中考数学复习专题八几何图形的类比探究PPT精品课件
几何图形(39张PPT)数学
第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.
解
返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④
⑤
②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
人教版初中数学中考复习专题(中考复习) 类比思想应用PPT优秀课件
2 )× m2+2+n2
2
,
则
p2 - n2 = (2 +
人教版初中数学中考复习专题(中考 复习) 类比思想应用PPT优秀课件
人教版初中数学中考复习专题(中考 复习) 类比思想应用PPT优秀课件
课堂精讲
【解】(1)①证明:∵∠ACE+∠ECB=45°,∠BCF +∠ECB=45°,∴∠ACE=∠BCF.
方法提炼
类比型试题常常以“几何演变”为载体,由特 殊到一般进行拓展.学生在解题时,分解题目中的 基本图形,并且牢牢抓住题目中的不变属性,通过 正面与反面的类比,以及全等与相似的类比,构造 辅助线的类比等等,就能准确把握问题的切入点, 从而高效地寻找到问题的解决方案.
课堂精讲
例1 已知AC,EC分别为四边形ABCD和EFCG的对角线, 点E在△ABC内,∠CAE+∠CBE=90°. (1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF. ①求证:△CAE∽△CBF; ②若BE=1,AE=2,求CE的长;
人教版初中数学中考复习专题(中考 复习) 类比思想应用PPT优秀课件
人教版初中数学中考复习专题(中考 复习) 类比思想应用PPT优秀课件
课堂精讲
例2 三角形的布洛卡点是法国数学家和数学教育家 克洛尔于1816年首次发现,但他的发现并未被当时的人们 所注意.1875年,布洛卡点被一个数学爱好者法国军官布 洛卡重新发现,并用他的名字命名.如图1,若任意△ABC 内一点Q满足∠1=∠2=∠3=∠α,则点Q叫△ABC的布洛 卡点,∠α叫布洛卡角.
中考·数学
2020版
第一部分 系统复习
专题12 类比思想应用
考点解读
从近几年的中考试题来看,着重考查学生的探 究能力、推理能力、创造能力的类比型试题成为中 考的“新宠”.这类试题背景独特,以类比思维为中 心,与数学基础知识、数学思想方法相整合,对学 生能力要求和素质要求较高,学生在解答时往往会 感到困难.
2020年中考数学几何复习课件:八字模型模型(19张ppt)
八字形模型秒杀技巧
4.如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
5:如图,BP平分∠ABC,DP平分∠ADC,求证:∠P= 1 (∠A+∠C) 2
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
8.如图,BP平分∠ABC交CD于F,DP平分∠ADC交AB于E,AB与CD相交于G,如果 ∠A=42°,∠C=38°,求∠P的度数
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
秒杀技巧: ∠A+∠B=∠C+∠D ∠D-∠B=∠C-∠A
八字形模型秒杀技巧
1.如图,线段AB,CD相交于点O,连接AD,CB. (1)求证:∠A+∠D=∠C+∠B; (2)若∠A=40°,∠C=60°,则∠D-∠B= ; (3)若∠C=α,∠A=β(α>β),则∠D-∠B= .
秒杀技巧: ∠A+∠B=∠C+∠D ∠D-∠B=∠C-∠A
A
D O
C B
若∠D=∠C,这个图形为“歪8”, 显然△AOD∽△BOC,添油加醋—连接 AB、DC, △AOB∽△DOC相似吗?为什么?
八字倒角(共边等角,一等三等、四点共圆): 如图:如果∠BAC与∠BDC; ∠DAC与∠DBC; ∠ABD与∠ACD ∠BDA与∠ACB四对共边等角中,有一对相等,则另外三对一定相等。 思考:为什么叫“共边等角”? (学了圆,理解、记忆更容易)
九年级数学《图形的相似》总复习课件-PPT
6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。
几何图形动点分析及方法初中课件PPT2019
【例4】已知正方形ABCD中,E为对角线BD上一点,过E作EF BD交BC于F,
连接DF,G为DF中点,连接EG,CG。
(1)直接写出线段EG与CG的数量关系;
(2)将图1中的BEF绕B点逆时针旋转45,如图2所示,取DF中点G,
2021年四川省中考数学试题分类汇编——专题8图形的变化(含解析)
2021年四川省中考数学试题分类汇编——专题8图形的变化一.选择题(共16小题)1.(2021•达州)在平面直角坐标系中,等边△AOB 如图放置,点A 的坐标为(1,0),每一次将△AOB 绕着点O 逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A 1OB 1,第二次旋转后得到△A 2OB 2,…,依次类推,则点A 2021的坐标为( )A .(﹣22020,−√3×22020)B .(22021,−√3×22021)C .(22020,−√3×22020)D .(﹣22021,−√3×22021) 2.(2021•广元)如图,在△ABC 中,∠ACB =90°,AC =BC =4,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .√32B .1C .√2D .32 3.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是( )A.B.C.D.4.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是()A.B.C.D.5.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π6.(2021•南充)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:①顺次连接点A′,B′,C,D的图形是平行四边形;②点C到它关于直线AA′的对称点的距离为48;③A′C﹣B′C的最大值为15;④A′C+B′C的最小值为9√17.其中正确结论的个数是()A.1个B.2个C.3个D.4个7.(2021•资阳)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.8.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.9.(2021•凉山州)在平面直角坐标系中,将线段AB平移后得到线段A'B',点A(2,1)的对应点A'的坐标为(﹣2,﹣3),则点B(﹣2,3)的对应点B'的坐标为()A.(6,1)B.(3,7)C.(﹣6,﹣1)D.(2,﹣1)10.(2021•成都)在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)11.(2021•凉山州)如图,△ABC 中,∠ACB =90°,AC =8,BC =6,将△ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74 12.(2021•遂宁)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,4a +2b ,13+y 中,1a ,x π,4a +2b 是分式D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是413.(2021•遂宁)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .53 14.(2021•泸州)在平面直角坐标系中,将点A (﹣3,﹣2)向右平移5个单位长度得到点B ,则点B 关于y 轴对称点B ′的坐标为( )A .(2,2)B .(﹣2,2)C .(﹣2,﹣2)D .(2,﹣2)15.(2021•泸州)在锐角△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:a sinA =b sinB =c sinC =2R (其中R 为△ABC 的外接圆半径)成立.在△ABC 中,若∠A=75°,∠B =45°,c =4,则△ABC 的外接圆面积为( )A .16π3B .64π3C .16πD .64π16.(2021•自贡)如图,在正方形ABCD 中,AB =6,M 是AD 边上的一点,AM :MD =1:2.将△BMA 沿BM 对折至△BMN ,连接DN ,则DN 的长是( )A .52B .9√58C .3D .6√55二.填空题(共6小题)17.(2021•资阳)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将△AOB 展开得到如图3的一个六角星.若∠CDE =75°,则∠OBA 的度数为 .18.(2021•资阳)如图,在菱形ABCD 中,∠BAD =120°,DE ⊥BC 交BC 的延长线于点E .连结AE 交BD 于点F ,交CD 于点G .FH ⊥CD 于点H ,连结CF .有下列结论:①AF =CF ;②AF 2=EF •FG ;③FG :EG =4:5;④cos ∠GFH =3√2114.其中所有正确结论的序号为 .19.(2021•乐山)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30°,她朝石碑前行5米到达点D 处,又测得石碑顶A 点的仰角为60°,那么石碑的高度AB 的长= 米.(结果保留根号)20.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为.21.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.22.(2021•遂宁)如图,正方形ABCD中,点E是CD边上一点,连结BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH•BD;⑤若CE:DE=1:3,则BH:DH=17:16.你认为其中正确是.(填写序号)三.解答题(共16小题)23.(2021•宜宾)全国历史文化名城宜宾有许多名胜古迹,始建于明朝的白塔是其中之一.如图,为了测量白塔的高度AB,在C处测得塔顶A的仰角为45°,再向白塔方向前进15米到达D处,又测得塔顶A的仰角为60°,点B、D、C在同一水平线上,求白塔的高度AB.(√3≈1.7,精确到1米)24.(2021•广元)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为15√3米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+√3,tan15°=2−√3.计算结果保留根号)25.(2021•达州)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.26.(2021•达州)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE ⊥CF ,则DE CF 的值为 ;(2)如图2,在矩形ABCD 中,AD =7,CD =4,点E 是AD 上的一点,连接CE ,BD ,且CE ⊥BD ,则CE BD 的值为 ;【类比探究】(3)如图3,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE •AB =CF •AD ;【拓展延伸】(4)如图4,在Rt △ABD 中,∠BAD =90°,AD =9,tan ∠ADB =13,将△ABD 沿BD 翻折,点A 落在点C 处得△CBD ,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,DE ⊥CF .①求DE CF 的值;②连接BF ,若AE =1,直接写出BF 的长度.27.(2021•广元)如图1,在△ABC 中,∠ACB =90°,AC =BC ,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF =BE ,连接AF 、BF .(1)求证:△ABF ∽△CBE ;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求∠PMN 的度数及MN PM 的值;(3)在(2)的条件下,若BC =√2,直接写出△PMN 面积的最大值.28.(2021•达州)2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35°,CD 平行于水平线BM ,CD 长为16√3米,求桥墩AB 的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,√3≈1.73)29.(2021•广安)图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角∠CDE =15°,支架AC 长为1m ,∠ACD =75°,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,√3≈1.73)30.(2021•眉山)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:sin24°≈25,cos24°≈910,tan24°≈920)31.(2021•乐山)在等腰△ABC 中,AB =AC ,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若∠C =60°,点D 关于直线AB 的对称点为点E ,连结AE ,DE ,则∠BDE = ;(2)若∠C =60°,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连结BE . ①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB BC =AD DE =k ,且∠ADE =∠C .试探究BE 、BD 、AC 之间满足的数量关系,并证明.32.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A 的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求D处的竖直高度;(2)求基站塔AB的高.33.(2021•凉山州)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2√10米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF 的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).34.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.35.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D(结果精确到1米;参考数据sin33°与N在一条直线上),求电池板离地面的高度MN的长.≈0.54,cos33°≈0.84,tan33°≈0.65)36.(2021•遂宁)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两颗银杏树B、C之间的距离(结果保留根号).37.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,√3≈1.73)38.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25√2海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.2021年四川省中考数学试题分类汇编——专题8图形的变化参考答案与试题解析一.选择题(共16小题)1.【解答】解:由已知可得:第一次旋转后,A1在第一象限,OA1=2,第二次旋转后,A2在第二象限,OA2=22,第三次旋转后,A3在x轴负半轴,OA3=23,第四次旋转后,A4在第三象限,OA4=24,第五次旋转后,A5在第四象限,OA5=25,第六次旋转后,A6在x轴正半轴,OA6=26,......如此循环,每旋转6次,A的对应点又回到x轴正半轴,而2021=6×336+5,∴A2021在第四象限,且OA2021=22021,示意图如下:OH=12OA2021=22020,A2021H=√3OH=√3×22020,∴A2021((22020,−√3×22020),故选:C.2.【解答】解:如图在CD的下方作等边△CDT,作射线TQ.∵∠CDT=∠QDP=60°,DP=DQ,DC=DT,∴∠CDP=∠QDT,在△CDP和△TDQ中,{∠CDP=∠TDQDC=DT,∴△CDP≌△TDQ(SAS),∴∠DCP=∠DTQ=90°,∴∠CTD=60°,∴∠CTQ=30°,∴点Q在射线TQ上运动,当CQ⊥TQ时,CQ的值最小,最小值=CT•sin30°=12CT=12CD=14BC=1,故选:B.3.【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选:B.4.【解答】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.故选:A.5.【解答】解:观察图形可知:圆锥母线长为:√(2.42)2+1.62=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.6.【解答】解:如图1中,当B ′与D 不重合时,∵AB =A ′B ′,AB ∥A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是平行四边形,当点B ′与D 重合时,四边形不存在,故①错误,作点C 关于直线AA ′的对称点E ,连接CE 交AA ′于T ,交BD 于点O ,则CE =4OC . ∵四边形ABCD 是矩形,∴∠BCD =90°,CD =AB =15,∴BD =√BC 2+CD 2=√202+152=25,∵12•BD •CO =12•BC •CD , ∴OC =20×1525=12, ∴EC =48,故②正确,∵A ′C ﹣B ′C ≤A ′B ′,∴A ′C ﹣B ′C ≤15,∴A ′C ﹣B ′C 的最大值为15,故③正确,如图2中,∵B ′C =A ′D ,∴A ′C +B ′C =A ′C +A ′D ,作点D 关于AA ′的对称点D ′,连接DD ′交AA ′于J ,过点D ′作D ′E ⊥CD 交CD 的延长线于E ,连接CD ′交AA ′于A ′,此时CB ′+CA ′的值最小,最小值=CD ′, 由△AJD ∽△DAB ,可得DJ AB =AD BD , ∴DJ 15=2025,∴DJ =12,∴DD ′=24,由△DED ′∽△DAB ,可得DE DA =ED′AB =DD′BD , ∴DE 20=ED′15=2425, ∴ED ′=725,DE =965,∴CE=CD+DE=15+965=1715,∴CD′=√CE2+ED′2=√(1715)2+(725)2=9√17,∴A′C+B′C的最小值为9√17.故④正确,故选:C.7.【解答】解:主视图看到的是两列,其中左边的一列为3个正方形,右边的一列为一个正方形,因此选项C中的图形符合题意,故选:C.8.【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.9.【解答】解:∵A(2,1)平移后得到点A′的坐标为(﹣2,﹣3),∴向下平移了4个单位,向左平移了4个单位,∴B(﹣2,3)的对应点B'的坐标为(﹣2﹣4,3﹣4),即(﹣6,﹣1).故选:C.10.【解答】解:点M(﹣4,2)关于x轴对称的点的坐标是(﹣4,﹣2).故选:C.11.【解答】解:设CE=x,则AE=8﹣x=EB,在Rt△BCE中,BE2=CE2+BC2,即(8﹣x)2=x2+62,解得x=7 4,故选:D.12.【解答】解:A、根据角平分线性质可得:角平分线上的点到角两边的距离相等,故正确,符合题意.B、平行四边形不是轴对称图形,但是中心对称图形,故错误,不符合题意.C、代数式1a ,2x,xπ,985,4a+2b,13+y中,1a,4a+2b是分式,故错误,不符合题意.D、一组数据2、3、x、1、5的平均数是3,则x=4,这组数据的中位数是3,故错误,不符合题意.故选:A.13.【解答】解:设CE=x,则BE=3﹣x.由折叠性质可知,EF=CE=x,DF=CD=AB=5.在Rt△DAF中,AD=3,DF=5.∴AF=4.∴BF=AB﹣AF=1.在Rt△BEF中,BE2+BF2=EF2.即(3﹣x)2+12=x2.解得x=5 3.故选:D.14.【解答】解:点A(﹣3,﹣2)向右平移4个单位长度得到的B的坐标为(﹣3+5,﹣2),即(2,﹣2),则点B关于y轴的对称点B′的坐标是:(﹣2,﹣2).故选:C .15.【解答】解:∵∠A +∠B +∠C =180°,∴∠C =180°﹣∠A ﹣∠B =180°﹣75°﹣45°=60°,∵c sinC =2R ,∴2R =4sin60°=√32=83√3, ∴R =43√3, ∴S =πR 2=π(43√3)2=163π, 故选:A . 16.【解答】解:连接AN 交BM 于点O ,作NH ⊥AD 于点H .如图:∵AB =6,AM :MD =1:2.∴AM =2,MD =4.∵四边形ABCD 是正方形.∴BM =√AB 2+AM 2=2√10.根据折叠性质,AO ⊥BM ,AO =ON .AM =MN =2.∴12AB ⋅AM =12BM ⋅AO .∴AO =2√10=3√105. ∴AN =6√105. ∵NH ⊥AD .∴AN 2﹣AH 2=MN 2﹣MH 2.∴(6√105)2−(2+MH)2=22−MH 2.∴MH =85.∴HN=√MN2−MH2=√22−(85)2=65.∴HD=AD−AM−MH=12 5.∴DN=√HD2+HN2=√(125)2+(65)2=6√55.故选:D.二.填空题(共6小题)17.【解答】解:由题知,∠AOB=16×180°=30°,由翻折知∠OAB=12∠DCE,CD=CE,∵∠CDE=75°,∴∠DCE=180°﹣75°﹣75°=30°,∴∠OAB=12∠DCE=12×30°=15°,∴∠OBA=180°﹣∠AOB﹣∠OAB=180°﹣30°﹣15°=135°,故答案为:135°.18.【解答】解:∵菱形ABCD,∴对角线BD所在直线是菱形ABCD的对称轴,沿直线BD对折,A与C重合,∴AF=CF,故①正确,∠F AD=∠FCD,∵AD∥BC,∴∠F AD=∠FEC,∴∠FCD=∠FEC,又∠CFG=∠EFC,∴△CFG∽△EFC,∴CFEF =GFCF,∴CF2=EF•GF,∴AF2=EF•GF,故②正确,∵菱形ABCD中,∠BAD=120°,∴∠BCD=120°,∠DCE=60°,∠CBD=∠CDB=30°,AD=CD=BC,设AD=CD=BC=m,∵DE ⊥BC ,∴∠DEC =90°,Rt △CDE 中,CE =CD •cos60°=12CD =12m ,∴BE =32m ,∵AD ∥BE ,∴AF EF =AD BE =m32m =23, 设AF =2n ,则CF =AF =2n ,EF =3n ,又CF 2=FG •EF ,∴(2n )2=FG •3n ,∴FG =43n ,∴EG =EF ﹣FG =53n ,∴FG :EG =(43n ):(53n )=4:5,故③正确, 设CE =t ,Rt △CDE 中,CD =2t =AD ,DE =√3t ,Rt △BDE 中,BD =2DE =2√3t ,∵AD ∥BE ,∴DF BF =AF EF =AD BE=23, ∴DF =25BD =4√35t ,Rt △DFH 中,FH =12DF =2√35t , Rt △ADE 中,AE =√AD 2+DE 2=√(2t)2+(√3t)2=√7t ,∴EF =35AE =3√75t ,∵FG :EG =4:5,∴FG =49EF =4√715t ,Rt △FHG 中,cos ∠GFH =FH FG =2√35t 4√715t =3√2114,故④正确, 故答案为:①②③④.19.【解答】解:设石碑的高度AB 的长为x 米,Rt △ABC 中,BC =AB tan30°=√3x ,Rt △ABD 中,BD =AB tan60°=√3, ∵CD =5,∴BC ﹣BD =5,即√3x x √3=5, 解得x =52√3,故答案为:52√3.20.【解答】解:过点A 作AM ⊥y 轴于点M ,作AN ⊥BN 交于点N ,∵直线y =﹣2∥x 轴,故∠ABN =α,当sin α的值最大时,则tan α=AN BN =6BN 值最大,故BN 最小,即BG 最大时,tan α最大,即当BG 最大时,sin α的值最大,设BG =y ,则AM =4,GC =n +2,CM =4﹣n ,∵∠ACM +∠MAC =90°,∠ACM +∠BCG =90°,∴∠CAM =∠BCG ,∴tan ∠CAM =tan ∠BCG ,∴CM AM =BG CG ,即4−n 4=y n+2, ∴y =−14(n ﹣3)(n +2),∵−14<0,故当n =12(3﹣2)=12时,y 取得最大值,故n =12,故答案为:12. 21.【解答】解:如图,过点F 作FT ⊥AD 于T ,则四边形ABFT 是矩形,连接FN ,EN ,设AC 交EF 于J .∵四边形ABFT 是矩形,∴AB =FT =4,BF =AT ,∵四边形ABCD 是矩形,∴AB =CD =4,AD =BC =8,∠B =∠D =90°∴AC =√AD 2+CD 2√82+42=4√5,∵∠TFE +∠AEJ =90°,∠DAC +∠AEJ =90°,∴∠TFE =∠DAC ,∵∠FTE =∠D =90°,∴△FTE ∽△ADC ,∴FT AD=TE CD =EF AC , ∴48=TE 4=4√5,∴TE =2,EF =2√5,∴BF =AT =AE ﹣ET =3﹣2=1,设A ′N =x ,∵NM 垂直平分线段EF ,∴NF =NE ,∴12+(4﹣x )2=32+x 2,∴x=1,∴FN=√B′F2+B′N2=√12+32=√10,∴MN=√FN2−FM2=√(√10)2−(√5)2=√5,故答案为:1,√5.22.【解答】解:①∵正方形ABCD和正方形BGEF,∴△ABD和△FBE都是等腰直角三角形,∴∠ABD=∠FBE=45°,∴∠ABF=∠DBE;∴①正确,符合题意;②∵△ABD和△FBE都是等腰直角三角形,∴ABBD =BFBE,又∵∠ABF=∠DBE,∴△ABF∽△DBE,∴②正确,符合题意;③∵△ABF∽△DBE,∴∠F AB=∠EDB=45°,∴AF⊥BD;∴③正确,符合题意;④∵∠BEH=∠EDB=45°,∠EBH=∠DBE,∴△BEH∽△BDE,∴BEBD =BHBE,∴BE2=BD×BH,∵BE=√2BG,∴2BG2=BD×BH,∴④正确,符合题意;⑤∵CE:DE=1:3,∴设CE=x,DE=3x,∴BC=4x,在Rt △BCE 中,由勾股定理知:BE =√17x ,∵BE 2=BD ×BH ,∴17x 2=4√2x ×BH ,∴BH =17√28, ∴DH =158√2,∴BH :DH =17:15,∴⑤错误,不符合题意;故答案为:①②③④.三.解答题(共16小题)23.【解答】解:设塔高AB =x 米,根据题意得∠BCA =45°,∠BAD =60°,CD =15米,在Rt △ABC 中,∵∠C =45°,∴BC =BA =x 米,在Rt △ABD 中,∵tan ∠BDA =AB BD, ∴BD =x tan60°=x √3=√3x 3, ∵BD +CD =BC ,∴√33x +15=x ,解得x =15(3+√3)2≈35(米). 答:白塔的高度AB 为35米.24.【解答】解:(1)过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥DE 于点F ,如图所示: 则四边形BCFE 是矩形,由题意得:AB =45米,∠DAE =75°,∠DCF =45°,在Rt △ADE 中,∠AED =90°,∴tan ∠DAE =DE AE , ∴AE =DE tan75°=2+√3, ∵四边形BCFE 是矩形,∴EF =BC =15√3米,FC =BE ,在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°,∴CF=DF=DE﹣15√3,∴AB=AE+BE=DE2+√3DE﹣15√3=45,∴DE=15(2+√3)(米),答:此时无人机的高度为15(2+√3)米.(2)∵DE=15(2+√3)米,∴AE=2+√3=√3)2+√3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=15√3米,∴tan∠BAC=BCAB=15√345=√33,在Rt△AGH中,GH=DE=15米,AH=GHtan∠GAH=√3)√33=(30√3+45)米,∴DG=EH=AH﹣AE=(30√3+45)﹣15=(30√3+30)米,(30√3+30)÷5=(6√3+6)(秒),答:经过(6√3+6)秒时,无人机刚好离开了操控者的视线.25.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.△A1C1C2的面积=4×8−12×3×2−12×2×8−12×4×5=11.26.【解答】解:(1)如图1,设DE 与CF 交于点G ,∵四边形ABCD 是正方形,∴∠A =∠FDC =90°,AD =CD ,∵DE ⊥CF ,∴∠DGF =90°,∴∠ADE +∠CFD =90°,∠ADE +∠AED =90°,∴∠CFD =∠AED ,在△AED 和△DFC 中,{∠A =∠FDC ∠CFD =∠AED AD =CD,∴△AED ≌△DFC (AAS ),∴DE =CF ,∴DE CF =1;(2)如图2,设DB 与CE 交于点G ,∵四边形ABCD 是矩形,∴∠A =∠EDC =90°,∵CE ⊥BD ,∴∠DGC =90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD ,∴CE BD =DC AD =47, 故答案为:47. (3)证明:如图3,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°, ∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△DEA ∽△CFH ,∴DE CF =AD CH , ∴DE CF =AD AB ,∴DE •AB =CF •AD ;(4)①如图4,过点C 作CG ⊥AD 于点G ,连接AC 交BD 于点H ,CG 与DE 相交于点O ,∵CF ⊥DE ,GC ⊥AD ,∴∠FCG +∠CFG =∠CFG +∠ADE =90°,∴∠FCG =∠ADE ,∠BAD =∠CGF =90°,∴△DEA ∽△CFG ,∴DE CF =AD CG ,在Rt △ABD 中,tan ∠ADB =13,AD =9,∴AB =3,在Rt △ADH 中,tan ∠ADH =13,∴AH DH =13, 设AH =a ,则DH =3a ,∵AH 2+DH 2=AD 2,∴a 2+(3a )2=92,∴a =910√10(负值舍去),∴AH =910√10,DH =2710√10,∴AC =2AH =95√10,∵S △ADC =12AC ⋅DH =12AD •CG ,∴12×95√10×2710√10=12×9CG , ∴CG =275, ∴DE CF =AD CG=9275=53; ②∵AC =95√10,CG =275,∠AGC =90°,∴AG =√AC 2−CG 2=√(95√10)2−(275)2=95, 由①得△DEA ∽△CFE ,∴DE CF =AE FG ,又∵DE CF =53,AE =1, ∴FG =35,∴AF =AG ﹣FG =95−35=65, ∴BF =√AB 2+AF 2=√32+(65)2=35√29.27.【解答】(1)证明:如图1中,∵CA =CB ,∠ACB =90°,EF =EB ,∠BEF =90°,∴∠CBA =∠EBF =45°,AB =√2BC ,BF =√2BE ,∴∠CBE =∠ABF ,AB BC =BF BE =√2,∴△ABF ∽△CBE .(2)解:如图2中,延长PM 交AF 于T .∵BE ⊥CF ,∴∠CEB =90°,∵△ABF ∽△CBE ,∴∠CEB =∠AFB =90°,AF EC =AB BC =√2, ∴AF =√2EC ,∵∠EFB =45°,∴∠AFC =45°,∵AP =PC ,AM =ME ,∴PT ∥CF ,PM =12EC ,∵AM =ME ,EN =NF ,∴MN ∥AF ,MN =12AF ,∴四边形MNFT 是平行四边形,MN =√2PM ,∴∠TMN =∠AFC =45°,∴∠PMN =135°,∴MN PM =√2.(3)解:∵MN =√2PM ,∠PMN =135°,PM =12EC ,∴当EC 的值最大时,PM 的值最大,此时△PMN 的面积最大,∵当点E 与B 重合时,EC 的值最大,EC 的最大值为√2,此时PM =√22,MN =√2PM =1,∴△PMN的面积的最大值为12×√22×1×√22=14.28.【解答】解:过点C作CE⊥BM于点E,过点D作DF⊥BM于点F,延长DC交AB于点G,在Rt△CEB中,∠CBE=30°,BC=48米,∴CE=BC•sin30°=12×48=24(米),BE=BC•cos30°=48×√32≈24×1.73=41.52(米),∴DG=BF=BE+EF=BE+CD=41.52+16√3≈41.52+27.68=69.2(米),在Rt△ADG中,AG=DG•tan∠ADG=69.2×tan35°≈69.2×0.70=48.44(米),∴AB=AG+BG=AG+CE=48.44+24=72.44≈72.4(米),答:桥墩AB的高约为72.4米.29.【解答】解:如图,过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为15°,∠ACD为75°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+15°﹣75°=30°,∴∠CAF=60°,在Rt△ACF中,CF=AC•sin∠CAF=√32m,在Rt△CDG中,CG=CD•sin∠CDE=1.5·sin15°,∴FG=FC+CG=√32+1.5·sin15°≈1.3m.故跑步机手柄AB所在直线与地面DE之间的距离约为1.3m.30.【解答】解:过C作CF⊥AD于F,如图所示:则AF =CE ,由题意得:AB =20米,∠AEC =90°,∠CAE =24°,∠CBE =45°,∴△BCE 是等腰直角三角形,∴BE =CE ,设BE =CE =x 米,则AF =x 米,在Rt △ACE 中,tan ∠CAE =CE AE =tan24°≈920, ∴AE =209x 米,∵AE ﹣BE =AB ,∴209x ﹣x =20,解得:x ≈16.4,∴AF ≈16.4(米),∴DF =AD ﹣AF =60﹣16.4=43.6(米),即这栋建筑物的高度为43.6米.31.【解答】解:(1)∵AB =AC ,∠C =60°,∴△ABC 是等边三角形,∴∠B =60°,∵点D 关于直线AB 的对称点为点E ,∴DE ⊥AB ,∴∠BDE =180°﹣60°﹣90°=30°;故答案为:30°;(2)①补全图形如下:②CD =BE ,证明如下:∵AB =AC ,∠C =60°,∴△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∵线段AD 绕点A 顺时针旋转60°得到线段AE ,∴AD =AE ,∠EAD =60°,∴∠BAC =∠EAD =60°,∴∠BAC ﹣∠BAD =∠EAD ﹣∠BAD ,即∠EAB =∠DAC ,在△EAB 和△DAC 中,{AB =AC ∠EAB =∠DAC AE =AD,∴△EAB ≌△DAC (SAS ),∴CD =BE ;(3)AC =k (BD +BE ),证明如下:连接AE ,如图:∵AB =AC ,∴∠C =∠ABC ,∵∠ADE =∠C ,∴∠ABC =∠ADE ,∵AB BC =AD DE ,∴△ABC ∽△ADE ,∴∠DAE =∠BAC ,AB AD =AC AE ,∴∠DAE ﹣∠BAD =∠BAC ﹣∠BAD ,即∠EAB =∠DAC ,∵AB =AC ,∴AE =AD ,在△EAB 和△DAC 中,{AB =AC ∠EAB =∠DAC AE =AD,∴△EAB ≌△DAC (SAS ),∴CD =BE ,∴BC =BD +CD =BD +BE ,而AB BC =AC BC =k , ∴AC BD+BE =k ,即AC =k (BD +BE ).32.【解答】解:(1)如图,过点C 、D 分别作AB 的垂线,交AB 的延长线于点E 、F ,过点D 作DM ⊥CF ,垂足为M ,∵斜坡CB 的坡度为i =1:2.4,∴DM CM =12.4, 即DM CM =512,设DM =5k 米,则CM =12k 米,在Rt △CDM 中,CD =13米,由勾股定理得,CM 2+DM 2=CD 2,即(5k )2+(12k )2=132,解得k =1(米),∴DM =5(米),CM =12(米),答:D 处的竖直高度为5米;(2)斜坡CB 的坡度为i =1:2.4,设DE =12a 米,则BE =5a 米,又∵∠ACF =45°,∴AF =CF =(12+12a )米,∴AE =AF ﹣EF =12+12a ﹣5=(7+12a )米,在Rt △ADE 中,DE =12a 米,AE =(7+12a )米,∵tan ∠ADE =tan53°≈43,∴7+12a 12a=43, 解得a =74,∴DE =12a =21(米),AE =7+12a =28(米),BE =5a =354(米),∴AB =AE ﹣BE =28−354=774(米),答:基站塔AB 的高为774米.33.【解答】解:(1)过点D 作DH ⊥CE 于点H ,由题意知CD =2√10米,∵斜坡CF 的坡比为i =1:3,∴DH CH =13, 设DH =x (米),CH =3x (米),∵DH 2+CH 2=DC 2,∴x 2+(3x)2=(2√10)2,∴x =2,∴DH =2(米),CH =6(米),答:王刚同学从点C 到点D 的过程中上升的高度为2米;(2)过点D 作DG ⊥AB 于点G ,∵∠DHB =∠DGB =∠ABC =90°,∴四边形DHBG 为矩形,∴DH =BG =2米,DG =BH =(x +6)米,∵∠ACB =45°,∴BC =AB =x (米),∴AG =(x ﹣2)米,∵∠ADG =30°,∴AG DG =tan30°=√33, ∴x−2x+6=√33, ∴x =6+4√3,∴AB =(6+4√3)(米).答:大树AB 的高度是(6+4√3)米.34.【解答】解:(1)∵∠ACB =90°,AB =5,BC =3,∴AC =√AB 2−BC 2=4,∵∠ACB =90°,△ABC 绕点B 顺时针旋转得到△A ′BC ′,点A ′落在AC 的延长线上, ∴∠A 'CB =90°,A 'B =AB =5,Rt △A 'BC 中,A 'C =√A′B 2−BC 2=4,∴AA '=AC +A 'C =8;(2)过C 作CE ∥A 'B 交AB 于E ,过C 作CD ⊥AB 于D ,如图:∵△ABC 绕点B 顺时针旋转得到△A ′BC ′, ∴∠A 'BC =∠ABC ,BC '=BC =3,∵CE ∥A 'B ,∴∠A 'BC =∠CEB ,∴∠CEB =∠ABC ,∴CE =BC =3,Rt △ABC 中,S △ABC =12AC •BC =12AB •CD ,AC =4,BC =3,AB =5, ∴CD =AC⋅BC AB =125, Rt △CED 中,DE =√CE 2−CD 2=√32−(125)2=95,同理BD =95,∴BE =DE +BD =185,C 'E =BC '+BE =3+185=335, ∵CE ∥A 'B ,∴BM CE =BC′C′E ,∴BM 3=3335,∴BM =1511; (3)DE 存在最小值1,理由如下:过A 作AP ∥A 'C '交C 'D 延长线于P ,连接A 'C ,如图:∵△ABC 绕点B 顺时针旋转得到△A ′BC ′, ∴BC =BC ',∠ACB =∠A 'C 'B =90°,AC =A 'C ', ∴∠BCC '=∠BC 'C ,而∠ACP =180°﹣∠ACB ﹣∠BCC '=90°﹣∠BCC ', ∠A 'C 'D =∠A 'C 'B ﹣∠BC 'C =90°﹣∠BC 'C ,∴∠ACP =∠A 'C 'D ,∵AP ∥A 'C ',∴∠P =∠A 'C 'D ,∴∠P =∠ACP ,∴AP =AC ,∴AP =A 'C ',在△APD 和△A 'C 'D 中,{∠P =∠A ′C ′D∠PDA =∠A′DC′AP =A′C′,∴△APD ≌△A 'C 'D (AAS ),∴AD =A 'D ,即D 是AA '中点,∵点E 为AC 的中点,∴DE 是△AA 'C 的中位线,∴DE =12A 'C ,要使DE 最小,只需A 'C 最小,此时A '、C 、B 共线,A 'C 的最小值为A 'B ﹣BC =AB ﹣BC =2,∴DE 最小为12A 'C =1. 35.【解答】解:延长BC 交MN 于点H ,AD =BE =3.5,设MH =x 米,∵∠MEC =45°,故EH =x 米,在Rt △MHB 中,tan ∠MBH =MH HE+EB =x x+3.5≈0.65,解得x =6.5,则MN =1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN 的长约为8米.36.【解答】解:(1)由题意得:BE∥AD,∵BE∥AD且∠EBD=60°,∴∠BDG=∠EBD=60°,∵∠BDG=∠C+∠CAD且∠CAD=30°,∴∠C=∠BDG﹣∠CAD=30°;(2)过点B作BG⊥AD于G.∵BG⊥AD,∴∠AGB=∠BGD=90°,在Rt△AGB中,AB=20米,∠BAG=45°,AG=BG=20×sin45°=10√2(米),在Rt△BGD中,∠BDG=60°,∴BD=BGsin60°=20√63(米),DG=BGtan60°=10√63(米),∵∠C=∠CAD=30°,∴CD=AD=AG+DG=(10√2+10√63)(米),∴BC=BD+CD=(10√2+10√6)米,答:两颗银杏树B、C之间的距离为(10√2+10√6)米.37.【解答】解:由题意可知AB=24米,∠BDA=53°,∴tan∠BDA=ABAD=24AD=1.33,∴AD=241.33≈18.05(米).∵tan∠CAD=tan30°=CDAD=CD18.05=√33,∴CD =18.05×√33≈10.4(米).故办公楼的高度约为10.4米.38.【解答】解:(1)如图,过点C 作CE ⊥AB 于点E ,根据题意可知:∠ACE =∠CAE =45°,AC =25√2海里, ∴AE =CE =25(海里),∵∠CBE =30°,∴BE =25√3(海里),∴BC =2CE =50(海里).答:观测点B 与C 点之间的距离为50海里;(2)如图,作CF ⊥DB 于点F ,∵CF ⊥DB ,FB ⊥EB ,CE ⊥AB ,∴四边形CEBF 是矩形,∴FB =CE =25(海里),CF =BE =25√3(海里), ∴DF =BD +BF =30+25=55(海里),在Rt △DCF 中,根据勾股定理,得CD =√CF 2+DF 2=√(25√3)2+552=70(海里), ∴70÷42=53(小时).答:救援船到达C 点需要的最少时间是53小时.。
人教版数学中考复习专题《图形的相似》精品教学课件ppt优秀课件
或 其中a,d为比例外项;b,c为比例内
项.d称为a,b,c的第四比例项. 特殊情况:若作为比例内项的两条线段相同 ,即a∶b=b∶c(或表示为b2=ac),则线段b叫 a,c的比例中项.
3.比例基本性质
比例的灵活变形可助你达到希望的颠峰: 横竖、上下都可比,惟有交叉只能乘.
l如图:如果DE∥BC,那么△ADE∽△ABC
A
A
E
D
D
E
B
C
A
B
CD
EB
C
l3.推论2 平行于三角形一边直线截其它两边(或 其延长线),所得的对应线段成比例.如果DE∥BC,
那么AD AE; 或 AD AE; 或DB EC; 或DB EC. DB EC AB AC AD AE AB AC
l4.定理 三边对应成比例的两个三角形相似.
和“X” 型相似三A 角形.
E
D
D
E
A
B
C
B
C
l若△ADE∽△ABC,则 l∠DAE=∠BAC,∠ADE=∠ABC,∠AED=∠ACB.
AD AE DE .
AB
AC
BC
三、三角形相似的判定方法
l1.定理 两角对应相等的两个三角形相似.
l2.推论1 平行于三角形一边直线截其它两边(或
其延长线),所截得的三角形与原三角形相似;
如果两个图形不仅相似而且每组对应顶点所在的直线都经过同一个点那么这样的两个图形叫做位似图形这个点叫做位似中心这时的相似2
图形的相似
人教版数学中考复习
图形的相似 ①了解比例的基本性质,了解线段的比1
成比例线段,通过建筑、艺术上的实例了解 黄金分割。
【精品推荐】2020版中考数学总复习 第八章 专题拓展 8.3 实验操作型(试卷部分)课件
中线AD的取值范围是
;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的
两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
图1
图3 问题解决 (1)请在图2中证明四边形AEFD是正方形;
图2 图4
(2)请在图4中判断NF与ND'的数量关系,并加以证明; (3)请在图4中证明△AEN是(3,4,5)型三角形; 探索发现 (4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们 的名称. 解析 (1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°. 由折叠知AE=AD,∠AEF=∠D=90°, (1分) ∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形. (2分) ∵AE=AD,∴矩形AEFD是正方形. (3分) (2)NF=ND'. 证明:连接HN.由折叠知∠AD'H=∠D=90°,HF=HD=HD'. (4分)
以先求出BD的两个值,根据 AC = 3 ,再求出AC的两个值.
BD
3.(2017山西,22,12分)综合与实践 背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代数学著作《周髀 算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如: 三边长分别为9,12,15或3 2 ,4 2 ,5 2 的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操 作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD中,AD=8 cm,AB=12 cm. 第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕 为AF,再沿EF折叠,然后把纸片展平. 第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF. 第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕 EF交于点N,然后展平.
中考复习数学--类比探究专题
类比探究专题1. 如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,BE ,点P 为DC 的中点. (1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形.(不写画法)根据上述操作得到的经验完成下列探究活动:(2)探究一:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的等量关系,并证明你的结论. (3)探究二:如图3,DE ,BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,∠BAE =∠EDF ,CF ∥AB .若AB =5,CF =1,求DF 的长度.PEDA BC 图1PEDABC图2图1M NQ PO图2F EDC B AAB C D E F图32.特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为_________________;②线段BC,DE的位置关系为_________________.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM 与△AFD全等时,请直接写出DE的值.M F ED CB A图1EMDCBA图2MFEDC BA图33. 已知△ABC 中,CA =CB ,0°<∠ACB ≤90°.点M ,N 分别在边CA ,CB 上(不与端点重合),BN =AM ,射线AG ∥BC 交BM 延长线于点D ,点E 在直线AN 上,EA =ED .(1)【观察猜想】如图1,点E 在射线NA 上,当∠ACB =45°时, ①线段BM 与AN 的数量关系是_________; ②∠BDE 的度数是____________.(2)【探究证明】如图2,点E 在射线AN 上,当∠ACB =30°时,判断并证明线段BM 与AN 的数量关系,求∠BDE 的度数;(3)【拓展延伸】如图3,点E 在直线AN 上,当∠ACB =60°时,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.图1A B CD ENMG图2AB CD MN EG 图3A BCG4.如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=__________.(2)数学思考:①如图2,若点E在线段AC上,则DEDF=__________(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE的长.FEDC BA图1图2ABCDEFDB FECA图3DC BA备用图5. (1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为__________; (2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明; (3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.(1)问题发现:如图1,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 的中点,以点D 为顶点作正方形DFGE ,使点A ,C 分别在DE 和DF 上,连接BE ,AF ,则线段BE 和AF 数量关系是________.(2)类比探究:如图2,保持△ABC 固定不动,将正方形DFGE 绕点D 旋转α(0<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC =DF =2,在(2)的旋转过程中,连接AE ,请直接写出AE 的最大值.F图1CBA (E )EABC图2F备用图CBA图1A BC DEF G图2GFED CB A 备用图A BC DEFG6.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是__________,CE与AD的位置关系是__________.(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明).(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=BE= ADPE的面积.(直接写出结果)P EDCBA图1图2ABCDEPPEDCBA图3图4ABCDEP7. (1)操作发现如图1,AD 是等边三角形ABC 的角平分线,请你按下列要求画图:过点A 作AM ⊥AB ,过点C 作CN ∥AB ,AM 与CN 相交于点E .则AD 与AE 的数量关系是________,∠EAC =________°. (2)问题探究将图1中的△AEC 绕点A 逆时针旋转,点C 落在点F 的位置,连接EC ,DF ,如图2所示,请你探究DF 与EC 的数量关系并说明理由. (3)拓展延伸若(2)中等边△ABC 的边长为2,当F A ⊥AC 时,请直接写出DF 2的值.在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是边AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)问题发现如图1,当α=90°时,线段BD 1的长等于__________,线段CE 1的长等于__________. (2)探究证明如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1. (3)问题解决求点P 到AB 所在直线的距离的最大值.(直接写出结果)图1AB CD图2EFDCBA备用图CBAE1(D1)ABCDE PEDCBAD1E1图2图18. 如图1,在正方形ABCD 和正方形AB′C′D′中,AB =2,AB′=,连接CC′.(1)问题发现:CC BB'='__________;(2)拓展探究:将正方形AB′C′D′绕点A 逆时针旋转,记旋转角为θ,连接BB′,试判断:当0°≤θ<360°时,CC BB ''的值有无变化?请仅就图2中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C ,C′,D′三点共线时BB′的长.问题发现:如图1,△ABC 是等边三角形,点D 是边AB 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 的数量关系为___________;拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明;问题解决:如果△ABC的边长等于AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.D′C′B′ABCD 图1图2DCBA B′C′D′A BCD备用图图1EDCBA 图2ABCDE备用图E D A9. 如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断AGBE的值为_______.(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =________.GFDC BAE图1ABCD EFG图2H GF EDCBA 图310. (1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB,PC =2.求∠BPC 的度数. 为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得△AP′C ,连接PP′,则PP′的长为__________;在△P AP′中,易证∠P AP′=90°,且∠PP′A 的度数为__________,综上可得∠BPC 的度数为__________. (2)类比迁移 如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB,PC =1.求∠APC 的度数. (3)拓展应用如图3,在四边形ABCD 中,BC =3,CD =5,AB =AC =12AD ,∠BAC =2∠ADC ,请直接写出BD 的长.P′ABCP图1图2P CBAD图3C BA11. 如图,在□ABCD 中,AC 与BD 交于点O ,以点O 为顶点的∠EOF 的两边分别与边AB ,AD 交于点E ,F ,且∠EOF 与∠BAD 互补. (1)观察猜想若四边形ABCD 是正方形,则线段OE 与OF 有何数量关系?请直接写出结论.(2)延伸探究若四边形ABCD 是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由. (3)拓展证明若AB :AD =m :n ,探索线段OE 与OF 的数量关系,并证明你的结论.(1)阅读理解:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图3,AB ∥CF ,AE 与BC 交于点E ,BE :EC =2:3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.A BCDOEFABCD EF图1ABCDE F图2A BCDE F图312. 如图1,菱形ABCD 与菱形GECF 的顶点C 重合,点G 在对角线AC 上,且∠BCD =∠ECF =60°. (1)问题发现: AGBE的值为__________. (2)探究与证明:将菱形GECF 绕点C 按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:菱形GECF 在旋转过程中,当点A ,G ,F 三点在一条直线上时,如图3所示,连接CG 并延长,交AD 于点H ,若CE =2,GHAH 的长为__________.已知∠AOB =90°,点C 是∠AOB 的角平分线OP 上的任意一点,现有一个直角∠MCN 绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD ⊥OA ,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.图1AB CDEFGG FE DCB A图2H图3AB CD E FG(3)如图3,若点D 在射线OA 的反向延长线上,且OD =2,OE =8,请直接写出线段CE 的长度.图1OABC D EMPN N PMED CBAO图2图3O ABCD E MPN13.如图,在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现在图1中,CEBG__________.(2)拓展探究将图1中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当矩形DFGE 旋转至B ,G ,E 三点共线时,请直接写出线段CE 的长.GFED CBA 图1图2ABCDEFG备用图ABCD14. 四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD 等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD 中,AB =AD ,CB =CD ,则AC 与BD 的位置关系是__________,请说明理由.(2)试探究图1中四边形ABCD 的两组对边AB ,CD 与BC ,AD 之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知AC =4,AB =5,求GE 的长.观察猜想(1)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是_________,BE +BF =_________; 探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图2,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程; 拓展延伸ABCD图1图2DCB AABCDEFG图3(3)如图3,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BA 的延长线上,BD =n ,连接DE ,将线段DE 绕着点D 顺时针旋转,旋转角∠EDF =α,连接BF ,则BE +BF 的值是多少?请用含有n ,α的式子直接写出结论.图1A (D )B CE FD FE C B A 图2图3A C D E F。
中考数学专题复习 第8章 图形与变换 第21讲 图形的相似与位似(2021年整理)
2017年中考数学专题复习第8章图形与变换第21讲图形的相似与位似编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专题复习第8章图形与变换第21讲图形的相似与位似)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专题复习第8章图形与变换第21讲图形的相似与位似的全部内容。
第21讲 图形的相似与位似☞【基础知识归纳】☜☞归纳 1:比例的基本性质、黄金分割(1)成比例线段:在四条线段中,如果其中两条线段的比 等于 另外两条线段的比,那么这四条线段叫做 成比例线段 .(2)比例的基本性质 ①acad bc b d =→= ②ac a b c db d b d ±±=→= ③(0)ac m a c mab d n b d n b d n b +++===+++≠→=+++(3)平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段 成比例(4)黄金分割:把一条线段(AB )分割成两条线段,使其中较长线段(AC ) 是原线段AB 与较短线段(BC )的比例线段,就叫作把这条线段黄金分割 .即AC ·AC=AB ·BC,AC=0.618AB AB ≈;一条线段的黄金分割点有两个.☞归纳2:三角形相似的性质及判定 (1)相似三角形的判定①两角对应 相等 ,两三角形相似;②两边对应 成比例 且夹角 相等 , 两三角形相似;③三边对应 成比例 ,两三角形相似;④平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似 ;(2)相似三角形性质①相似三角形的对应角相等 ,对应边 成比例 ,对应高、对应中线、对应角平分线的比都等于 相似比 ,②周长比等于 相似比 ,面积比等于 相似比的平方 .☞归纳3:相似多边形与位似图形1。
九年级数学上册 第四章 图形的相似专题课堂(八)几何类比拓展探究课件上册数学课件
AC BD
=
3
.设 BD=x,则 AC=
3
x.∵在 Rt△
COD 中,∠OCD=30°,OD=1,∴CD=2, ∴BC=x-2.∵在 Rt△AOB 中,∠OAB=30°, OB= 7 ,∴AB=2OB=2 7 .又∵在 Rt△AMB 中,AC2+BC2=AB2,∴( 3 x)2+(x-2)2= (2 7 )2,解得 x1=3,x2=-2(不合题意,舍去), ∴AC=3 3 ;
∠ADE=∠CDF,∴△ADE∽△CDF,∴DDEF =
AD DC
.∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,∴DACD =ABCC =mn ,∴DDEF
=mn
第十九页,共二十二页。
(3)由(2)得△ ADE∽△CDF,∵DDEF =ABCC =12 ,
∴ACDD =ACEF =DDEF =12 ,∴CF=2AE.在 Rt△ DEF 中,DE=2 2 ,DF=4 2 ,∴EF=2 10 ①若点 E 在线段 CA 的延长线上,在 Rt△CEF 中,CF=2AE=2(CE-AC)=2(CE- 5 ),EF =2 10 ,根据勾股定理,得 CE2+CF2=EF2, ∴CE2+[2(CE- 5 )]2=40,解得 CE=2 5 或 CE=-2 55 (舍去);
第十七页,共二十二页。
解:(1)易证△ CDE≌△BDF,∴DE=DF,∴DDEF =1 (2)①∵∠ACB=90°,∴∠A+∠ABC=90°.∵CD⊥AB,∴∠DCB+∠ABC
=90°,∴∠A=∠DCB.∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=
∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DDEF =
第七页,共二十二页。
2020年中考数学复习几何压轴题 课件(共20张PPT)
1.如图,在Rt△ABC中,∠ACB=900, ∠A=300,点O为AB中点,点P为直线BC上的动 点(不与点C、点B重合),连接OC、OP,将线段OP绕点P顺时针旋转600,得到线 段PQ,连接BQ. (2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明; 若不成立,请说明理由;
3.如图,四边形ABCD是菱形,∠BAD=1200,点E在射线AC上(不包括 点A和点C),过点E的直线GH交直线AD于G,交直线BC于点H, GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF。 (1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理 由。 ②求证:△DEF是等边三角形。 如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是, 请证明你的结论;如果不是,请说明理由。
(2)解:△DEF是等边三角形;理由如下: 同(1)①得:△AEG是等边三角形, ∴AG=AE, ∵CF=AG, ∴AE=CF, ∵四边形ABCD是菱形, ∴∠BCD=∠BAD=1200,∠CAD=∠BAD=600, ∴∠FCD=600=∠CAD, 在△AED和△CFD中,
AD=CD ∠EAD=∠FCD,
AD=CD
∠EAD=∠F
AE=CF ∴△AED≌△CFD ∴DE=DF,∠ADE=∠CDF, ∵∠ADC=∠ADE+∠CDE=600, ∴∠CDF+∠CDE=600, 即∠EDF=600, ∴△DEF是等边三角形;
3.如图,四边形ABCD是菱形,∠BAD=1200,点E在射线AC上 (不包括点A和点C),过点E的直线GH交直线AD于G,交直 线BC于点H,GH∥DC,点F在BC的延长线上,CF=AG,连接 ED,EF,DF。 (2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗? 如果是,请证明你的结论;如果不是,请说明理由。
中考数学专题复习课件 几何综合(旋转类)(共160张PPT)
(2)将图24-1中的△BEF绕点B顺时针旋转至图24-2所示位置,请问(1)
中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说
明理由;
A
D
G
如图 1,在等边三角形 ABC 内有一点 P,且 PA=2, PB= 3 ,
PC=1.求∠BPC 度数的大小和等边三角形 ABC 的边长.
如图 3,在正方形 ABCD 内有一点 P,且 PA= 5 ,BP= 2 ,
PC=1.求∠BPC 度数的大小和正方形 ABCD 的边长.
已知: PA 2, PB 4 ,以 AB 为一边做正方形 ABCD ,使 P、D 两点落在直线 AB 的两侧。
如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(
P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连
结QB并延长交直线AD于点E.
Q
(1)如图1,猜想∠QEP=_______°;P
B
E
A
C
Q P
B E
A
C
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想 ∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=Q4,求BQ的长.
P
B E
B P
A
C
A
C
E
P
B E
Q
A
C
Q
B D
P
A
C
E
在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD
人教版九年级数学中考总复习《基本几何图形的认识》 (共34张PPT)
考点点拨: 本考点是广东中考的次高频考点,题型一般为选择题或解答 题,难度较低. 解答本考点的有关题目,关键在于掌握平行线的判定定理. 注意以下要点: 同位角相等/内错角相等/同旁内角互补,两直线平行.
课堂巩固训练
1. 如图1-4-1-17,将两块三角板的直角顶点重合后叠放在一
起,若∠1=40°,则∠2的度数为
2. 角的概念:有公共端点的两条射线组成的图形叫做角.这 个公共端点称为角的顶点,这两条射线是角的两边. 3. 角平分线:从一个角的顶点出发,把这个角分成相等的 两个角的射线,叫做这个角的平分线.
4. 角的度量
(1)1周角=2平角=4直角=360°,1°=60′,1′=60″.
(2)小于直角的角叫做锐角;大于直角而小于平角的角叫做 钝角;度数是90°的角叫做直角.
分的角的大小是 A. 15° B. 30°
C. 45°
(C) D. 75°
3. (2015济南)如图1-4-1-1,OA⊥OB,∠1=35°,则∠2的
度数是
( C)
A. 35° C. 55°
B. 45° D. 70°
考点演练
4. 下列各图中,∠1与∠2互为补角的是
( D)
5. 如图1-4-1-2,点B,O,D在同一直线上,若∠1=15°,
8. 垂直、垂线、垂线段 (1)两条直线相交所成的四个角,如果有一个角是直角,那 么称这两条直线互相垂直,其中的一条直线叫做另一条直线的 垂线,它们的交点叫做垂足. 平面内,过一点有且只有一条 直线垂直于已知直线. (2)垂线段公理:直线外一点与直线上各点连接的所有线段 中,垂线段最短. 9. 平行线:在同一平面内,永不相交的两条直线叫做平行线.
55°,则∠1等于
初中数学几何部分 PPT课件 图文
在四边形ABCD中, ∠β=360°-(78°+83°+118°)=81°。
四边形ABCD和EFGH相似,它们的对应边的比相等,由此可得
解得 x=28(cm)
练习
1.在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离 是30cm,求两地的实际距离。
这说明,正三角形都是相似的,它们的 对应角相等,对应边的比相等。
思考
对于下图中两个相似的正六边形,你是否也 能得到类似的结论?对一般的相似多边形呢?
结论:利用这种方法,我们可以得到,相似的正多边 形对应角相等,对应边的比相等,这个结论对于一般 的相似多边形也成立。
探究
图(1)中是两个相似的三角形,它们的对应角有什么关 系?对应边的比是否相等?
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年 ,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍 然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是 什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电
人教版《几何图形》PPT课件
-9
C.
= 的图象的两个交点. m (1)求反比例函数和一次函数的解析式;
∴这个一次函数的解析式为y=x-3.
x ∴1=4a-3,解得a=1,
(1)求反比例函数和一次函数的解析式; 已知直线y=kx(k>0)与双曲线y= 交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为( )
类型二 根据交点坐标求值
类如解型图:二 , ∵反反比根比例据例函交函数点数y坐y==标的求的图值图象象经经过过点点AA,(4A,Bb⊥),x轴过于点点A作B,AB△⊥AxO轴B于的点面B积,为△2,AO∴Bk的=面4,积∴为反2比. 例函数的解析式为y= ,∴b= =1.
(如类2)图型若, 二一反次比根函例据数函交y=数点a坐yx=-标3求的的值图图象象经经过过点点AA(,4,求b这),个过一点次A函作数AB的⊥解x析轴式于.点B,△AOB的面积为2.
x
标为(-x,-y);(2)若点A的坐标为(x1,y1),点B的坐标为(x2,y2),则x1 =-x2,y1=-y2,x1y2+x2y1=-x1y1-x1y1=-2x1y1=-2k2.)
上一页 下一页
(类1)型求二 一反比根坐例据标函交系数点中和坐判一标断次求图函值象数的解析式;
类(2)型若三一次与函面数积y=相a关x-的3问的题图象经过点A,求这个一次函数的解析式.
∴1=4a-3,解得a=1, 已∴这知个直一线次y=函k数x(的k>解0析)与式双为曲y=线xy-=3.交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为( )
8 如图,反比例函数y= 的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.
∴这个一次函数的解析式为y=x-3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/1
38
解:
2021/3/1
39
2021/3/1
40
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/3/1
41
专题八 几何图形的类比探究
2021/3/1
1
典例精析
典例 (2018河南,22)如图①,在Rt△ABC 中,∠B
= 90°,BC = 2AB = 8,点D ,E 分别是边BC ,AC 的中 点,连接DE . 将△EDC 绕点C 按顺时针方向旋转,记旋 转角为α .
2021/3/1
2
【解析】
2021/3/1
2021/3/1
33
解:
2021/3/1
342021/3/1
36
2021/3/1
37
8.(2014阜新)已知,在矩形ABCD 中,连接对角 线AC ,将△ABC 绕点B 顺时针旋转90°得到△EFG , 并将它沿直线AB 向左平移,直线EG 与BC交于点H , 连接AH ,CG .
(1)如图①,当AB = BC ,点F 平移到线段BA上 时,线段AH ,CG 有怎样的数量关系和位置关系?直 接写出你的猜想;
(2)如图②,当AB = BC ,点F平移到线段BA 的延 长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB = n BC(n ≠ 1)时,对矩形 ABCD 进行如已知同样的变换操作,线段AH ,CG 有怎 样的数量关系和位置关系?直接写出你的猜想.
3
2021/3/1
4
2021/3/1
5
备战演练
2021/3/1
6
解:
2021/3/1
7
2021/3/1
8
2021/3/1
9
2021/3/1
10
2021/3/1
11
解:
2021/3/1
12
2021/3/1
13
2021/3/1
14
3.(2018德州)(1)问题
如图①,在四边形ABCD 中,点P 为AB 上一点,
∠DPC = ∠A = ∠B = 90°,求证:AD·BC = AP·BP.
(2)探究
如图②,在四边形ABCD 中,点P 为AB 上一点,
当∠DPC = ∠A = ∠B = θ 时,上述结论是否依然成立?
并说明理由.
(3)应用
请利用(1)(2)获得的经验解决问题:
如图③,在△ABD 中,AB = 6,AD = BD = 5,点P
2021/3/1
20
2021/3/1
21
2021/3/1
22
2021/3/1
23
解:(1)同意
2021/3/1
24
2021/3/1
25
2021/3/1
26
2021/3/1
27
解:
2021/3/1
28
2021/3/1
29
2021/3/1
30
2021/3/1
31
2021/3/1
32
以每秒1个单位长度的速度,由点A 出发,沿边AB 向
点B运动,且满足∠DPC = ∠A,设点P 的运动时间为
t(秒),当以点D 为圆心,以DC 长为半径的圆与AB
相切时,求t 的值.
2021/3/1
15
解:
2021/3/1
16
2021/3/1
17
2021/3/1
18
2021/3/1
19
解: