直线与方程例题解析

合集下载

第三章直线与方程测试题及答案解析

第三章直线与方程测试题及答案解析

2D .不存在3B . 3C . 4D .第三章 直线与方程A 组一、选择题1.若直线 x =1 的倾斜角为 α,则α ().A .等于 0B .等于πC .等于π2.图中的直线 l 1,l 2,l 3 的斜率分别为 k 1,k 2,k 3,则( ).A .k 1<k 2<k 3C .k 3<k 2<k 1B .k 3<k 1<k 2D .k 1<k 3<k 2(第 2 题)3.已知直线 l 1 经过两点(-1,-2)、(-1,4),直线 l 2 经过两点(2,1)、(x ,6),且l 1∥l 2,则 x =().A .2B .-2C .4D .14.已知直线 l 与过点 M (- 3 , 2 ),N ( 2 ,- 3 )的直线垂直,则直线 l 的倾斜角是().A . π2ππ3π45.如果 AC <0,且 BC <0,那么直线 Ax +By +C =0 不通过( ).A .第一象限B .第二象限C .第三象限D .第四象限6.设 A ,B 是 x 轴上的两点,点 P 的横坐标为 2,且|P A |=|PB |,若直线 PA 的方程为x -y +1=0,则直线 PB 的方程是().A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=07.过两直线 l 1:x -3y +4=0 和 l 2:2x +y +5=0 的交点和原点的直线方程为().A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线 l 1:x +a 2y +6=0 和直线 l 2 : (a -2)x +3ay +2a =0 没有公共点,则 a 的值是().a+1B.-a+1C.aD.-A.3B.-3C.1D.-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A.a a a+1a+1a10.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8)二、填空题B.(-8,-6)C.(6,8)D.(-6,-8)11.已知直线l1的倾斜角1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为.12.若三点A(-2,3),B(3,-2),C(12,m)共线,则m的值为.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为.14.求直线3x+ay=1的斜率.15.已知点A(-2,1),B(1,-2),直线y=2上一点P,使|AP|=|BP|,则P点坐标为.16.与直线2x+3y+5=0平行,且在两坐标轴上截距的和为6的直线方程是.17.若一束光线沿着直线x-2y+5=0射到x轴上一点,经x轴反射后其反射线所在直线的方程是.三、解答题18.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.△19.已知ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC ,BC 分别于 E ,△F , CEF 的面积是△CAB 面积的 1.求直线 l 的方程.4(第 19 题)20.一直线被两直线 l 1:4x +y +6=0,l 2:3x -5y -6=0 截得的线段的中点恰好是坐标原点,求该直线方程..21.直线 l 过点(1,2)和第一、二、四象限,若直线 l 的横截距与纵截距之和为 6,求直线 l 的方程.第三章 直线与方程.( 4- 3- 2 =-1 ,而已知直线 l 与直线MN 垂直,所以直 <0,在 y 轴上的截距 D =- >0,所以,参考答案A 组一、选择题1.C解析:直线 x =1 垂直于 x 轴,其倾斜角为 90°2.D解析:直线 l 1 的倾斜角α 1 是钝角,故 k 1<0;直线 l 2 与 l 3 的倾斜角α 2,α3 均为锐角且α2>α3,所以 k 2>k 3>0,因此 k 2>k 3>k 1,故应选 D .3.A解析:因为直线 l 1 经过两点(-1,-2)、 -1, ),所以直线 l 1 的倾斜角为 π 2 ,而 l 1∥l 2,所以,直线 l 2 的倾斜角也为 π 2,又直线 l 2 经过两点(2,1)、(x ,6),所以,x =2.4.C解析:因为直线 MN 的斜率为 2+ 3线 l 的斜率为 1,故直线 l 的倾斜角是5.Cπ 4 .解析:直线 Ax +By +C =0 的斜率 k = -A B CB直线不通过第三象限.6.A解析:由已知得点 A (-1,0),P (2,3),B (5,0),可得直线 PB 的方程是 x +y -5=0.7.D8.D9.B解析: 结合图形,若直线 l 先沿 y 轴的负方向平移,再沿 x 轴正方向平移后,所得直线与 l 重合,这说明直线 l 和 l ’ 的斜率均为负,倾斜角是钝角.设 l ’ 的倾斜角为 θ,则tan θ=-10.Daa +1.∴k AB =k AC , -2-3= .解得 m = .+2 ∴ y -1 y -2 y -1 1 x +解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0 是点 A (4,0)与所求点 A'(x ,y )连线的中垂线,列出关于 x ,y 的两个方程求解.二、填空题11.-1.解析:设直线 l 2 的倾斜角为α 2,则由题意知:180°-α2+15°=60°,α2=135°,∴k 2=tan α2=tan (180°-45°)=-tan45°=-1. 12. 1.2(第 11 题)解:∵A ,B ,C 三点共线,m -3 1 3+2 2213.(2,3).解析:设第四个顶点 D 的坐标为(x ,y ),∵AD ⊥CD ,AD ∥BC ,∴k AD ·k CD =-1,且 k AD =k BC .· =-1, =1.x -0 x -3 x -0⎧x =0 ⎧x =2 解得 ⎨ (舍去) ⎨⎩ y =1 ⎩ y =3所以,第四个顶点 D 的坐标为(2,3).14.- 3或不存在.a解析:若 a =0 时,倾角 90°,无斜率.若 a ≠0 时,y =- 3 1a a∴直线的斜率为- 3 a.15.P (2,2).解析:设所求点 P (x ,2),依题意: (x + 2)2 + (2 - 1)2 = (x - 1)2 + (2 + 2)2 ,解得 x =2,故所求 P 点的坐标为(2,2).16.10x +15y -36=0.c c18.①m =- 5 ;②m = .②由题意,得 =-1,且 2m 2+m -1≠0.解得 m = .解析:由已知,直线 AB 的斜率 k = 1 + 1 1,所以 E 是 CA 的中点.点 E 的坐标是(0, ).= x ,即 x -2y +5=0. ⎧⎪4x +y 0+6=0⎩解析:设所求的直线的方程为 2x +3y +c =0,横截距为-,纵截距为- ,进而得 2 3c = - 36 5.17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于 x 轴对称,故将直线方程中的 y 换成-y .三、解答题43 3解析:①由题意,得2m - 6m 2 - 2m - 3=-3,且 m 2-2m -3≠0.解得 m =- 5.3m 2 - 2m - 32m 2 + m - 14319.x -2y +5=0.= .3 + 1 2因为 EF ∥AB ,所以直线 EF 的斜率为 1 2.△因为CEF 的面积是△CAB 面积的 1 54 2直线 EF 的方程是 y - 5 12 220.x +6y =0.解析:设所求直线与 l 1,l 2 的交点分别是 A ,B ,设 A (x 0,y 0),则 B 点坐标为(-x 0,-y 0).因为 A ,B 分别在 l 1,l 2 上,所以 ⎨ 0⎪-3x 0+5 y 0-6=0 ①②①+②得:x 0+6y 0=0,即点 A 在直线 x +6y =0 上,又直线 x +6y =0 过原点,所以直线 l 的方程为 x +6y =0.21.2x +y -4=0 和 x +y -3=0.∴直线 l 的方程为 + =1 .2∵点(1,2)在直线 l 上,∴ + =1 ,a -5a +6=0,解得 a 1=2,a 2=3.当 a =2 时,直线的方程为 x+ = 1 ,直线经过第一、二、四象限.当 a =3 时,直线的方程为+ = 1 ,解析:设直线 l 的横截距为 a ,由题意可得纵截距为 6-a .x ya 6-a1 2 a 6-ay x y2 43 3直线经过第一、二、四象限.综上所述,所求直线方程为 2x +y -4=0 和 x +y -3=0.。

高中直线与方程练习题及讲解

高中直线与方程练习题及讲解

高中直线与方程练习题及讲解### 高中直线与方程练习题及讲解题目一:直线方程的求解题目描述:已知点A(2,3)和点B(-1,-2),求经过这两点的直线方程。

解题步骤:1. 首先,我们需要找到直线的斜率。

斜率公式为 \( k = \frac{y_2- y_1}{x_2 - x_1} \)。

2. 将点A和点B的坐标代入公式,得到 \( k = \frac{-2 - 3}{-1 - 2} = \frac{-5}{-3} = \frac{5}{3} \)。

3. 有了斜率,我们可以使用点斜式方程 \( y - y_1 = k(x - x_1) \) 来写出直线方程。

选择点A代入,得到 \( y - 3 = \frac{5}{3}(x - 2) \)。

4. 最后,将方程化为一般形式 \( Ax + By + C = 0 \),得到 \( 5x - 3y + 1 = 0 \)。

题目二:直线的平行与垂直题目描述:已知直线 \( l_1: 3x - 4y + 5 = 0 \),求与 \( l_1 \) 平行且与直线 \( 2x + y - 7 = 0 \) 垂直的直线方程。

解题步骤:1. 平行直线的斜率相同,所以 \( l_1 \) 的斜率为 \( k =\frac{3}{4} \)。

2. 垂直直线的斜率互为相反数的倒数,因此 \( l_1 \) 垂直的直线斜率为 \( -\frac{4}{3} \)。

3. 利用点斜式方程,我们可以选择直线 \( l_1 \) 上的一点,比如\( (0, 5/4) \),代入 \( y - y_1 = k(x - x_1) \),得到 \( y - \frac{5}{4} = -\frac{4}{3}(x - 0) \)。

4. 将方程化为一般形式,得到 \( 4x + 3y - 15 = 0 \)。

题目三:直线的交点题目描述:求直线 \( l_1: 2x + 3y - 6 = 0 \) 与直线 \( l_2: x - y + 1 = 0 \) 的交点坐标。

直线与方程知识梳理、典型例题讲解与习题

直线与方程知识梳理、典型例题讲解与习题

直线与方程知识梳理、典型例题讲解与习题一、复习引入介绍斜率概念、两条直线平行与垂直的判断公式,直线方程的三种形式。

(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l(3)(1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解。

①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;②若方程组无解,则两条直线无公共点,此时两条直线平行.(4)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式22122121||()()PP x x y y =-+-特别地,原点(0,0)O 与任一点(,)P x y 的距离22||OP x y =+点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离0022||Ax By C d A B ++=+两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离1222||C C d A B -=+二、课堂讲解讲解、.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。

.解:由4603560x y x y ++=⎧⎨--=⎩得两直线交于2418(,)2323-,记为2418(,)2323A -,则直线AP 垂直于所求直线l ,即43l k =,或245l k =43y x ∴=,或2415y x -=,即430x y -=,或24550x y -+=为所求。

《直线与方程》教案+例题精析

《直线与方程》教案+例题精析

考点1:倾斜角与斜率(一)直线的倾斜角例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛32,22,0πππ B.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛32223ππππ,, C.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛πππ,,330 D.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛πππ,,32202 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .,63ππ⎡⎫⎪⎢⎣⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .,62ππ⎡⎤⎢⎥⎣⎦(二)直线的斜率及应用3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。

例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++=1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或43.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150°4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ).A .4,5a b ==B .1b a -=C .23a b -=D .23a b -=5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ).A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 26.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = .7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 .8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________.考点2:求直线的方程例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

高一数学直线与方程经典例题-必修二第3章

高一数学直线与方程经典例题-必修二第3章

直线与方程经典例题【考点指要】关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试题,都属于基本要求。

解决问题的基本方法和途径:数形结合法、分类讨论法、待定系数法。

【综合例题分析】例1. 已知圆22440x x y --+=的圆心是P ,则点P 到直线10x y --=的距离是__________。

答案:22解析:由题意圆的方程22440x x y --+=可化为()2228x y -+=∴圆心()2,0P ,代入点到直线距离公式得22)1(1|1-(-1)012|d 22=-+⨯+⨯=例2.若曲线21y x =+与直线y kx b =+没有公共点,则k b 、分别应满足的条件是____________。

答案:k=0且-1<b<1 解析:由y x x x x x 211010=+=+>-+<⎧⎨⎩||,,画出图象得设图象与y 轴的交点分别为()()0101A B -,、,,过点A B 、作平行于x 轴的直线,根据题意,直线y kx b =+与曲线没有公共点,则只能与x 轴平行且在虚线区域内移动。

评述:由于曲线方程中含有绝对值,所以先分情况去掉绝对值符号,若联立方程组2211y x y x y kx b y kx b⎧⎧=+=-+⎨⎨=+=+⎩⎩或,分别利用判别式“△<0”去求解没有公共点的情况,题目会变的非常烦琐。

借助于图象既快捷又直观,利用数形结合是解决这类题目非常有效的方法。

例3. 设过()P x y ,点的直线分别与x 轴、y 轴的正半轴交于A B 、两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB ⋅=,则点P 的轨迹方程为( ) A. )0,0(123x 322>>=+y x y B. )0,0(123322>>=-y x y x C.)0,0(132322>>=-y x y xD.)0,0(132322>>=+y x y x 答案:D解析:设过点()P x y ,的直线方程为)0,0(><+=b k b kx y ,则(),0,0,b A B b k ⎛⎫- ⎪⎝⎭,由题意知点Q 与点P 关于y 轴对称,得(),Q x y -,又()0,0O∴()()0,2,00,00,01b x y b x y k b x y b k ⎧⎛⎫--=--- ⎪⎪⎝⎭⎪⎨⎡⎤⎛⎫⎪---⋅---= ⎪⎢⎥⎪⎝⎭⎣⎦⎩ 即3231b x k b y b x by k⎧-=⎪⎪=⎨⎪⎪-+=⎩,得223312x y +=0,0,0,0>>∴><y x b k评述:此题体现了直线与向量知识的综合运用,向量的坐标运算和解析几何关系密切。

《直线与方程》教案例题精析

《直线与方程》教案例题精析

《直线与方程》教案例题精析一、教学目标1. 让学生掌握直线方程的基本形式和斜截式、两点式等求直线方程的方法。

2. 培养学生运用直线方程解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 直线方程的基本形式:Ax + By + C = 02. 斜截式方程:y = kx + b3. 两点式方程:y y1 = (y2 y1) / (x2 x1) (x x1)4. 直线方程的解法:代入法、消元法、图解法5. 直线方程在实际问题中的应用。

三、教学重点与难点1. 重点:直线方程的求法及应用。

2. 难点:直线方程在不同情况下的求解方法和技巧。

四、教学方法1. 采用问题驱动法,引导学生主动探究直线方程的求法。

2. 利用多媒体辅助教学,直观展示直线方程的图解过程。

3. 实例分析,让学生体验直线方程在实际问题中的应用。

五、教学准备1. 课件:直线方程的求法及应用。

2. 练习题:涵盖各种类型的直线方程题目。

3. 实物模型:直线图形的模型,如直尺、三角板等。

教案目录:第一章:直线方程的基本形式1.1 斜率与截距1.2 直线方程的斜截式1.3 直线方程的一般式第二章:斜截式方程2.1 斜截式方程的定义2.2 斜截式方程的求法2.3 斜截式方程的应用第三章:两点式方程3.1 两点式方程的定义3.2 两点式方程的求法3.3 两点式方程的应用第四章:直线方程的解法4.1 代入法求直线方程4.2 消元法求直线方程4.3 图解法求直线方程第五章:直线方程在实际问题中的应用5.1 直线方程与几何问题5.2 直线方程与物理问题5.3 直线方程与生活问题六、直线方程的综合应用6.1 两条直线的交点6.2 直线与圆的位置关系6.3 直线方程在立体几何中的应用七、直线方程的变换7.1 直线的平移7.2 直线的旋转7.3 直线的缩放八、直线方程的优化问题8.1 直线方程的最值问题8.2 直线方程的线性规划问题8.3 直线方程的优化方法与应用九、线性方程组与直线方程9.1 线性方程组的定义9.2 线性方程组的求解方法9.3 线性方程组与直线方程的关系十、直线方程与其他数学学科的联系10.1 直线方程与函数的关系10.2 直线方程与三角函数的联系10.3 直线方程与其他数学学科的融合应用十一、直线方程的拓展与应用11.1 空间直线方程11.2 参数方程与直线方程11.3 直线方程在现代数学中的应用十二、直线方程与坐标系12.1 直角坐标系中的直线方程12.2 极坐标系中的直线方程12.3 柱坐标系与球坐标系中的直线方程十三、直线方程与日常生活13.1 地图上的直线方程13.2 导航与直线方程13.3 直线方程在日常生活中的其他应用十四、直线方程与科技发展14.1 计算机图形学与直线方程14.2 机器学习与直线方程14.3 直线方程在其他科技领域中的应用十五、综合练习与案例分析15.1 综合练习题集15.2 案例分析:直线方程在实际问题中的应用15.3 学生展示与讨论:个人或小组项目重点和难点解析本文档为您提供了《直线与方程》的教案,涵盖了直线方程的基本形式、斜截式、两点式、解法、实际应用、综合应用、变换、优化问题、线性方程组、学科联系、拓展应用、坐标系、日常生活、科技发展以及综合练习与案例分析等十五个章节。

1直线与方程练习题及答案详解

1直线与方程练习题及答案详解

1直线与方程练习题及答案详解直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.-2/3C.2D.104.已知ab<0,bc<0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠0B.m≠-1C.m≠1D.m≠-2/3二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线;若l4与l1关于y=x对称,则l4的方程为y=-x+3.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y-2=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x+0.三、解答题1.已知直线Ax+By+C=0。

1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程表示通过原点的直线。

2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都有交点。

3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。

4)系数满足什么条件时是x轴;当A=0且B≠0时,直线是x轴。

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.两平行直线y=kx+b1与y=kx+b2之间的距离是()A.b1-b2B.C.D.【答案】B【解析】略2.已知直线L:Ax+By+C=0,(A,B不同时为0)。

若点(1,1)到L的距离为1,则A,B,C应满足的关系式是----------------------。

【答案】(A+B+C)2=A2+B2【解析】根据点到直线距离公式可得,整理可得3.的三个顶点坐标分别为A(2,6),B(-4,3),C(2,-3),则BC边上的高线的长为--------------。

【答案】【解析】所在直线的斜率为,则所在直线方程为,即。

而高经过点,所以边上的高线的长等于点到直线的距离4.已知M(sinα, cosα), N(cosα, sinα),直线l: xcosα+ysinα+p="0" (p<–1),若M, N到l的距离分别为m, n,则A.m≥n B.m≤n C.m≠n D.以上都不对【答案】A【解析】点到直线的距离,点到直线的距离。

因为,所以,则,故选A5.已知A, B, C为三角形的三个内角,它们的对边长分别为a, b, c,已知直线xsinA+ysinB+sinC=0到原点的距离大于1,则此三角形为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】因为直线到原点的距离大于1,所以,则。

由正弦定理可得,则。

再由余弦定理有,即为钝角,所以此三角形为钝角三角形,故选C6.与直线2x+3y–6=0关于点(1, –1)对称的直线是A.3x–2y+2=0B.2x+3y+7=0C.3x–2y–12=0D.2x+3y+8=0【答案】D【解析】设是所求直线上任一点,P关于点(1,-1)的对称点为则又点Q在直线2x+3y–6=0上,。

即故选D7.方程2x2+9xy+10y2–7x–15y+k=0表示两条直线,则过这两直线的交点且与x–y+2=0垂直的直线方程是A.x+y–1=0B.x+y–2=0C.x+y+1=0D.x+y+2=0【答案】D【解析】设方程表示直线和直线,其中都是整数,则有,即,所以,可得。

(完整)高中数学直线与方程习题及解析.docx

(完整)高中数学直线与方程习题及解析.docx

1.一条光线从点 A(-1,3)射向 x 轴,经过 x 轴上的点 P 反射后通过点 B(3,1),求 P 点的坐标.3-0=-31- 01解 设 P( x,0) ,则 k PA =, k PB ==,依题意,- 1- x x + 1 3- x 3- x由光的反射定律得k PA =- k PB ,即 3= 1,解得 x =2,即 P(2,0).x +1 3- x2.△ ABC 为正三角形,顶点A 在 x 轴上, A 在边 BC 的右侧,∠ BAC 的平分线在 x 轴上,求边 AB 与 AC 所在直线的斜率.解如右图,由题意知 ∠BAO = ∠ OAC = 30°,∴ 直线 AB 的倾斜角为 180°- 30°= 150°,直线 AC 的倾斜角为 30°,∴ k AB = tan 1503=°- 3 ,AC3k = tan 30 =° 3 .2f a , f b , f c的大小. 3.已知函数 f(x)= log ( x + 1), a>b>c>0,试比较a b c解画出函数的草图如图,f xx 可视为过原点直线的斜率.f c f b f a由图象可知:c>b>a.4. (1) 已知四点 A(5,3), B(10,6),C(3,- 4), D(- 6,11),求证: AB ⊥ CD .(2)已知直线 l 1 的斜率 k 1= 3,直线 l 2 经过点 A(3a ,- 2), B(0, a 2+ 1)且 l 1⊥ l 2,求实数4 a 的值.(1)证明 由斜率公式得:k AB = 6- 3 310-5 = 5,11- - 45 k CD = - 6- 3 =- 3,则 k AB ·k CD =- 1, ∴ AB ⊥CD .(2)解∵ l 1⊥ l 2,∴ k 1·k 2=- 1,3× a 2+ 1- - 2即 =- 1,解得 a =1 或 a =3.40- 3a5. 如图所示, 在平面直角坐标系中, 四边形 OPQR 的顶点坐标按逆时针顺序依次为O(0,0)、P(1, t)、 Q(1- 2t,2+ t)、R(- 2t,2),其中 t>0. 试判断四边形 OPQR 的形状.解由斜率公式得k OP=t - 0= t,1- 0QR 2- 2+ t=-t= t,k OR2- 0=-1,k =- 2t- 1- 2t- 1=t - 2t- 0k PQ=2+ t -t2=-1.=1- 2t- 1- 2t t∴k OP=k QR, k OR= k PQ,从而 OP∥ QR, OR∥PQ .∴四边形 OPQR 为平行四边形.又k OP·k OR=- 1,∴ OP⊥ OR,故四边形 OPQR 为矩形.6.已知四边形ABCD 的顶点 A(m, n), B(5,- 1), C(4, 2), D(2,2) ,求 m 和 n 的值,使四边形 ABCD 为直角梯形.解∵四边形 ABCD 是直角梯形,∴有 2 种情形:(1)AB∥CD , AB⊥ AD,由图可知: A(2,- 1).(2)AD∥ BC, AD ⊥ AB,k AD= k BCk AD·k AB=- 1n-2= 3m- 2-1?n- 2 n+1·=- 1m- 2 m- 516m=5.∴8n=-516m= 2m=5.综上或n=- 18n=-57.已知直线 l1与 l 2的方程分别为7x+ 8y+ 9= 0,7x+ 8y-3= 0.直线 l 平行于 l 1,直线 l 与 l1的距离为 d1,与 l2的距离为 d2,且 d1∶d2= 1∶ 2,求直线 l 的方程.解因为直线 l 平行 l1,设直线 l 的方程为 7x+ 8y+ C= 0,则 d1=|C- 9||C-- 3 |,d2=. 72+ 8272+82又2d1= d2,∴2|C-9|= |C+ 3|.解得 C= 21 或 C= 5.故所求直线l 的方程为7x+ 8y+ 21= 0 或 7x+8y+ 5= 08.△ ABC 中, D 是 BC 边上任意一点(D 与 B,C 不重合 ) ,且 |AB|2= |AD |2+ |BD | ·|DC|.求证:△ ABC 为等腰三角形.证明作 AO⊥ BC,垂足为 O,以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系 (如右图所示 ).设A(0,a), B(b,0), C(c,0), D (d,0).因为 |AB|2= |AD |2+ |BD | |DC· |,所以,由距离公式可得b2+ a2= d2+ a2+ (d- b)(c- d),即- (d- b)(b+d)=( d-b)( c-d).又 d-b≠ 0,故- b- d= c- d,即- b= c.所以 |AB|= |AC|,即△ ABC 为等腰三角形.9.一束平行光线从原点 O(0,0) 出发,经过直线l:8x+ 6y= 25 反射后通过点 P(- 4,3),求反射光线与直线l 的交点坐标.解设原点关于 l 的对称点 A 的坐标为 (a,b),由直线 OA 与 l 垂直和线段 AO 的中点在 l 上得b4a·-3=- 1a=4,解得,8×a b b=3 2+ 6×2= 25∴A 的坐标为 (4,3) .∵ 反射光线的反向延长线过A(4,3) ,又由反射光线过P(- 4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.y= 3x=78,由方程组,解得8x+ 6y=25y= 37∴反射光线与直线l 的交点坐标为8,3 .。

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1. 已知正方形的中心为直线x-y +1=0和2x +y +2=0的交点,正方形一边所在直线方程为x +3y -2=0,求其它三边方程。

【答案】其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=0 【解析】解:由将正方形的中心化为p(-1,0),由已知可设正方形相邻两边方程为x+3y+m=0和3x-y+n=0 ,∵p 点到各边的距离相等,∴和,∴ m=4或m=-2和n=6或n=0∴其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=02. 两平行直线y=kx +b 1与y=kx+b 2之间的距离是( ) A .b 1-b 2 B . C .D .【答案】B 【解析】略3. 若点(4,a )到直线4x-3y=0的距离不大于3,则a 的取值范围是( ) A .(0,10) B .[3,4] C .[,]D .(-,0)【答案】C 【解析】依题意可得,解得,故选C4. 点(-3,6)到x 轴的距离是-----------, 到y 轴的距离是---------------。

【答案】6;3【解析】轴所在直线为,所以点(-3,6)到轴的距离为,同理点(-3,6)到y轴的距离为5. 已知正方形的中心为直线x-y +1=0和2x +y +2=0的交点,正方形一边所在直线方程为x +3y -2=0,求其它三边方程。

【答案】其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=0 【解析】由将正方形的中心化为p(-1,0),由已知可设正方形相邻两边方程为x+3y+m=0和3x-y+n=0 ,∵p 点到各边的距离相等,∴和,∴ m=4或m=-2和n=6或n=0∴其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=06. 点(a, b)到直线的距离是 A .B .C .D .【答案】B【解析】将直线化为一般式方程为,再由点到直线的距离公式,所以选B7.若直线y=ax+2与直线y=3x–b关于直线y=x对称,则A.a=, b=6B.a=, b=–2C.a="3," b=–2D.a="3," b=6【答案】A【解析】8.给出下列五个命题:①过点(–1, 2)的直线方程一定可以表示为y–2=k(x+1);②过点(–1, 2)且在x轴、y轴截距相等的的直线方程是x+y–1=0;③过点M(–1, 2)且与直线l: Ax+By+C=0(AB≠0)垂直的直线方程是B(x+1)+A(y–2)=0;④设点M(–1, 2)不在直线l: Ax+By+C=0(AB≠0)上,则过点M且与l平行的直线方程是A(x+1)+B(y–2)=0;⑤点P(–1, 2)到直线ax+y+a2+a=0的距离不小于2,以上命题中,正确的序号是。

高考数学专题《直线与直线方程》习题含答案解析

高考数学专题《直线与直线方程》习题含答案解析

专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件【答案】C 【解析】直线x +y =0和直线x−ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C 2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( )ABC.D【答案】C 【解析】原点到直线40x y +-==故选C.3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ().A.过点)2-BC .倾斜角为60°D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解【详解】点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l的斜率tan k θ==60°,故B ,C 正确;由1y =-,知直线l 在y 轴上的截距为1-,故D 错误.故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是().A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.【详解】当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误;∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m =m =B 选项正确;直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-,令11m m m-=-,得1m =±,故D 选项正确.故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是().A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0°【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案.【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确;对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确;对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误;对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确.故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______.【答案】32-43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距.【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43.故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y =【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可.【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒,又因为直线2l 和直线3l 都经过点()1,2,所以直线2l 和直线3l 的方程分别为1x =,2y =.故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________.【答案】-4;2【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //,334a -∴=,解得4a =-;∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________.【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34.因为直线2l 的方程为6810x y --=即为13402x y --=,所以直线1l 与2l 平行,则直线1l 与2l310.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|PA |+|PB |=a 的取值范围是 ___________.【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围.【详解】因为||AB ==||||PA PB +=,由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1),画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3,所以直线l 的斜率为k =2a ,令2123aa ⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( )A .8B .9C .16D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解.【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=,又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,练提升即2b a =时取“=”,由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,2N ,那么||MN 的最小值为( )A .2B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3),所以动点M 在以PQ5,2=圆心的坐标为3(1,)2-,所以点N3=,所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,,则直线方程为:故选l θ1sin(22p q-=l 20y --=40y +-=0x -=360y +-=122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-23πθ=tan θ=1y x -=-40y +-=B4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A.B.C.D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________.【答案】240x y -+= (0,1)-【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行,所以设方程为()201x y n n -+=≠,因为直线过点(2,1)M -,代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程;(2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=.7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1)求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ;(2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程.【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2.【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求.【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2),即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m 2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意,综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,()4,B n -在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值;(2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式.【答案】(1)2(2)0(3)2y x =+【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4),把A (2,4)代入ky x=得k =2×4=8,所以反比例函数解析式为8y x=,把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上,所以4m =k ,﹣4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==,在Rt △BOF 中,tan 4BF nBOF OF -∠==,而tan ∠AOD +tan ∠BOC =1,所以144m n-+=,而m +n =0,解得m =2,n =﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析.【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=.(2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,=,而6>10.(2021·全国高三专题练习)AOB V 是等腰直角三角形,||AB =l 过点(1,1)P 与AOB V 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标;(2)试写出表示AMN V 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标;(2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMN S V 的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解.【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k +=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭.(2)当1k …时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭,1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭.当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,当1k …时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+.综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ).A .1或3B .1或5C .3或5D .1或2【答案】C 【解析】练真题由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5,故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是()A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=,所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( )A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解.【详解】点(0,1)-到直线3410x y -+=的距离为515d =,故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即 111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=-0,求得 b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标b a--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >1,故有1b 13<.综上可得b 的取值范围应是 112⎛⎫-⎪ ⎪⎝⎭,,故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果与都是无理数,则直线不经过任何整点③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数⑤存在恰经过一个整点的直线【答案】①③⑤【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;②令直线为:,则直线经过整点,②错误;③令直线为:,过两个不同的整点,则,两式作差得:即直线经过整点x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --直线经过无穷多个整点,③正确;④令直线为:,则不过整点,④错误;⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤∴l l 1132y x =+ll y =()0,0。

直线与方程问题(含答案)

直线与方程问题(含答案)

直线与方程问题(含答案)
直线与方程问题(含答案)
本文将介绍直线与方程问题的基本概念和解题方法,并提供一些示例问题及其答案。

以下是内容的简要概述:
直线与方程的基本概念
- 直线:直线是由一组无限延伸的点组成的,可以用线段来表示。

直线有无限多个点,无限延伸的长度和方向。

- 方程:方程是数学表达式中的等式,其中包含一个或多个未知数。

方程描述了两个对象之间的关系。

直线与方程问题的解题方法
- 求两点间的斜率:通过计算两点的纵坐标之差与横坐标之差的比值来得到直线的斜率。

- 根据斜率和一点求直线的方程:使用斜率和已知点的坐标来确定直线的方程。

- 点斜式方程:通过已知直线上的一点和该直线的斜率来写出直线的方程。

- 一般式方程:将直线的方程转化为一般的标准形式,即Ax + By + C = 0。

示例问题及答案
1. 求经过点A(2, 3)和点B(5, 7)的直线的斜率。

解答:斜率 = (7 - 3) / (5 - 2) = 4/3
2. 已知直线上的一点为P(4, 2),斜率为2/5,求该直线的方程。

解答:使用点斜式方程,直线的方程为 y - 2 = (2/5)(x - 4)
3. 将直线的方程2x + 3y - 6 = 0转化为一般式方程。

解答:将方程重新排列为3y = -2x + 6,然后将其化简为Ax + By + C = 0的形式,即2x + 3y - 6 = 0。

以上是关于直线与方程问题的基本概念、解题方法和示例问题
的介绍。

希望对您有所帮助!。

高考数学直线方程典型例题解析

高考数学直线方程典型例题解析

高考数学直线方程典型例题解析一. 教学内容: 直线方程[知识点]1. 直线方程两点式:()()()方程推导:已知直线经过两点,,,求直线的l P x y P x y x x l 11122212≠方程?解:k y y x x =--2121代入点斜式()y y k x x -=-121()∴-=---y y y y x x x x 121211·∴--=--y y y y x x x x 121121注意:(1)特殊情况:x =x 1或y =y 1不能用两点式表示,即与x 轴平行或与x 轴垂直的直线不能用两点式表示,故平面上的直线与两点式方程不是一一对应。

(2)两点式变形形式:(y -y 1)(x 2-x 1)=(y 2-y 1)(x -x 1) 此方程与平面上的直线一一对应。

2. 直线方程的截距式:公式推导:已知直线与x 轴交于A (0,a )与y 轴交于B (b ,0),其中(a ≠0,b ≠0)求直线l 的方程。

解用两点式:y b x aa --=--000∴=-y b a x a∴+=x a yb1(截距式)注意:(1)特殊情况:当a =0或b =0时不能用上式,即过原点或与x 轴平行或与y 轴平行的直线不能用截距式。

(2)截距式是两点式的特殊情况。

3. 直线方程的一般式:方程形式:,、不同时为零。

Ax By C A B ++=0适用范围:平面直角坐标系中,任何一条直线都可由一般式表示出来。

4. 关于直线方程形式间的互化方法。

【典型例题】例1. 已知直线过点P (-5,-4),且与两坐标轴围成三角形面积为5,求直线l 的方程。

解:设直线的截距式方程为:x a yb +=1则有-+-==⎧⎨⎪⎪⎩⎪⎪541125a bab⇒==-a b 52,或,a b =-=524∴-+=--=直线方程为或852*******x y x y例2. 如图,已知直线l 经过点P (3,2),且与x 轴、y 轴的正半轴分别交于点A 、B 。

高中直线与方程知识点解析及经典例题

高中直线与方程知识点解析及经典例题

高中数学必修2知识点——直线与方程一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即0tan (90)k αα=≠。

斜率反映直线与x 轴的倾斜程度。

当[)90,0∈α时,0≥k ; 当()180,90∈时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

例.如右图,直线l 1的倾斜角α=30°,直线l 1⊥l 2,求直线l 1和解:k 1=tan30°=33∵l 1⊥l 2 ∴ k 1·k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( )A.120°B.150°C.60°(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)即不包含于平行于x 轴或y 直线两点轴的直线,直线两点()11,y x ,()22,y x ,当写成211211()()()()x x y y y y x x --=--的形式时,方程可以表示任何一条直线。

直线与方程易错题(有非常详细的解答与分析)

直线与方程易错题(有非常详细的解答与分析)

直线与方程一.选择题(共2小题)1.(2007•安徽)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或02.(2004•黑龙江)已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5二.解答题(共21小题)3.已知直线l过点P(1,2),并且l在x轴与y轴上的截距互为相反数,求直线l的方程.4.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.5.已知直线l过点P(﹣1,﹣2)(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若直线l与x轴,y轴的负半轴交于A、B两点,求△AOB的面积的最小值,并求此时直线l的方程.6.求过点P(2,3)且满足下列条件的直线方程:(1)倾斜角等于直线x﹣3y+4=0的倾斜角的二倍的直线方程;(2)在两坐标轴上截距相等的直线方程.7.已知两直线l1:ax﹣by+4=0,l2:2x+y+2=0,求满足下列条件的a、b的值.(1)直线l1过点(﹣3,﹣1),且直线l1在x轴和y轴上的截距相等;(2)直线l1与l2平行,且坐标原点到直线l1、l2的距离相等.8.已知三角形ABC的顶点是A(﹣1,﹣1),B(3,1),C(1,6).直线L平行于AB,且分别交AC,BC于E,F,三角形CEF的面积是三角形CAB面积的.求直线L的方程.9.求过点P(5,﹣2),且与直线x﹣y+5=0相交成45°角的直线l的方程.10.已知△ABC的顶点A为(0,5),AB边上的中线所在直线方程为4x+11y﹣27=0,∠B的平分线所在直线方程为x﹣2y+5=0,求BC边所在直线的方程.11.已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3),M是BC边的中点.(1)求AB边所在的直线方程;(2)求中线AM的长.(3)求BC的垂直平分线方程.12.已知直线l:x+ay+1﹣a=0.(Ⅰ)若l与线段AB有交点,其中A(﹣2,﹣1),B(1,1),求实数a的取值范围;(Ⅱ)若l与x轴的负半轴交M点,交y轴正半轴于N,求△OMN的面积最小时直线l的方程.13.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图).将矩形折叠,使A点落在线段DC上.(I)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(II)当时,求折痕长的最大值;(Ⅲ)当﹣2≤k≤﹣1时,折痕为线段PQ,设t=k(2|PQ|2﹣1),试求t的最大值.14.(文科做)已知直线l1:mx+ny+4=0,l2:(m﹣1)x+y+n=0,l1经过(﹣1,﹣1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y﹣16=0,BC边上的中线AD所在直线方程为2x﹣3y+1=0,求AC的长.15.已知点A(3,1),在直线x﹣y=0和y=0上分别有点M和N使△AMN的周长最短,求点M、N的坐标.16.求证:不论λ取什么实数时,直线(2λ﹣1)x+(λ+3)y﹣(λ﹣11)=0都经过一个定点,并求出这个定点的坐标.17.一条光线从点M(2,3)射出,遇x轴反射后经过N(﹣1,6),求入射光线所在直线方程.18.已知两点A(2,3)、B(4,1),直线l:x+2y﹣2=0,在直线l上求一点P.(1)使|PA|+|PB|最小;(2)使|PA|﹣|PB|最大.19.实数x,y滿足x2+y2+2x﹣4y+1=0,求(1)的最大值和最小值;(2)2x+y的最大值和最小值;(3)的最大值和最小值.20.已知点A(1,4),B(6,2),试问在直线x﹣3y+3=0上是否存在点C,使得三角形△ABC的面积等于14?若存在,求出C点坐标;若不存在,说明理由.21.设x﹣y+1=0,求的最小值.22.已知直线L:x+y﹣1=0(1)求直线2x+2y+3=0与直线L之间的距离;(2)求L关于(﹣1,0)的对称直线.23.如图,在直角坐标系中,射线OA:x﹣y=0(x≥0),OB:x+3y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B点.①当AB的中点为P时,求直线AB的方程;②当AB的中点在直线y=x上时,求直线AB的方程.直线与方程参考答案与试题解析一.选择题(共2小题)1.(2007•安徽)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或0考点:点到直线的距离公式.专题:计算题.分析:把圆的方程化为标准方程后,找出圆心坐标,利用点到直线的距离公式表示出圆心到已知直线的距离,根据此距离等于列出关于a的方程,求出方程的解即可得到a的值.解答:解:把圆x2+y2﹣2x﹣4y=0化为标准方程为:(x﹣1)2+(y﹣2)2=5,所以圆心坐标为(1,2),∵圆心(1,2)到直线x﹣y+a=0的距离为,∴,即|a﹣1|=1,可化为a﹣1=1或a﹣1=﹣1,∴解得a=2或0.故选C.点评:此题考查学生会将圆的一般式方程化为圆的标准方程并会从标准方程中找出圆心坐标,灵活运用点到直线的距离公式化简求值,是一道中档题.2.(2004•黑龙江)已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5考点:直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系;中点坐标公式.专题:计算题.分析:先求出中点的坐标,再求出垂直平分线的斜率,点斜式写出线段AB的垂直平分线的方程,再化为一般式.解答:解:线段AB的中点为,垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2),4x﹣2y﹣5=0,故选B.点评:本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.二.解答题(共21小题)3.已知直线l过点P(1,2),并且l在x轴与y轴上的截距互为相反数,求直线l的方程.考点:直线的截距式方程.专题:计算题.分析:通过直线过原点,求出直线的方程,利用直线的截距式方程,直接利用点在直线上求出直线的方程即可.解答:解:若直线l过原点,方程为y=2x;若直线l不过原点,设直线方程为,将点P(1,2)代入方程,得a=﹣1,直线l的方程为x﹣y+1=0;所以直线l的方程为y=2x或x﹣y+1=0.点评:本题是基础题,考查直线方程的求法,注意焦距式方程的应用,不可遗漏过原点的直线方程.考查计算能力.4.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.考点:直线的截距式方程.专题:计算题.分析:设直线l的横截距为a,则纵截距为(6﹣a),写出直线l的截距式方程,把(1,2)代入即可求出a的值,把a的值代入直线l的方程中,经过检验得到满足题意的直线l的方程.解答:解:设直线l的横截距为a,由题意可得纵截距为6﹣a,∴直线l的方程为,∵点(1,2)在直线l上,∴,解得:a1=2,a2=3,当a=2时,直线的方程为2x+y﹣4=0,直线经过第一、二、四象限;当a=3时,直线的方程为x+y﹣3=0,直线经过第一、二、四象限.综上所述,所求直线方程为2x+y﹣4=0或x+y﹣3=0.点评:此题考查学生会利用待定系数法求直线的截距式方程,是一道基础题.学生做题时应注意求得的a值有两个都满足题意.5.已知直线l过点P(﹣1,﹣2)(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若直线l与x轴,y轴的负半轴交于A、B两点,求△AOB的面积的最小值,并求此时直线l的方程.考点:直线的截距式方程.专题:计算题.分析:(1)直线l在两坐标轴上的截距相等包括两种情况,一是过原点,一是斜率为﹣1,分别求出两种情况下直线l的方程,进而得到答案;(2)由已知中直线l过点P(﹣1,﹣2),与x轴,y轴的负半轴交于A、B两点,我们可以设直线l的方程为(a<0,b<0),进而根据,我们易根据基本不等式,得到△AOB 的面积的最小值,即a,b的值,进而得到直线l的方程.解答:(12分)解:(1)当截距均为0时,直线l过P(﹣1,﹣2)及O(0,0)方程为:y=2x (2分)当截距不为0时,设l的方程为:由题意:∴a=﹣3∴l的方程为:x+y+3=0综上,l的方程为:y=2x或x+y+3=0(6分)(2)设直线l的方程为(a<0,b<0)(7分)∵点P(﹣1,﹣2)在直线l上∴∴∴ab≥8,当且仅当即时,取“=”(10分)∴当a=﹣2,b=﹣4时,(S△AOB)min=4(11分)此时直线l的方程为,即2x+y+4=0(12分)点评:本题考查的知识点是直线的截距式方程,其中(1)的关键是分析出直线l在两坐标轴上的截距相等包括两种情况,一是过原点,一是斜率为﹣1,在解答时,易忽略直线l过原点这种情况,而错解为x+y+3=0.6.求过点P(2,3)且满足下列条件的直线方程:(1)倾斜角等于直线x﹣3y+4=0的倾斜角的二倍的直线方程;(2)在两坐标轴上截距相等的直线方程.考点:直线的一般式方程;直线的倾斜角.专题:综合题.分析:(1)要求直线方程,就要先求出直线的斜率,根据题意所出直线的倾斜角等于已知直线的倾斜角的2倍,利用二倍角的正切函数公式求出已知直线的倾斜角即可;(2)分两种情况:第一直线过原点,求出即可;第二不过原点,因为截距相等,设出截距式方程,把P坐标代入即可求出.解答:解:(1)设已知直线的倾斜角为α,由题可知,则所求直线的斜率,所以直线l的方程为,化简得:3x﹣4y+6=0;(2)当直线过原点时设直线方程为y=kx,把(2,3)代入求出k=,所以直线l的方程为:当直线不过原点时,设直线方程为+=1,把(2,3)代入方程得:+=1,解得A=5,所以直线l的方程为:.点评:此题是一道综合题,要求学生掌握直线倾斜角与直线斜率的关系,会根据一点和斜率求直线的一般式方程.学生在做第二问时注意直线过原点时截距也相等,不要掉了这种情况.7.已知两直线l1:ax﹣by+4=0,l2:2x+y+2=0,求满足下列条件的a、b的值.(1)直线l1过点(﹣3,﹣1),且直线l1在x轴和y轴上的截距相等;(2)直线l1与l2平行,且坐标原点到直线l1、l2的距离相等.考点:直线的一般式方程;直线的一般式方程与直线的平行关系.专题:计算题.分析:(1)因为直线l1过点(﹣3,﹣1),把点(﹣3,﹣1)坐标代入直线方程,可得含a,b的等式,带着参数a,b求出直线l1:ax﹣by+4=0在x轴与y轴上的截距,根据直线l1在x轴和y轴上的截距相等又可得到含a,b的等式,两个等式联立,即可解出a,b的值.(2)因为直线l1与l2平行,所以两直线斜率相等,即可得到含a,b的等式,再用点到直线的距离公式求出原点到直线l1、l2的距离,根据两个距离相等又可得到一个含amb的等式,两个等式联立,即可解出a,b的值.解答:解:(1)令x=0得y=,令y=0得x=﹣,依题得,解得;(2)∵l1∥l2,∴=﹣2,∴a=﹣2b,又由=,∴a2+b2=20,∴5b2=20,∴b=±2,当b=﹣2时,a=4,直线l1为4x+2y+4=0与l1重合,舍去,∴b=2,a=﹣4.点评:本题主要考查了点与直线,直线与直线位置关系的判断,以及点到直线距离公式的应用.8.已知三角形ABC的顶点是A(﹣1,﹣1),B(3,1),C(1,6).直线L平行于AB,且分别交AC,BC于E,F,三角形CEF的面积是三角形CAB面积的.求直线L的方程.考点:直线的一般式方程.专题:数形结合.分析:利用三角形CEF的面积是三角形CAB面积的,得E是CA的中点,由EF∥AB,得直线EF的斜率,从而可求方程解答:解:由已知,直线AB的斜率K=,∵EF∥AB∴直线EF的斜率为K=∵三角形CEF的面积是三角形CAB面积的,∴E是CA的中点.又点E的坐标(0,),直线EF的方程是,即x﹣2y+5=0点评:本题是一个已知三角形的面积求直线方程题目,条件给出的是点的坐标,利用代数方法来解决几何问题,这是解析几何的特点,这是一个典型的数形结合问题9.求过点P(5,﹣2),且与直线x﹣y+5=0相交成45°角的直线l的方程.考点:直线的一般式方程.专题:计算题.分析:如果斜率存在,由夹角公式求出直线l的斜率,即可求出方程,如果斜率不存在,可数形结合求出直线l的倾斜角,求出斜率,求出方程解答:解:①若直线l的斜率存在,设为k,由题意,tan45°=||,得k=0,所求l的直线方程为y=﹣2.②若直线l的斜率不存在,则直线l的方程为x=5,且与直线x﹣y+5=0相交成45°角.综合可得,直线l的方程为x=5或y=﹣2.点评:本题考查直线方程的求法,注意斜率是否存在的讨论10.已知△ABC的顶点A为(0,5),AB边上的中线所在直线方程为4x+11y﹣27=0,∠B的平分线所在直线方程为x﹣2y+5=0,求BC边所在直线的方程.考点:直线的一般式方程.专题:计算题.分析:设B(x0,y0),由AB中点在4x+11y﹣27=0上,在直线方程为x﹣2y+5=0,求出B的坐标,求出A关于x﹣2y+5=0的对称点为A′(x′,y′)的坐标,即可求出BC边所在直线的方程.解答:解:设B(x0,y0),由AB中点在4x+11y﹣27=0上,可得联立x0﹣2y0+5=0解得B(﹣3,1)…(5分)设A点关于x﹣2y+5=0的对称点为A′(x′,y′),则有解得A′(2,1)…(10分)∴BC边所在的直线方程为y=1…(12分)点评:本题是中档题,考查直线关于直线的对称点的坐标的求法,函数与方程的思想的应用,考查计算能力,常考题型.11.已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3),M是BC边的中点.(1)求AB边所在的直线方程;(2)求中线AM的长.(3)求BC的垂直平分线方程.考点:直线的一般式方程;中点坐标公式.专题:计算题;转化思想.分析:(1)利用直线方程的两点式求直线的方程,并化为一般式.(2)由中点公式求得M的坐标,再利用两点间的距离公式求出两点间的距离.(3)先利用垂直关系求出垂直平分线的斜率,用点斜式写出垂直平分线的方程,并化为一般式.解答:解:(1)由两点式得AB所在直线方程为:,即6x﹣y+11=0.(2)设M的坐标为(x0,y0),则由中点坐标公式得,,即点M的坐标为(1,1).故.(5分)(3)M的坐标为(1,1).设BC的垂直平分线斜率为k,又BC的斜率是k1=,则k=∴BC的垂直平分线方程为即3x+2y﹣5=0(8分)点评:本题考查直线方程的两点式、点斜式、中点公式、两点间的距离公式的应用,以及两直线垂直的性质.12.已知直线l:x+ay+1﹣a=0.(Ⅰ)若l与线段AB有交点,其中A(﹣2,﹣1),B(1,1),求实数a的取值范围;(Ⅱ)若l与x轴的负半轴交M点,交y轴正半轴于N,求△OMN的面积最小时直线l的方程.考点:直线的一般式方程;直线的斜率.专题:计算题.分析:(Ⅰ)结合图形,求出直线PA的斜率,直线PB的斜率,从而得到直线PA的倾斜角和直线PB的倾斜角,即可求求实数a的取值范围;(Ⅱ)先求直线与x轴、y轴的截距,再利用基本不等式求面积的最小值.解答:解:(Ⅰ)直线l过定点P(﹣1,1),K PA=2,K PB=0,要使l满足条件,必须当a=0时,满足条件;当a≠0时,l的斜率或即a>0或,综上得;(Ⅱ),依题意有,而,∵a<0,∴,即,当a=﹣1时,面积的最小值为2,此时直线的方程为x﹣y+2=0.点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,体现了数形结合的数学思想,考查学生会求直线与x轴、y轴的截距,会利用基本不等式求面积的最小值,会写出直线的一般式方程13.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图).将矩形折叠,使A点落在线段DC上.(I)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(II)当时,求折痕长的最大值;(Ⅲ)当﹣2≤k≤﹣1时,折痕为线段PQ,设t=k(2|PQ|2﹣1),试求t的最大值.考点:直线的一般式方程;函数最值的应用.专题:创新题型;数形结合;分类讨论.分析:(1)分情况讨论斜率表示直线的方程(2)表示出线段后,分类讨论求最值(3)表示线段,用均值不等式求最值解答:解:(1)①当k=0时,此时A点与D点重合,折痕所在的直线方程②当k≠0时,将矩形折叠后A点落在线段DC上的点记为G(a,1),所以A与G关于折痕所在的直线对称,有k OG•k=﹣1⇒⇒a=﹣k故G点坐标为G(﹣k,1),从而折痕所在的直线与OG的交点坐标(线段OG的中点)为折痕所在的直线方程,即由①②得折痕所在的直线方程为:(2)当k=0时,折痕的长为2;当时,折痕直线交BC于点,交y轴于∵∴折痕长度的最大值为而故折痕长度的最大值为(3)当﹣2≤k≤﹣1时,折痕直线交DC于,交x轴于∵∴∵﹣2≤k≤﹣1∴(当且仅当时取“=”号)∴当时,t取最大值,t的最大值是.点评:本题考察内容比较综合,考察了求直线方程、求函数的最值、均值不等式、数形结合和分类讨论思想,属难题14.(文科做)已知直线l1:mx+ny+4=0,l2:(m﹣1)x+y+n=0,l1经过(﹣1,﹣1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y﹣16=0,BC边上的中线AD所在直线方程为2x﹣3y+1=0,求AC的长.考点:直线的一般式方程与直线的平行关系;两条直线的交点坐标.专题:计算题.分析:(文科做)把点(﹣1,﹣1)代入l1得:n﹣m+4=0,当n=0时,两直线不垂直.所以n不等于0.由此能求出m,n的值.(理科做)直线CE:2x+3y﹣16=0,则AB斜率k=,直线AB:y﹣4=(x﹣3).与直线AD:2x﹣3y+1=0交点A(1,1).设C(m,n),C在直线CE:2x+3y﹣16=0上,则2m+3n﹣16=0,由此能得到C(5,2),从而求出AC的长.解答:解:(文科做)把点(﹣1,﹣1)代入l1得:n﹣m+4=0,当n=0时,两直线不垂直.所以n不等于0.﹣(1﹣m)=﹣1,联立解得m=2或者m=﹣2.当m=2时,n=﹣2,当m=﹣2时,n=﹣6.(理科做)直线CE:2x+3y﹣16=0,则AB斜率k=,直线AB:y﹣4=(x﹣3)3x﹣2y﹣1=0与直线AD:2x﹣3y+1=0交点A(1,1).设C(m,n),C在直线CE:2x+3y﹣16=0上,则2m+3n﹣16=0,BC中点D(,)在直线AD:2x﹣3y+1=0上,3+m﹣(4+n)+1=0,解方程组得C(5,2).∴AC==.点评:本题考查两直线平行的关系和条件的应用,考查直线的交点坐标和两点间距离公式,解题时要认真审题,仔细解答.15.已知点A(3,1),在直线x﹣y=0和y=0上分别有点M和N使△AMN的周长最短,求点M、N的坐标.考点:两条直线的交点坐标.专题:计算题.分析:点A(3,1),在直线x﹣y=0和y=0上分别有点M和N使△AMN的周长最短,只需把A对称到两条直线的另一侧,A1A连线与两条直线的交点就是所求的点M、N的坐标,如图.解答:解:如图,A(3,1)关于y=x的对称点A1(1,3),A(3,1)关于y=0的对称点A2(3,﹣1),△AMN的周长最小值为|A1A2|,|A1A2|=2,A1A2的方程:2x+y﹣5=0.A1A2与x﹣y=0的交点为M,由⇒M(,),A1A2与y=0的交点N,由⇒N(,0).点评:本题考查两条直线的交点坐标,对称知识,考查计算能力,是基础题.16.求证:不论λ取什么实数时,直线(2λ﹣1)x+(λ+3)y﹣(λ﹣11)=0都经过一个定点,并求出这个定点的坐标.考点:过两条直线交点的直线系方程.专题:计算题.分析:直线方程即λ(2x+y﹣1)+(﹣x+3y+11)=0,一定经过2x+y﹣1=0和﹣x+3y+11=0 的交点,联立方程组可求定点的坐标.解答:证明:直线(2λ﹣1)x+(λ+3)y﹣(λ﹣11)=0 即λ(2x+y﹣1)+(﹣x+3y+11)=0,根据λ的任意性可得,解得,∴不论λ取什么实数时,直线(2λ﹣1)x+(λ+3)y﹣(λ﹣11)=0都经过一个定点(2,﹣3).点评:本题考查经过两直线交点的直线系方程形式,直线k(ax+by+c)+(mx+ny+p)=0 表示过ax+by+c=0和mx+ny+p=0的交点的一组相交直线,但不包括ax+by+c=0这一条.17.一条光线从点M(2,3)射出,遇x轴反射后经过N(﹣1,6),求入射光线所在直线方程.考点:与直线关于点、直线对称的直线方程;直线的一般式方程.专题:数形结合.分析:设入射光线与x轴的交点为P(x,0),由k MP=﹣k NP ,解出P的坐标,可求得直线MP的斜率,用点斜式写直线MP的方程.解答:解:设入射光线与x轴的交点为P(x,0),则直线MP的倾斜角与直线NP的倾斜角互补,则k MP=﹣k NP ,(3分)∴,∴x=0,即P(1,0),(6分)∴,∴直线MP的方程为y﹣0=3(x﹣1),即3x﹣y﹣3=0.(10分)点评:本题考查用点斜式求直线方程的方法,体现了数形结合的数学思想.18.已知两点A(2,3)、B(4,1),直线l:x+2y﹣2=0,在直线l上求一点P.(1)使|PA|+|PB|最小;(2)使|PA|﹣|PB|最大.考点:与直线关于点、直线对称的直线方程;直线的两点式方程.专题:计算题;综合题.分析:先判断A、B与直线l:x+2y﹣2=0的位置关系,即把点的坐标代入x+2y﹣2,看符号相同在同侧,相反异侧.(1)使|PA|+|PB|最小,如果A、B在l的同侧,将其中一点对称到l的另一侧,连线与l的交点即为P;如果A、B在l的异侧,则直接连线求交点P即可.(2)使|PA|﹣|PB|最大.如果A、B在l的同侧,则直接连线求交点P即可;如果A、B在l的异侧,将其中一点对称到l的另一侧,连线与l的交点即为P.解答:解:(1)可判断A、B在直线l的同侧,设A点关于l的对称点A1的坐标为(x1,y1).则有+2•﹣2=0,•(﹣)=﹣1.解得x1=﹣,y1=﹣.由两点式求得直线A1B的方程为y=(x﹣4)+1,直线A1B与l的交点可求得为P(,﹣).由平面几何知识可知|PA|+|PB|最小.(2)由两点式求得直线AB的方程为y﹣1=﹣(x﹣4),即x+y﹣5=0.直线AB与l的交点可求得为P(8,﹣3),它使|PA|﹣|PB|最大.点评:本题考查点与直线的位置关系,直线关于直线对称问题,以及平面几何知识,是中档题.19.实数x,y滿足x2+y2+2x﹣4y+1=0,求(1)的最大值和最小值;(2)2x+y的最大值和最小值;(3)的最大值和最小值.考点:两点间距离公式的应用;三角函数的最值;斜率的计算公式.专题:数形结合.分析:(1)把圆的方程化为标准形式,求出圆心坐标和半径,表示圆上的点(x,y)与点A(4,0)连线的斜率,过点A的圆的切线有两条,一条是x轴,另一条是AM,AM的斜率最小,x轴的斜率最大.(2)令2x+y=t,t表示过圆上的点且斜率等于﹣2的直线在y轴上的截距,当直线2x+y=t与圆相切时得到的t值,一个最大,另一个最小.(3)=表示圆上的点与点B(1,0)连线的长度,最大值是|CB|加上半径2,最小值是|CB|减去半径2.解答:解:x2+y2+2x﹣4y+1=0 即(x+1)2+(y﹣2)2=4,表示一个以C(﹣1,2)为圆心,以2为半径的圆,如图:(1)表示圆上的点(x,y)与点A(4,0)连线的斜率,设圆的切线斜率为k,圆的切线方程为y﹣0=k(x﹣4),即kx﹣y﹣4k=0,由2=,k=0 或﹣20,结合图形知,的最大值为0,最小值为﹣20.(2)令2x+y=t,t表示过圆上的点且斜率等于﹣2的直线在y轴上的截距,当直线2x+y=t和圆相切时,有2=,∴t=±2,故2x+y的最大值为2,最小值为﹣2.(3)=表示圆上的点与点B(1,0)连线的长度,圆心C(﹣1,2)到点B(1,0)的长度是2,∴的最大值2+2,最小值为2﹣2.点评:本题考查斜率公式的应用,直线在y轴上的截距的意义,点到直线的距离公式的应用,体现了数形结合的数学思想.20.已知点A(1,4),B(6,2),试问在直线x﹣3y+3=0上是否存在点C,使得三角形△ABC的面积等于14?若存在,求出C点坐标;若不存在,说明理由.考点:点到直线的距离公式.专题:计算题.分析:求出AB的方程,AB的距离,设出C点的坐标,C在AB的垂线上,以及C到AB的距离和面积,求出C 的坐标.解答:解:AB=,直线AB的方程为,即2x+5y﹣22=0,假设在直线x﹣3y+3=0上是否存在点C,使得三角形ABC的面积等于14,设C的坐标为(m,n),则一方面有m﹣3n+3=0①,另一方面点C到直线AB的距离为,由于三角形ABC的面积等于14,则,|2m+5n ﹣22|=28,即2m+5n=50②或2m+5n=﹣6③. 联立①②解得,;联立①③解得m=﹣3,n=0. 综上,在直线x ﹣3y+3=0上存在点C或(﹣3,0),使得三角形ABC 的面积等于14.点评: 本题考查点到直线的距离,考查计算能力,是基础题.21.设x ﹣y+1=0,求的最小值.考点: 点到直线的距离公式.专题:计算题. 分析: 由题设条件知,p=可看作点A (﹣3,5)和B (2,15)到直线x ﹣y+1=0,上的点的距离之和,作A (﹣3,5)关于直线x ﹣y+1=0,对称的点A ′(4,﹣2),则解答:解:=可看作点A (﹣3,5)和B (2,15) 到直线x ﹣y+1=0,上的点的距离之和, 作A (﹣3,5)关于直线x ﹣y+1=0, 对称的点A ′(4,﹣2),则本题考查圆锥曲线的性质和应用,解题时要注意点到直线的距离,点评:22.已知直线L:x+y﹣1=0(1)求直线2x+2y+3=0与直线L之间的距离;(2)求L关于(﹣1,0)的对称直线.考点:两条平行直线间的距离.专题:计算题.分析:(1)由于2x+2y+3=0可以化简为x+y+,代入两平行线间的距离公式可求(2)由题意可得(﹣1,0)不在直线L:x+y﹣1=0上,则L关于(﹣1,0)对称的直线与与L平行,且(﹣1,0)到两直线的距离相等,代入可求解答:解:(1)∵2x+2y+3=0可以化简为x+y+代入两平行线间的距离公式可得d==(2)由题意可得(﹣1,0)不在直线L:x+y﹣1=0上则L关于(﹣1,0)对称的直线与与L平行,故可设所求的直线方程为x+y+c=0(c≠﹣1)∴∴c=3或c=﹣1(舍)∴所求的直线方程为:x+y+3=0点评:本题主要考查了点到直线的距离公式及两平行线间的距离公式的应用,直线关于点对称直线的求解(此类问题一定要注意判断点是否在已知直线上)转化为了距离问题.23.如图,在直角坐标系中,射线OA:x﹣y=0(x≥0),OB:x+3y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B点.①当AB的中点为P时,求直线AB的方程;②当AB的中点在直线y=x上时,求直线AB的方程.考点:与直线有关的动点轨迹方程;中点坐标公式;两条直线的交点坐标.专题:计算题.分析:①由题意直线AB的斜率不为0,因为过点P,故可设为:x=my+1,分别与射线OA、OB联立,求出A、B点坐标,因为AB的中点为P,由中点坐标公式列方程求解即可.②同①求出A、B点坐标,求出中点坐标,因为AB的中点在直线y=x上,代入求解即可.解答:解:①由题意直线AB的斜率不为0,因为过点P,故可设为:x=my+1,分别与射线OA、OB联立,得A(,),B(,)因为AB的中点为P,由中点坐标公式,解得m=所以直线AB的方程为:2x﹣(1﹣)y﹣2=0②由①可知AB的中点M坐标为:(,),因为AB的中点在直线y=x上,所以=,解得:m=,所以直线AB的方程为:3x﹣(3﹣)y﹣3=0点评:本题考查两条直线的交点坐标、中点坐标公式及求直线方程问题,考查运算能力.。

高中数学直线与方程习题及解析

高中数学直线与方程习题及解析

1.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标.解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意, 由光的反射定律得k P A =-k PB ,即3x +1=13-x ,解得x =2,即P (2,0). 2.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率.解 如右图,由题意知∠BAO =∠OAC =30°,∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan 150°=-33, k AC =tan 30°=33. 3.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c的大小.解 画出函数的草图如图,f (x )x可视为过原点直线的斜率. 由图象可知:f (c )c >f (b )b >f (a )a.4.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD .(2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值.(1)证明 由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53, 则k AB ·k CD =-1,∴AB ⊥CD .(2)解 ∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a=-1,解得a =1或a =3.5. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解 由斜率公式得k OP =t -01-0=t , k QR =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t1-2t -1=2-2t=-1t . ∴k OP =k QR ,k OR =k PQ ,从而OP ∥QR ,OR ∥PQ .∴四边形OPQR 为平行四边形.又k OP ·k OR =-1,∴OP ⊥OR ,故四边形OPQR 为矩形.6.已知四边形ABCD 的顶点A (m ,n ),B (5,-1),C (4,2),D (2,2),求m 和n 的值,使四边形ABCD 为直角梯形.解 ∵四边形ABCD 是直角梯形,∴有2种情形:(1)AB ∥CD ,AB ⊥AD ,由图可知:A (2,-1).(2)AD ∥BC ,AD ⊥AB , ⎩⎪⎨⎪⎧ k AD =k BC k AD ·k AB =-1 ⇒⎩⎪⎨⎪⎧n -2m -2=3-1n -2m -2·n +1m -5=-1 ∴⎩⎨⎧ m =165n =-85. 综上⎩⎪⎨⎪⎧ m =2n =-1或⎩⎨⎧ m =165n =-85.7.已知直线l 1与l 2的方程分别为7x +8y +9=0,7x +8y -3=0.直线l 平行于l 1,直线l 与l 1的距离为d 1,与l 2的距离为d 2,且d 1∶d 2=1∶2,求直线l 的方程.解 因为直线l 平行l 1,设直线l 的方程为7x +8y +C =0,则d 1=|C -9|72+82,d 2=|C -(-3)|72+82. 又2d 1=d 2,∴2|C -9|=|C +3|.解得C =21或C =5.故所求直线l 的方程为7x +8y +21=0或7x +8y +5=0 8.△ABC 中,D 是BC 边上任意一点(D 与B ,C 不重合),且|AB |2=|AD |2+|BD |·|DC |.求证:△ABC 为等腰三角形.证明 作AO ⊥BC ,垂足为O ,以BC 所在直线为x 轴,以OA 所在直线为y 轴,建立直角坐标系(如右图所示).设A (0,a ),B (b,0),C (c,0),D (d,0).因为|AB |2=|AD |2+|BD |·|DC |,所以,由距离公式可得b 2+a 2=d 2+a 2+(d -b )(c -d ),即-(d -b )(b +d )=(d -b )(c -d ).又d -b ≠0,故-b -d =c -d ,即-b =c .所以|AB |=|AC |,即△ABC 为等腰三角形.9.一束平行光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线与直线l 的交点坐标.解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得⎩⎨⎧ b a ·⎝⎛⎭⎫-43=-18×a 2+6×b 2=25,解得⎩⎪⎨⎪⎧a =4b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3),又由反射光线过P (-4,3),两点纵坐标相等,故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧ y =38x +6y =25,解得⎩⎪⎨⎪⎧x =78y =3,7∴反射光线与直线l的交点坐标为⎝⎛⎭⎫8,3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章:直线与方程的知识点一、基础知识倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<或),0[πα∈2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.注. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.3 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 4. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=. 注.①两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.②线段12P P 中点坐标公式1212(,)22x x y y ++.5. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.注. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.6.点法式方程(附加): 若直线l 的法向量),(B A n =,且过点(),00y x ,则直线的方程为0)()(00=-+-y y B x x A .显然一般式方程0Ax By C ++=中的系数构成的向量),(B A 即为直线的法向量.注. 两条直线平行与垂直的判定在一般直线方程中的判定已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=;(2)1l ∥00,01221122112212≠-≠-=-⇔C B C B C A C A B A B A l 或且;(3)1l 与2l 重合0,0,01221122112212=-=-=-⇔C B C B C A C A B A B A l 且; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax B y C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==二、典型例题分析例1:已知直线l 过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.例2: 1.已知直线l 过点P(-1,2),且点A(-2,-3),B(3,0)到直线的距离相等,求直线l 的方程;2.已知直线l 过点P(-1,2),且在两坐标轴上的截距相等, 求直线l 的方程;3.已知直线l 过点P(-1,2), A(m,3),求直线PA 的方程;4. 已知直线l 过点P(-1,2),倾斜角等于直线y=3x 的倾斜角的两倍, 求直线l 的方程.例 3.直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)例5 与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0例6.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 。

例7直线023cos =++y x α的倾斜角的范围是( ) A. ]65,2()2,6[ππππ⋃ B. ),65[)6,0[πππ⋃ C. ]65,0[π D. ]65,6[ππ例8.已知三直线)0(02:1>=+-a a y x l ,直线0124:2=++-y x l 和01:3=-+y x l ,且21l l 和的 距离是5107, (1) 求a 的值(2) 能否找到一点P ,使P 同时满足下列三个条件:①P 是第一象限的点;②P 到1l 距离是到P 到2l 的距离的21③P 到1l 距离与到P 到3l 的距离的之比是5:2。

若能,求P 点的坐标,若不能,说明理由。

[课后练习]一.选择题1. 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A. 012=-+y x B. 052=-+y xC. 052=-+y xD. 072=+-y x3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211. 直线3y kx =+与圆22(3)(2)x y -+-=MN ≥k 的取值范围是A .3,04⎡⎤-⎢⎥⎣⎦ B .[)3,0,4⎛⎤-∞-+∞ ⎥⎝⎦C .⎡⎢⎣⎦ D .2,03⎡⎤-⎢⎥⎣⎦12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <014. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点x到直线 l 的距离是( )A. 2B. 1 2C. 22 15. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2), B (-1,6)等距离的直线的方程是 。

相关文档
最新文档