建立起一一对应的关系:每个角都有唯一的实数(即 )与它对应;反过来,每一个实数也都有(即 )与它对应。

6.扇形弧长公式:=l =扇形面积公式:=S = 。

二、例题知识点一 : 弧度制定义1.下列各命题中,真命题是( )A.一弧度就是一度的圆心角所对的弧 B .一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径的弧岁对的圆心角,它是角的一种度量单位2. 在半径不等的两个圆内,1弧度的圆心角( )A.所对的弧长相等B.所对的弦长相等C.所对的弧长等于各自的半径D.以上都不对知识点二: 角度制与弧度制的互化3.把下列角表示为另一种形式:(1)0300- (2)π58 (3)031120' (4)π125- (5) '15564. 把π411-表示成)(2Z k k ∈+πθ的形式,使θ最小的θ的值是( ) A.43π- B.4π- C.4π D.43π 5. 把下列各角化成),20(2Z k k ∈<≤+πααπ的形式,并指出它们是第几象限角(1)01500- (2)01485- (3)π2004 (4)6-6. 将分针拨慢十分钟,则分针所转过的弧度数是 ( ) A.3π B.3π- C.5π D.5π-7. 经过5小时25分钟,时钟的时针和分针各转过 度, 弧度。

专题三三角函数与三角变换

专题三三角函数与三角变换

专题三:三角函数与三角变换(附参考答案)1.高考要求解读1.1考纲要求:1.1.1三角函数 1.任意角、弧度制(1)了解任意角的概念和弧度制的概念 (2)能进行弧度与角度的互化。

2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义。

(2)能利用单位圆中的三角函数线推导出απαπ±±,2的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin ===的图像,了解三角函数的周期性。

(3)正确理解正弦函数、余弦函数在[]π2,0上的性质(如单调性、最大值和最小值、图像与x 轴的交点等),理解正切函数在⎪⎭⎫⎝⎛-2,2ππ内的单调性。

(4)理解同角三角函数的基本关系式:.tan cos sin ,1cos sin 22x xxx x ==+ (5)了解函数)sin(ϕω+=x A y 的物理意义;能画出函数)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响。

(6)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

1.1.2三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量出两角差的余弦公式。

(2)会用两角差的余弦公式推导出两角差的正弦、正切公式。

(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解他们的内在联系。

2.简单的三角恒等变换能运用上述公式进惊醒简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆)。

1.2考点解读1.2.1考情分析三角函数是高考的考查热点,命题的一般模式为一个选择题(或填空题)和一个解答题,其中选择题(填空题)一般多为基础题,解答题为中档题。

解答题多为三角函数与三角变换的综合问题或三角函数与其他知识的教会问题。

近年宁夏高考题,命题从三角函数与解三角形结合的问题出发命题的趋势明显。

高考中三角函数所占分值大约在10~14分之间。

数学必修4第一章三角函数

数学必修4第一章三角函数

第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。

必修四 第一章 三角函数 1.1.1任意角

必修四 第一章 三角函数 1.1.1任意角

练习
☼ 打开水龙头形成的角是正角吗? ☼ 经过两个小时,时针上的时针旋转了多少度?
是正角 -600
☼ 与-4630角终边相同的角是(
A、3600K+1030,K∈Z C、3600K+4630,K∈Z

B、3600K+2570,K∈ Z B D、3600K-2570,K∈Z
☼ 若α是第四象限角,则下列是第一象限角的是( ) A、α+1800 B、α+2700 C、α-1800 D、α-2700
0
终边相同的角
一般地,我们有: 所有与角α终边相同的角,连同角α在内,可构成一个集合 S={β|β=α+3600k,k∈Z}, 即任一与角α终边相同的角,都可以表示成角α与整个周角的 和。
☼ 一个具体的角,对应一个终边
☼ 一个终边对应无数个角,它们圈数、方向有区别
☼ 分两步确定一个角:代表角+方向和圈数
象限角
为了方便,我们将角放在直角坐标系中研究 ☼ 让角的“始边”与x轴“非负半轴”重合,那么,角的终边在第几象限,我们就说这个角是第 几“象限角(quadrant angle)”。 画出一个第二象限角 ☼ 象限角有几种? 四种,一、二、三、四象限角。 ☼ 直角坐标系内,只有象限角吗?
终边落在坐标轴上时——轴角。
生活中的角
你能举出生活中超过360o的例子吗?
用什么来区分 这种不同方向 的角呢? 顺时针 逆时针
角的概念推广
通过刚才的试验,我们发现:要准确的描述角,除了给定 大小,还需要给定方向! 正角(positive angle):按逆时针方向旋转形成的角 负角(negative angle):按顺时针方向旋转形成的角 零角(zero angle):一条射线没作任何旋转

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。

三角函数(1、2)

三角函数(1、2)

三角函数1.1任意角和弧度制1.任意角的概念(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

(2)正角:按逆时针方向旋转形成的角。

(3)负角:按顺时针方向旋转形成的角。

(4)零角:一条射线没有作任何旋转,我们称它为零角。

(5)注意:①角度的范围不再限于0°~360°。

②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转方向,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性。

③当角的始边相同,角相等则终边相同;终边相同,而角不一定相等。

④为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记为“α”。

⑤我们把角的概念推广到了任意角中,包括正角、负角和零角。

⑥要正确理解正角、负角和零角的概念,由定义可知,关键是抓住终边的旋转方向是逆时针、顺时针还是没有转动。

(6)①判定与任意角有关命题的真假的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向。

②确定任意角的度数要抓住旋转方向及旋转圈数。

③引入正、负角的概念以后,角的加减运算类似于实数的加减运算。

2.象限角与轴线角(1)使角α的顶点与原点重合,始边与x轴正半轴重合,终边落在第几象限,则称角α为第几象限的角;终边落在坐标轴上的角α被称为轴线角。

(2)象限角的集合第一象限角的集合为{x|k²360°<x<k²360°+90°,k∈Z};第二象限角的集合为{x|k²360°+90°<x<k²360°+180°,k∈Z};第三象限角的集合为{x|k²360°+180°<x<k²360°+270°,k∈Z};第四象限角的集合为{x|k²360°+270°<x<k²360°+360°,k∈Z}。

浙教版数学九年级下册《1.1 锐角三角函数》教案1

浙教版数学九年级下册《1.1 锐角三角函数》教案1

浙教版数学九年级下册《1.1 锐角三角函数》教案1一. 教材分析《1.1 锐角三角函数》是浙教版数学九年级下册的第一节内容。

本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。

通过本节课的学习,使学生了解锐角三角函数的概念,理解锐角三角函数的性质,培养学生运用锐角三角函数解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了二次函数、相似三角形等知识,具备了一定的函数观念和几何知识。

但对于锐角三角函数的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

三. 教学目标1.了解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义。

2.理解锐角三角函数的性质,能够运用锐角三角函数解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.重点:锐角三角函数的定义及性质。

2.难点:锐角三角函数的应用。

五. 教学方法1.采用问题驱动法,引导学生探究锐角三角函数的定义和性质。

2.利用几何画板等软件,直观展示锐角三角函数的图形,帮助学生理解。

3.通过实例和练习,让学生运用锐角三角函数解决实际问题。

六. 教学准备1.准备相关课件和教学素材。

2.准备几何画板等软件,用于展示图形。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾二次函数、相似三角形等知识,为新课的学习做好铺垫。

然后,教师给出一个实际问题,如“在直角三角形中,如何求解一个锐角的正弦、余弦、正切值?”引发学生的思考,进而引入本节课的主题。

呈现(10分钟)教师通过课件或板书,呈现锐角三角函数的定义及性质。

首先,介绍正弦、余弦、正切函数的定义;然后,解释锐角三角函数的性质,如单调性、周期性等。

同时,教师可以通过几何画板展示锐角三角函数的图形,帮助学生直观理解。

操练(10分钟)教师给出一些练习题,让学生运用所学知识进行解答。

题目包括填空题、选择题、解答题等,涉及锐角三角函数的定义、性质、计算等方面。

高中数学 必修四 1.1.1任意角和弧度制

高中数学  必修四 1.1.1任意角和弧度制
36
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.

三角变换所有公式大全

三角变换所有公式大全

三角变换所有公式大全三角变换是数学中重要的概念,用于描述和分析三角函数的性质和变化规律。

本文将全面介绍三角变换中的所有主要公式,包括三角函数的和差化积、倍角化积、半角的公式等。

1. 三角函数的和差化积公式:1.1 正弦函数的和差化积公式:sin(A ± B) = sin A cos B ± cos A sin B1.2 余弦函数的和差化积公式:cos(A ± B) = cos A cos B ∓ sin A sin B1.3 正切函数的和差化积公式:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)2. 三角函数的倍角化积公式:2.1 正弦函数的倍角化积公式:sin 2A = 2 sin A cos A2.2 余弦函数的倍角化积公式:cos 2A = cos² A - sin² A = 2 cos² A - 1 = 1 - 2 sin² A2.3 正切函数的倍角化积公式:tan 2A = (2 tan A) / (1 - tan² A)3. 三角函数的半角公式:3.1 正弦函数的半角公式:sin(A/2) = ±√[(1 - cos A) / 2]3.2 余弦函数的半角公式:cos(A/2) = ±√[(1 + cos A) / 2]3.3 正切函数的半角公式:tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]4. 三角函数的辅助角公式:4.1 正弦函数的辅助角公式:sin(π - A) = sin Asin(π + A) = -sin Asin(π/2 - A) = cos Asin(π/2 + A) = cos A4.2 余弦函数的辅助角公式:cos(π - A) = -cos Acos(π + A) = -cos Acos(π/2 - A) = sin Acos(π/2 + A) = -sin A4.3 正切函数的辅助角公式:tan(π - A) = -tan Atan(π + A) = tan Atan(π/2 - A) = 1/tan Atan(π/2 + A) = -1/tan A5. 三角函数的和差化积反函数公式:5.1 正弦函数的和差化积反函数公式:sin A + sin B = 2 sin((A + B)/2) cos((A - B)/2)sin A - sin B = 2 cos((A + B)/2) sin((A - B)/2)5.2 余弦函数的和差化积反函数公式:cos A + cos B = 2 cos((A + B)/2) cos((A - B)/2)cos A - cos B = -2 sin((A + B)/2) sin((A - B)/2)5.3 正切函数的和差化积反函数公式:tan A + tan B = sin(A + B) / (cos A cos B)tan A - tan B = sin(A - B) / (cos A cos B)这些公式是三角变换中的基本工具,可以用于简化三角函数的计算和表达。

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解一、三角函数1.1 定义:三角函数是用来描述直角三角形各个边与角度之间关系的函数。

1.2 基本三角函数:(1)正弦函数(sin):正弦函数是直角三角形中对边与斜边的比值,即sinθ = 对边/斜边。

(2)余弦函数(cos):余弦函数是直角三角形中邻边与斜边的比值,即cosθ = 邻边/斜边。

(3)正切函数(tan):正切函数是直角三角形中对边与邻边的比值,即tanθ = 对边/邻边。

(4)余切函数(cot):余切函数是直角三角形中邻边与对边的比值,即cotθ = 邻边/对边。

(5)正割函数(sec):正割函数是直角三角形中斜边与邻边的比值,即secθ = 斜边/邻边。

(6)余割函数(csc):余割函数是直角三角形中斜边与对边的比值,即cscθ = 斜边/对边。

1.3 三角函数的性质:(1)周期性:三角函数具有周期性,周期为360°或2π。

(2)奇偶性:正弦函数、余弦函数和正切函数为奇函数,余切函数、余割函数为偶函数。

(3)对称性:正弦函数、余弦函数、正切函数关于y轴对称,余切函数、余割函数关于x轴对称。

二、三角变换2.1 三角函数的基本变换:(1)和差变换:两个角的和(差)的三角函数可以通过两个角的三角函数的和(差)来表示。

(2)倍角公式:一个角的倍数的三角函数可以通过该角的三角函数的加减来表示。

(3)半角公式:一个角的半倍的三角函数可以通过该角的三角函数的平方根来表示。

2.2 三角函数的图像和性质:(1)正弦函数:图像为波浪线,性质有:周期性、奇偶性、对称性等。

(2)余弦函数:图像为水平线,性质有:周期性、奇偶性、对称性等。

(3)正切函数:图像为斜线,性质有:周期性、奇偶性、对称性等。

3.1 三角函数在实际生活中的应用:(1)测量学:利用三角函数测量物体的高度、距离等。

(2)工程学:利用三角函数计算结构的稳定性、角度等。

(3)物理学:利用三角函数描述波动、振动等现象。

1.1.锐角三角函数1(正切)

1.1.锐角三角函数1(正切)

A的对边 即 tanA= A的邻边
A tan ['tændʒənt]
∠A的对边
┌ ∠A的邻边 C
tan: tan jin ta
2014.12
定义中应该注意的几个问题: 1.tanA是在直角三角形中定义的,∠A是一个锐角(注意数形结 合,构造直角三角形). 2.tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号 ;
BC tan A AC BC 5 AC 12 tan A 5 12 AB BC2 AC 2 5 2 12 2 13
2014.12
数学理解
3.观察你的学校、你家或附近的楼梯,哪个更陡?
2014.12
课堂小结
B
在Rt△ABC中,如果锐角A确定,那 么∠A的对边与邻边的比随之确定, ∠A的对边 这个比叫做∠A的正切,记作tanA ┌ A的对边 A ∠A的邻边 C 即 tanA=
B2
A
C2
C1
2014.12
议一议
如图,正切也经常用来描述山坡的坡度.例如,有 一山坡在水平方向上每前进100m就升高60m,那么 山坡的坡度i (即tanα)就是:
60 3 i tan . 100 5 坡面与水平面的夹角(α)称为坡角, 坡面的铅直高度与水平宽度的比称 为坡度i(或坡比),即坡度等于坡角的 正切.
B1C1 B 2C2 AC1 AC2
∴Rt△AC1B1∽Rt△AC2B2
B1
B2
B3 A C3
C2
C1
∠A值不变的情况下,从任何位置测出的梯子的铅垂高 度与梯子底部与墙的水平距离的比值一定
2014.12
在Rt△ABC中,如果锐角A确定,那么∠A的对边与 邻边的比随之确定,这个比叫做∠A的正切(tangent), 记作tanA B

1.1锐角三角函数第1课时正切(教案)

1.1锐角三角函数第1课时正切(教案)
首先,关于导入新课环节,通过提问方式引导学生思考日常生活中的实际问题时,我发现大部分学生对此表现出浓厚的兴趣。这说明贴近生活的实例能够激发学生的学习兴趣,有助于他们更好地投入课堂学习。在以后的教学中,我将继续寻找更多生活化的例子,让学生感受到数学知识的实用价值。
其次,在新课讲授环节,我发现学生在理解正切函数定义和计算公式时,还存在一定的困难。这说明对于基础概念和公式的讲解,还需要更加细致和生动。在今后的教学中,我可以尝试使用更多的教具和实物,帮助学生形象地理解正切函数的定义和计算方法。
3.重点难点解析:在讲授过程中,我会特别强调正切函数的定义和计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,通过不同角度的正切值计算,让学生看到正切值随角度变化的规律。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正切函数相关的实际问题,如测量树的高度或建筑物的高度。
突破方法:总结记忆技巧,如“正切等于对边除邻边”,并通过大量练习巩固记忆。
(3)实际问题的解决:学生面对实际问题,不知如何运用正切函数建立数学模型。
突破方法:提供丰富的实际问题案例,引导学生学会分析问题、建立数学模型,并逐步解决问题。
(4)正切函数的性质:学生对正切函数随角度变化的规律理解不深,难以把握其性质。
1.1锐角三角函数第1课时正切(教案)
一、教学内容
本节课选自《数学》八年级上册第十一章“锐角三角函数”的第一课时,主要内容为正切函数的定义及应用。具体内容包括:
1.理解正切函数的概念:通过观察直角三角形的对边与邻边的比值,引出正切函数的定义。
2.掌握正切函数的表示方法:利用直角三角形的边长关系,推导出正切函数的计算公式,即tanα =对边/邻边。

2016高中数学 精讲优练课型 第一章 三角函数 1.1.1 任意角

2016高中数学 精讲优练课型 第一章 三角函数 1.1.1 任意角

B.y轴的非负半轴上
C.x轴的非正半轴上
D.y轴的非正半轴上
【解题指南】由角α,β的终边相同可得,α= k·360°+
β(k∈Z),由此可求α-β并得到其终边位置.
【解析】选A.因为角α,β的终边相同, 所以α=k·360°+β(k∈Z), 所以α-β=k·360°(k∈Z), 所以α-β的终边在x轴的非负半轴上.
【拓展延伸】终边落在坐标轴上的角的集合表示
角的终边的位置 终边落在x轴的非负半轴上 终边落在x轴的非正半轴上 终边落在y轴的非负半轴上 终边落在y轴的非正半轴上 终边落在y轴上 终边落在x轴上 终边落在坐标轴上
集合表示 {α |α =k·360°,k∈Z} {α |α =180°+k·360°,k∈Z} {α |α =90°+k·360°,k∈Z} {α |α =270°+k·360°,k∈Z} {α |α =90°+k·180°,k∈Z} {α |α =k·180°,k∈Z} {α |α =k·90°,k∈Z}
【解析】如图:
∠AOD=∠AOB+∠BOC+∠COD =(-80°)+250°+(-270°)=-100°. 答案:-100°
类型二 终边相同的角的表示和应用 【典例】1.(2015·成都高一检测)若角α 与β 的终边垂直,则α 与β 的关系是( ) A.β =α +90° B.β =α ±90° C.β =k·360°+α +90°,k∈Z D.β =k·360°+α ±90°,k∈Z
C.k·360°+257°(k∈Z)
D.k·360°-257°(k∈Z)
【解析】选C.因为-463°=257°-2×360°,所以与-463°终边相同

1三角函数公式

1三角函数公式

1三⾓函数公式1三⾓函数公式1.1两⾓和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*n2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R (注:其中R 表⽰三⾓形的外接圆半径)余弦定理b^2=a^2+c^2-2accosB (注:⾓B是边a 和边c的夹⾓)圆的标准⽅程(x-a)2+(y-b)2=r2 (注:(a,b)是圆⼼坐标)圆的⼀般⽅程x2+y2+Dx+Ey+F=0 (注:D^2+E^2-4F>0)抛物线标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧⾯积S=c*h斜棱柱侧⾯积S=c'*h正棱锥侧⾯积S=1/2c*h'正棱台侧⾯积S=1/2(c+c')h'圆台侧⾯积S=1/2(c+c')l=pi(R+r)l球的表⾯积S=4pi*r2圆柱侧⾯积S=c*h=2π*h圆锥侧⾯积S=1/2*c*l=π*r*l弧长公式l=a*r (a是圆⼼⾓的弧度数r >0)扇形⾯积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截⾯⾯积,L是侧棱长柱体体积公式V=s*h圆柱体V=π*r^2h2.5基本公式抛物线y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平⽅加上b乘以x再加上c置于平⾯直⾓坐标系中a > 0时开⼝向上a < 0时开⼝向下(a=0时为⼀元⼀次函数)c>0时函数图像与y轴正⽅向相交c< 0时函数图像与y轴负⽅向相交c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为⼀次函数)还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))就是y等于a乘以(x+h)的平⽅+k-h是顶点坐标的xk是顶点坐标的y⼀般⽤于求最⼤值与最⼩值和对称轴抛物线标准⽅程:y^2=2px (p>0)它表⽰抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线⽅程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py 3圆⾯积=π(r^2)周长=2πr =πd3.1三⾓函数和差⾓公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB - sinBcosAcos(A+B)=cosAcosB - sinAsinBcos(A-B)=cosAcosB + sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表⽰三⾓形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:⾓B是边a和边c 的夹⾓(6)乘法与因式分解因式分解a^2-b^2=(a+b)(a-b)a^2±2ab+b^2=(a±b)^2a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)a^3±3a^2b+3ab^2±b^3=(a±b)^3⼀元⼆次⽅程根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a判别式△= b^2-4ac=0 则⽅程有两个相等的实根△>0 则⽅程有两个不相等的两实根△<0 则⽅程有两共轭复数根d(没有实根)4公式分类编辑本段4.1公式表达式圆柱侧⾯积S=圆锥侧⾯积S=弧长公式l=扇形⾯积公式s=圆锥体体积公式V=圆柱体V=图形周长⾯积体积公式长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积=底×⾼÷2平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=d=2r圆的周长=πd= 2πr圆的⾯积= πr^2长⽅体的表⾯积=(长×宽+宽×⾼+⾼×长)×2 长⽅体的体积=长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3柱体体积=底⾯积×⾼6概率公式定义:p(A)=m/n,6.1概率公式p(A)=m/n,6.2⼏何公理线⾓1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12 两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补6.5三⾓形15 定理三⾓形任意两边的和⼤于第三边16 推论三⾓形任意两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(SAS) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( ASA)有两⾓和它们的夹边对应相等的两个三⾓形全等24 边边边公理(SSS) 有三边对应相等的两个三⾓形全等25 斜边、直⾓边公理(hl) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等26 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等27 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上28 ⾓的平分线是到⾓的两边距离相等的所有点的集合29等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等(即等边对等⾓)30 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边31 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合32 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°33 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)34 推论1 三个⾓都相等的三⾓形是等边三⾓形35 推论2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形36 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半37 直⾓三⾓形斜边上的中线等于斜边上的⼀半38 定理线段垂直平分线上的点和这条线段两个端点的距离相等39 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上40 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合41 定理1 关于某条直线对称的两个图形是全等形42 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称44勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^245勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形6.6四边形46定理四边形的内⾓和等于360°47四边形的外⾓和等于360°48多边形内⾓和定理n边形的内⾓的和等于(n-2)×180°49推论任意多边的外⾓和等于360°50平⾏四边形性质定理1 平⾏四边形的对⾓相等51平⾏四边形性质定理2 平⾏四边形的对边相等52推论夹在两条平⾏线间的平⾏线段相等53平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分54平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形55平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形56平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形57平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形58矩形性质定理1 矩形的四个⾓都是直⾓59矩形性质定理2 矩形的对⾓线相等60矩形判定定理1 有三个⾓是直⾓的四边形是矩形61矩形判定定理2 对⾓线相等的平⾏四边形是矩形62菱形性质定理1 菱形的四条边都相等63菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓64菱形⾯积=对⾓线乘积的⼀半,即s=(a×b)÷265菱形判定定理1 四边都相等的四边形是菱形66菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形67正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等68正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓69定理1 关于中⼼对称的两个图形是全等的70定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分71逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称72等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等73等腰梯形的两条对⾓线相等74等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形75对⾓线相等的梯形是等腰梯形76平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等77 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰78 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边79三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半80 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半l=(a+b)÷2 s=l×h81 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例85 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例86 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边87 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例88 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似89 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(asa)90 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似91 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(sas)92 判定定理3 三边对应成⽐例,两三⾓形相似(sss)93 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似94 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐95 性质定理2 相似三⾓形周长的⽐等于相似⽐96 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅97任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值98任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值圆99圆是定点的距离等于定长的点的集合100圆的内部可以看作是圆⼼的距离⼩于半径的点的集合101圆的外部可以看作是圆⼼的距离⼤于半径的点的集合103同圆或等圆的半径相等104到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆105和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线106到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线107到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线108定理不在同⼀直线上的三点确定⼀个圆。

1.1锐角三角函数(教案)

1.1锐角三角函数(教案)
3.探索与创新:鼓励学生在解决问题过程中,积极探索锐角三角函数的内在联系,培养创新意识和团队协作能力。
4.情感与态度:激发学生对数学学科的兴趣,增强学生对数学源于生活、服务生活的认识,培养学生积极的学习态度和价值观。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦函数(sin)、余弦函数(cos)和正切函数(tan)的定义是本节课的核心内容。教师需明确这三个函数的定义,并通过具体实例进行解释,使学生理解函数的本质。
1.1锐角三角函数(教案)
一、教学内容
本节课选自《数学》八年级下册第十一章“锐角三角函数”的1.1节。教学内容主要包括以下方面:
1.锐角三角函数的定义:正弦函数(sin)、余弦函数(cos)和正切函数(tan);
2.锐角三角函数的图像与性质:通过图像了解正弦、余弦、正切函数随角度变化的规律;
3.锐角三角函数的值:运用计算器计算特殊角度的正弦、余弦和正切值;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角与三条边的比值关系。这些函数包括正弦(sin)、余弦(cos)和正切(tan)。它们在解决实际问题,如测量、建筑等领域具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的高度,展示如何运用正切函数来求解实际问题。
4.锐角三角函数的应用:解决实际问题,如测量物体的高度等。
二、核心素养目标
1.理解与运用:使学生掌握锐角三角函数的定义、图像与性质,能运用计算器计算特殊角度的正弦、余弦和正切值,并能运用这些知识解决实际问题,提高学生的数学应用能力。
2.思维与分析:培养学生通过图像观察、分析锐角三角函数变化规律的逻辑思维能力,发展学生的数学直观想象和数学抽象素养。

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档