Mathematica矩阵的各种运算

合集下载

第六节用Mathematica作向量、矩阵运算

第六节用Mathematica作向量、矩阵运算

4
运行得出 向量的维 数为4 矩阵是2行3列 的
2, 3
6.3.2矩阵的加、 6.3.2矩阵的加、减法 矩阵的加 相同维数的表可以相加,它的和是对 应元素的相加所得的同维的表
@D D@D DD@D @D@D@ y i D@D@D@D @D @ { @ k
m1 = Array a, 3, 2 m2 = Array b, 3, 2 MatrixForm m1 + m2 a 1, 1 + b 1, 1 a a 2, 1 + b 2, 1 a a 3, 1 + b 3, 1 a ; ;
6.4 向量和矩阵的乘法
a1 b1 + a2 b2 + a3 b3
6.4.2 矩阵乘矩阵 计算下列矩阵的乘积
a1 b1 c1 c2 a2 a3 . d1 d2 b2 b3 e1 e2
iy J N{ k
J
m = a ,a ,a , b ,b ,b 1 1 2 3 1 2 3 m = c ,c , d ,d , e ,e 2 1 2 1 2 1 2 m .m 1 2
6.1 6.2 6.3 6.4 6.5
向量和矩阵的输入 获得表的元素 表的维数和加、减法 表的维数和加、 向量和矩阵的乘法 关于矩键盘输入一个表,用{ }将表的元素 括起,元素之间用逗号分隔。 括起,元素之间用逗号分隔。 例1 输入数据列0,16,64,144,256。定 义为变量data data={0,16,64,144,256} 例2 输入矩阵M= 2 5 1 0 1 3 1 2 2
1 1 1 1 1 1 ,0 - , 0 , - , - ,- , , ,0 2 2 2 2 2 4
例14 求上例中矩阵的特征值
8D8 < < < 8 @> > :> : : @D 8<

mathematica 矩阵 符号运算

mathematica 矩阵 符号运算

mathematica 矩阵符号运算
在Mathematica 中进行矩阵的符号运算是一个相对直接的过程。

以下是一些基本的示例:
创建矩阵:
在Mathematica 中,可以使用大括号{} 来创建矩阵。

例如,创建一个3x3 的矩阵A:
, a2, a3}, {b1, b2, b3}, {c1, c2, c3}}
a1, a2, ...` 是元素。

矩阵乘法:
使用* 运算符进行矩阵乘法。

例如,将矩阵A 和B 相乘:
, e2, e3}, {f1, f2, f3}}
A * B
法。

矩阵加法:
使用+ 运算符进行矩阵加法。

两个矩阵必须有相同的维度才能相加。

例如:
这将执行矩阵加法。

4. 元素级别的运算:
使用 .* 和/.* 运算符进行元素级别的乘法和除法。

例如:
B (点乘)
A/B (逐元素除法)
的逆**:
使用Inverse 函数计算矩阵的逆。

注意,不是所有的矩阵都有逆矩阵,只有可逆的矩阵才有。

例如:
]
使用Det 函数计算矩阵的行列式。

不是所有的矩阵都有行列式,只有方阵才有。

例如:
行列式。

7. 求矩阵的特征值和特征向量:
使用Eigenvalues 和Eigenvectors 函数分别计算矩阵的特征值和特征向量。

注意,不是所有的矩阵都有特征值或特征向量,只有方阵才可能有。

例如:
Eigenvalues[A]
Eigenvectors[A]
特征向量。

9、用Mathematic计算行列式、矩阵

9、用Mathematic计算行列式、矩阵

9、用Mathematic 计算行列式、矩阵 在Mathematica 系统中,有固定的输入法和函数对矩阵的有关问题进行计算。

所以必须要掌握这些输入法与函数。

如:1、求行列式在Mathematica 系统中,用函数Det[b]求行列式的值,其中b 是所给行列式的元素所构成的二维数表,b 的一维子表顺次由行列式的逐行(或列)上的元素构成.例1计算行列式.1245101124126853D -= 解:}};1,2,4,5{},1,0,1,1{},2,4,1,2{},6,8,5,3{{b ]1[In -==:]b [Det ]2[In =:122]2[Out -=2、矩阵的加法在Mathematica 系统中,矩阵的加减法实际上就是二维数表间的相应加减法.在二维数表的表达式后输入//MatrixForm 可输出矩阵形式的表达式.例2已知矩阵,612342017915,864202109751⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=B A 求.B A +解:}};8,6,4,2{},0,2,1,0{},1,5,7,9{{a ]1[In -==:}};6,1,2,3{},4,2,0,1{},7,9,1,5{{b ]2[In --==:b a ]3[In +=:b a ]4[In +=://MatrixForm}{5,6,5,14},{1,-1,0,4}6},{{6,6,16,1]3[Out ==MatrixForm //]4[Out⎪⎪⎪⎭⎫ ⎝⎛-1456540111616663、矩阵的乘法在Mathematica 系统中,矩阵用二维数表表示,矩阵a 与b 的乘法运算用ba ⋅表示.其中“∙”表示矩阵乘法运算符号.例3设矩阵,01202131,431103⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=B A 求.AB 解:]b ,a [Clear ]1[In =:;:}}1,4{},0,3{},13,{{a ]2[In -== ;: 2,1,0}}0,{1,3,1,2}{{b ]3[In -== b a ]4[In ⋅=:;,,,,,,5,5,2}}{1,0},36{06},211{{3]3[Out --= 4、矩阵的转置在Mathematica 系统中,求矩阵A 的转置矩阵用函数Transpose[A].例4若矩阵,452331021⎪⎪⎭⎫ ⎝⎛=A 求.AA ,A T T 解:;:}},2,453,3,{},1,2,0,1{{a ]1[In == MatrixForm//a]Transpose[]2[In =: a];T ranspose[b ]3[In ==:orm b//MatrixF a ]4[In ⋅=:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=452331021MatrixForm //]2[Out ⎪⎪⎭⎫ ⎝⎛=204754546MatrixForm //]4[Out 5、矩阵的逆矩阵在Mathematica 系统中,求矩阵A 的逆矩阵用函数Inverse[A].例5求矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵。

Mathematica教程第五章线性代数运算命令与例题

Mathematica教程第五章线性代数运算命令与例题
第五章 线性代数运算命令与例题
北京交通大学
5.1向量与矩阵的定义
数学上矩阵是这样定义的: 由个数排成m行n列的数表:
称为m行n列矩阵,特别,当m=1时就是线性代数中的向量。 记作:
两个矩阵称为同型矩阵。
nSinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5Sin4SinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5S4inSinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5Sin4SinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5Sin4SinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5S4inSinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6inS5inS4inS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nSi3nS8inS7inS6in5S4inSinS6inS5inS4Sini3nSi2nS7inS6inS5Sini4nS
{{d,b}{,c, a}
Out[20]:={a + 2 b, 3 a + 4 b, 5 a + 6 b}
1 2 3
4
bacdbacdbac{d{bdac,db}{,c, a}
例15:求矩阵
2 1
3 1
1 1
与 2
1
的乘积。
bacdbacdbacdbacd
1

mathematica矩阵相乘

mathematica矩阵相乘

mathematica矩阵相乘Mathematica是一种强大的数学软件,其中的矩阵相乘功能可以帮助我们进行矩阵运算。

矩阵相乘是线性代数中的重要概念之一,它可以帮助我们解决各种实际问题。

我们来看看什么是矩阵相乘。

矩阵相乘是指将两个矩阵进行运算,得到一个新的矩阵的过程。

在Mathematica中,我们可以使用Dot 函数来进行矩阵相乘运算。

在Mathematica中,我们可以用以下的方式定义一个矩阵:m1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};m2 = {{9, 8, 7}, {6, 5, 4}, {3, 2, 1}};这样我们就定义了两个3x3的矩阵m1和m2。

接下来,我们可以使用Dot函数将这两个矩阵进行相乘运算:result = Dot[m1, m2];运行以上代码后,我们可以得到一个新的矩阵result,它是矩阵m1和m2相乘的结果。

我们可以使用MatrixForm函数来美化输出结果:MatrixForm[result]矩阵相乘的结果如下所示:10 8 628 23 1846 38 30矩阵相乘的运算规则是:两个矩阵相乘,要求第一个矩阵的列数等于第二个矩阵的行数。

相乘后的矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

如果不满足这个条件,矩阵相乘将无法进行。

矩阵相乘在实际应用中有着广泛的应用。

例如,在计算机图形学中,我们可以使用矩阵相乘来进行坐标变换。

在机器学习中,矩阵相乘可以帮助我们进行特征提取和数据降维。

在网络推荐系统中,矩阵相乘可以帮助我们计算用户的偏好和物品的相似度。

除了矩阵相乘,Mathematica还提供了其他一些与矩阵相关的功能。

例如,我们可以使用Transpose函数来进行矩阵的转置操作。

我们也可以使用Eigenvalues和Eigenvectors函数来计算矩阵的特征值和特征向量。

这些功能可以帮助我们更好地理解和分析矩阵。

总结一下,Mathematica提供了强大的矩阵相乘功能,可以帮助我们进行矩阵运算。

mathematica矩阵运算

mathematica矩阵运算
矩阵的运算(加法、数乘、乘法、转置、逆)
二、实验目的
熟悉Mathematica软件中关于矩阵运算的各 种命令
三、常用命令
1. MatrixForm[A] 功能:把矩阵A屏幕输入.
2. Transpose[A] 功能:乘矩阵A的转置矩阵.
3. A+B 功能:求矩阵A与B的和运算.
4. A-B 功能:求矩阵A与B的减运算.
MatrixForm[A]
Out[1]:={{-2,5,-1,3},{1,-9,13,7},{3,-1,5,-5},{2,8,-7,-10}}
2 5 1 3
Out[2]//MatrixForm=
1
3
9 13 1 5
7
5
2
8
7
10
In[3]:=Det[A]
Out[3]:=312
2.In[4]:B=Transpose[A] MatrixForm[B]
四、例子
简单操作步骤
In[1]:=A={{3,1,1},{2,1,2},{1,2,3}} MatrixForm[A]
Out[1]:={{3,1,1},{2,1,2},{1,2,3}}
Out[2]//MatrixForm=
3 1 1
2
1
2
1 2 3
In[3]:=B={{1,1,-1},{2,-1,0},{1,0,1}} MatrixForm[B]
Out[4]:={{-2,1,3,2},{5,-9,-1,8},{-1,13,5,-7},{3,7,-5,-10}}
2 1 3 2
Out[5]//MatrixForm=
5
9 1
8
1 13 5 7
3

Mathematica的主要功能

Mathematica的主要功能

3、数
Mathematica 以符号运算为主,这与一些语言有所不同,例如源自, e, 2 ,3
2 等符号表示准确数,近似数用带小数点的数表示,例如
1.2,2.3*10^5 等。Mathematica 中求近似值以及近似值的精度控制
函数为函数“N”,其调用格式如下:
N[表达式] 计算表达式的近似值,具有机器规定的精度(16 位有 效数字),但是按标准输出只显示前 6 位有效数字
每次运行结束后,Mathematica 会自动在输入的式子前面加上 “In[n]:=”(n 表示输入命令的序列号),在输出的答案前面加上 “Out[n]=”(n 表示输出结果的序列号),以便分清输入和输出并 自动加上编号。可以用“%”表示前一个输出的内容,“%%” 表 示倒数第 2 个输出的内容,依此类推,“% n”表示第 n 个(即 Out[n])输出的内容。也就是说 Mathematica 输出的内容被系统 记忆,它们可以像其它变量一样在后面的计算中引用。
四、编程基础
1、自定义函数
前面介绍了 Mathematica 本身自带的内置函数,下面我们以实 例来说明定义函数的方法。例如,要定义函数 f (x) ex (sin x 1) ln x2 , 我们只要键入命令 f[x_]:=Exp[x]*(Sin[x]+1)+Log[x^2] 运行即可。
注意:在函数的自变量后面有一个下划线“_”,这表示 x 为自变量, 可以把 x 代入为任何的值进行计算;等号前面的有个冒号,表示定 义函数。同样可以定义多变量函数。定义了函数 f[x]后,可以直接 地调用 f[x]来进行符号数学运算(例如积分、微分等)
三、基本代数运算
下面介绍一些实现基本代数运算的函数,用于变换数学表达式、解 方程和解不等式。Mathematica 具有强大的符号运算功能,下面列 举的函数均可代入具有字母的表达式进行计算,得到精确解。

mathematics矩阵运算

mathematics矩阵运算

mathematics矩阵运算矩阵运算是线性代数中重要的概念之一,广泛应用于各个领域,包括物理、工程、计算机科学和金融等。

本文将一步一步地介绍矩阵的定义、基本运算、特殊类型的矩阵以及一些常见的矩阵运算。

一、矩阵的定义矩阵是一个按照矩形排列的数的集合,可以用方括号表示。

例如,一个3行2列的矩阵可以表示为:\[A =\begin{bmatrix}a_{1,1} & a_{1,2} \\a_{2,1} & a_{2,2} \\a_{3,1} & a_{3,2} \\\end{bmatrix}\]其中,\[a_{i,j}\]表示矩阵A中第i行第j列的元素。

矩阵中的元素可以是实数或者复数。

二、基本运算1. 矩阵的加法和减法:两个相同大小的矩阵可以进行加法和减法运算。

对应位置上的元素相加或相减,得到的结果矩阵具有相同的大小。

例如,对于两个3行2列的矩阵\[A\]和\[B\],它们的和\[A + B\]可以表示为:\[A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} \\a_{3,1}+b_{3,1} & a_{3,2}+b_{3,2} \\\end{bmatrix}\]2. 矩阵的标量乘法:矩阵可以与一个实数或者复数进行乘法运算,我们称之为标量乘法。

将矩阵中的每一个元素与标量相乘,得到的结果矩阵具有相同的大小。

例如,对于一个3行2列的矩阵\[A\]和一个标量\[k\],它们的乘积\[k \cdot A\]可以表示为:\[k \cdot A =\begin{bmatrix}k \cdot a_{1,1} & k \cdot a_{1,2} \\k \cdot a_{2,1} & k \cdot a_{2,2} \\k \cdot a_{3,1} & k \cdot a_{3,2} \\\end{bmatrix}\]3. 矩阵的乘法:矩阵的乘法是定义在两个矩阵之间的运算,它不同于矩阵加法和减法。

mathematica数值计算

mathematica数值计算

mathematica数值计算Mathematica是一款强大的数学计算软件,可以进行各种数值计算和符号计算。

本文将介绍Mathematica在数值计算方面的应用。

一、数值计算的基础在Mathematica中,我们可以使用各种内置函数进行数值计算。

比如,我们可以使用N函数将一个表达式或方程转化为数值,并指定精度。

例如,我们可以计算sin(π/4)的数值:N[Sin[π/4]]结果为0.707107。

二、数值积分Mathematica提供了强大的数值积分功能。

我们可以使用NIntegrate函数对函数进行数值积分。

例如,我们可以计算函数f(x) = x^2在区间[0, 1]上的积分:NIntegrate[x^2, {x, 0, 1}]结果为0.333333。

三、数值方程求解Mathematica还可以解决各种数值方程。

我们可以使用NSolve函数对方程进行数值求解。

例如,我们可以求解方程x^2 - 2x + 1 =0的解:NSolve[x^2 - 2x + 1 == 0, x]结果为{{x -> 1}},即方程的解为x=1。

四、数值优化Mathematica也可以进行数值优化。

我们可以使用NMinimize函数对一个函数进行最小化。

例如,我们可以求解函数f(x) = x^2的最小值:NMinimize[x^2, x]结果为{x -> 0.},即函数的最小值为0。

五、数值微分Mathematica还提供了数值微分的功能。

我们可以使用ND函数对函数进行数值微分。

例如,我们可以计算函数f(x) = x^2的导数在x=1的值:ND[x^2, x, 1]结果为2,即函数在x=1处的导数为2。

六、数值级数求和Mathematica可以对级数进行数值求和。

我们可以使用NSum函数对级数进行数值求和。

例如,我们可以计算级数1/2^k的和:NSum[1/2^k, {k, 1, ∞}]结果为1,即级数的和为1。

数学实验3-用Mathematica的相应功能进行向量、矩阵运算

数学实验3-用Mathematica的相应功能进行向量、矩阵运算
2
命令: 命令:Table[n^2,{n,1,10}] 以内的奇数。 例4:给出 以内的奇数。 :给出30以内的奇数 命令:Table[n,{n,1,30,2}] 命令: 例5:生成四阶单位阵。 :生成四阶单位阵。 命令: 命令:IdentityMatrix[4] 为对角元的对角矩阵, 例6:生成一个以 :生成一个以1,2,3,4,5为对角元的对角矩阵, 并用 为对角元的对角矩阵 矩阵形式表示。 矩阵形式表示。 命令: 命令:DiagonalMatrix[{1,2,3,4,5}] MatrixForm[%]
关于矩阵的几个常用函数
a b 例12: (1).求矩阵 c d 的逆矩阵 求矩阵 1 2 3 (2).求矩阵 4 5 6 的转置矩阵 求矩阵 7 8 9 (3).求(2)中矩阵的行列式 求 ) (4).求(2)中矩阵的逆矩阵 求 )
(1) Inverse[{{a,b},{c,d}}] (2) m={{1,2,3},{4,5,6},{7,8,9}} m1=Transpose[m] (3) Det[m] (4) Inverse[m]
1 2 4 5
3 6
的维数
表的维数和矩阵的加、 表的维数和矩阵的加、减法
矩阵的加、 矩阵的加、减法 在Mathematica中,矩阵可以表述成表,而相同维数 中 矩阵可以表述成表, 的表可以相加, 的表可以相加,它的和是两表对应元素相加所得的 同维的表。 同维的表。 例9:{a1,a2,a3}+{b1,b2,b3} : 例10:m1=Array[a,{3,2}] : m2=Array[b,{3,2}] MatrixForm[m1+m2]
关于矩阵的几个常用函数
2x1 + x 2 − 5x3 + x 4 = 8 x1 − 3x 2 − 6x 4 = 9 例13:求方程组 2x − x + 2x = −5 : 的解 2 3 4 x1 + 4x 2 − 7x3 + 6x 4 = 0

Mathematica表达式及其运算规则

Mathematica表达式及其运算规则
?dotab或ab向量a与b的数量积?crossab向量a与b的矢量积将矩阵m中的每个元素平方?pq矩阵乘法运算其中p为mk阶矩阵q为kn阶矩阵上页下页退出?detm求方阵m的行列式?matrixforma以矩阵的形式显示a?matrixpowermn?transposea矩阵a的转置矩阵?eigenvaluesm求矩阵m的特征值?eigenvectorsm求矩阵m的特征向量?eigensystemm求矩阵m的特征值与特征向量?identitymatrixn建立一个nn的单位阵?diagonalmatrixlist建立一个对角阵其对角线元素为表list上页下页退出?inversem求方阵m的逆矩阵?linearsolveab求线性方程组axb的解?nullspacea求满足方程ax0的基本向量组即零解空间?rowreducea将矩阵a进行行变换?qrdecompositionm矩阵m的qr分解?schurdecompositionm矩阵m的schur分解?jordandecompositionm矩阵m的jordan分解?ludecompositionm矩阵m的lu分解上页下页退出3mathematica中数的类型与精度在mathematica中进行数学运算的数有四种类型它们分别是integer整数rational有理数real实数complex复数
Plus Times , 2, 上面的{1,2,3,4}称为表(List),表是 , 4 FullForm 1a, b 3,c List 1, x Head Sin2, 3, 4 Sin
Mathematica中非常有用的结构。首先, 表可以理解成数学意义下的集合,例如 对集合{1,{2,3},4,{5,6,7},8,9},它是含有6 个元素的子集合,其中{2,3}及{5,6,7}此集 合的子集合。

mathematica 矩阵计算 概述及解释说明

mathematica 矩阵计算 概述及解释说明

mathematica 矩阵计算概述及解释说明1. 引言1.1 概述本篇文章旨在介绍和解释Mathematica中的矩阵计算,着重讨论矩阵的定义、性质以及常见的操作和运算。

Mathematica是一种强大的数学软件,它提供了丰富的功能和工具,特别适用于进行复杂矩阵计算。

通过学习本文,读者将能够全面了解Mathematica中矩阵计算的基本概念和使用方法。

1.2 文章结构本文共分为五个主要部分。

首先,在引言部分我们将对文章进行概述,并明确目标。

接下来,在Mathematica 矩阵计算概述部分,我们会详细介绍矩阵的定义、性质以及Mathematica中表示矩阵的方法。

然后,在矩阵计算的示例说明部分,我们会给出相关示例来演示如何进行一些常见操作,例如矩阵乘法、转置操作以及线性方程组求解等。

之后,在Mathematica中其他相关功能介绍部分,我们会简要介绍一些与矩阵计算相关的其他功能和工具,例如图形化展示功能、统计分析功能以及符号运算功能。

最后,在结论与展望部分,我们会总结我们的主要观点,并探讨Mathematica矩阵计算的未来发展方向。

1.3 目的本文的目的是提供给使用Mathematica进行矩阵计算的用户一个全面且清晰的概述和解释。

通过深入了解Mathematica中矩阵计算的基本概念和使用方法,读者将能够更加高效地应用Mathematica进行复杂矩阵运算,并在实际问题中找到合适的解决方案。

同时,本文也旨在展示Mathematica提供的其他功能和工具,使读者能够充分利用这些功能来辅助他们在数学领域中进行更广泛、更深入的研究与应用。

2. Mathematica 矩阵计算概述2.1 矩阵的定义和性质在数学中,矩阵是由数字或符号排列成的矩形数组。

它可以有不同的维度,例如m行n列的矩阵具有m个元素的行和n个元素的列。

在Mathematica中,我们可以使用一维或二维列表来表示矩阵。

一维列表表示向量(即只有一个维度的矩阵),而二维列表表示矩阵。

Mathematica矩阵的各种运算

Mathematica矩阵的各种运算

Mathematica可进行矩阵的各种运算,如矩阵求逆、矩阵的转置、矩阵与向量的乘法等.下面列出主要的运算.记k为常数,u,v为向量,A,B为矩阵k*A------------------------常数乘矩阵k+u-----------------------向量u的每一个元素加上ku+v----------------------向量的对应元素相加向量的内积u*v-----------------------向量的对应元素相乘矩阵乘向量向量乘矩阵矩阵乘矩阵Transpose[A]-----------------求矩阵A的转置阵Inverse[A]--------------------求矩阵A的逆矩阵Det[A]-------------------------求矩阵A的行列式Eigenvalues[A]-----------------求数字阵A的特征值Eigentvectors[A]---------------求数字阵A的特征向量LinearSolve[A,v]---------------求解线性方程组Ax=vChop[%n]-------------------舍去第n个输出中无实际意义小量矩阵可以左乘以向量或右乘以向量, Mathematica也不区分“行”,或“列”向量,自动进行可能的运算.例:In[1]:=A={{a,b},{c,d}}; v={x,y};In[2]:= (A左乘以v)Out[2]={ax+by,cx+dy}In[3]:= (A右乘以v)Out[3]={ax+cy,bx+dy}In[4]:=Inverse[A]Out[4]=如果矩阵的元素是近似数,则求出的逆矩阵也是近似的。

In[5]:=B={{,},{,}}; Inverse[B]Out[5]=In[6]:=%.BOut[6]=结果与单位矩阵有微小误差,用函数Chop消去无实际意义小量In[7]:=Chop[%]Out[7]={{1.,0},{0,1.}}前面已介绍了用Solve解线性方程组,但对于矩阵形式Ax=v的线性方程组,用 LinearSolve[A,v]更方便.In[8]:=M={{2,1},{1,4}}; LinearSolve[M,{a,b}]有些符号打不出来,你也可以参见()Out[8]=。

Mathematica用法V

Mathematica用法V
A={c,d,e}; B=Table[Cos[(i+j)Pi],{i,1,3},{j,1,3}]; MatrixForm[A] TableForm[B] A.B A*B LinearSolve[A,c]
6、Mathematica 的逻辑运算与编程
I、逻辑运算
Mathematica软件也提供了逻辑运算功能。逻辑 运算可用于程序中的条件控制。 Mathematica软件中 的逻辑运算符与C语言中的逻辑运算符基本一致。
列表分量的读取
list[[k]]
第 k 个分量
list[[-k]]
倒数第 k 个分量
list[[i]][[j]]
第 i 个分量的第 j 个分量
list[[i,j]]
第 i 个分量的第 j 个分量
list[[{i,j,...}]]
{list[[i]],list[[j]], ... }
First[list]
5、Mathematica 的列表与矩阵运算
I、列表
列表是 Mathematica 的基本对象,可用来表示集合, 数组等。列表可分为标准列表和稀疏列表。 标准列表:
用大括号括起来的有限个元素,元素之间用逗号分隔。 稀疏列表:通常由 SparseArray 来定义。
In[1]:= x={1,2,"hello",{1,0}};
1、关系运算 常用的关系运算见下表:
x==y x!=y X<y
相等 不相等
小于
x>y x>=y X<=y
大于 大于等于 小于等于
关系运算的输出结果一般应该是Ture或False。
2、逻辑运算 逻辑运算且
False
II、编程
1、分支结构 在复杂的计算中经常需要根据表达式的情况(它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica可进行矩阵的各种运算,如矩阵求逆、矩阵的转置、矩阵与向量的乘法等.下面列出主要的运算.记k为常数,u,v为向量,A,B为矩阵
k*A------------------------常数乘矩阵
k+u-----------------------向量u的每一个元素加上k
u+v----------------------向量的对应元素相加
u.v-----------------------向量的内积
u*v-----------------------向量的对应元素相乘
A.u---------------------矩阵乘向量
u.A-----------------------向量乘矩阵
A.B--------------------------矩阵乘矩阵
Transpose[A]-----------------求矩阵A的转置阵
Inverse[A]--------------------求矩阵A的逆矩阵
Det[A]-------------------------求矩阵A的行列式
Eigenvalues[A]-----------------求数字阵A的特征值
Eigentvectors[A]---------------求数字阵A的特征向量
LinearSolve[A,v]---------------求解线性方程组Ax=v
Chop[%n]-------------------舍去第n个输出中无实际意义小量
矩阵可以左乘以向量或右乘以向量, Mathematica也不区分“行”,或“列”向量,自动进行可能的运算.
例:
In[1]:=A={{a,b},{c,d}}; v={x,y};
In[2]:=A.v (A左乘以v)
Out[2]={ax+by,cx+dy}
In[3]:=v.A (A右乘以v)
Out[3]={ax+cy,bx+dy}
In[4]:=Inverse[A]
Out[4]=
如果矩阵的元素是近似数,则求出的逆矩阵也是近似的。

In[5]:=B={{1.2,5.7},{4.2,5.6}}; Inverse[B]
Out[5]=
In[6]:=%.B
Out[6]=
结果与单位矩阵有微小误差,用函数Chop消去无实际意义小量
In[7]:=Chop[%]
Out[7]={{1.,0},{0,1.}}
前面已介绍了用Solve解线性方程组,但对于矩阵形式Ax=v的线性方程组,用
LinearSolve[A,v]更方便.
In[8]:=M={{2,1},{1,4}}; LinearSolve[M,{a,b}]
有些符号打不出来,你也可以参见(
http://210.41.4.20/course/22/23/sm00/Mathmatics/smf142.htm)
Out[8]=
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档