离散信号与系统的Z变换分析.doc
第七章离散时间信号与系统的Z域分析总结
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2
第八章-Z变换与离散系统z域分析
第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。
2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。
♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。
信号与系统_第八章 z变换、离散时间系统的z域分析
Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC
实验十一z变换及离散时间系统z域分析分析解析
南昌大学实验报告学生姓名: 周倩文 学 号: 6301712010 班级: 通信121班实验类型: ■验证□综合□设计□创新 实验日期: 5月30号 实验成绩:z 变换及离散时间系统的Z 域分析一、目的(1)掌握利用MATLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MATLAB 实现方法二、离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N 个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;三、离散系统零极点图及零极点分析 1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
信号与系统第8章 离散时间系统的z域分析
零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特
性
离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用
Z变换及离散时间系统分析
Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。
离散时间系统是指信号的取样点在时间上离散的系统。
而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。
Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。
Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。
通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。
系统的传递函数是指系统的输出与输入之间的关系。
在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。
通过Z变换可以对离散时间系统进行频域分析。
频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。
频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。
Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。
其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。
这个性质说明Z变换对线性系统是可加性的。
2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。
这个性质说明Z变换对系统的时移(时延)是敏感的。
3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。
《信号与系统》第六章 离散系统z域分析
(z
z2 1)(z
2)
z2
z2 z
2
其收敛域如下,分别求其相对应的原序列f(k)。 (1) |z| > 2 (2) |z|< 1 (3) 1< |z| < 2
解(1) 由于F(z)的收敛域在半径为2的圆外,故f(k) 为因果序列。用长除法将F(z)展开为z-1的幂级数:
z2/(z2-z-2)=1+ z-1 + 3z-2 + 5z-3 + …
例:f1(k)=2k(k)←→F1(z)=
z z2
, z>2
f2(k)=
–2k(–
k
–1)←→F2(z)=
z
z
2
, z<2
对单边z变换,其收敛域比较简单,一定
是某个圆以外的区域。可以省略。
常用序列的z变换: (k) ←→ 1 ,z>0
(k)
z ,z>1
–(– k –1)
z 1 ,z<1
书p276
若 f(k) ←→ F(z) , <z< , 且有常数a0
则 akf(k) ←→ F(z/a) , a<z<a
证明:
Z[akf(k)]=
ak f (k)z k
f (k)
z k
F( z )
k
k
a
a
例1:akε(k) ←→ z
za
例2:cos(k)ε(k) ←→? cos(k)ε(k)=0.5(ejk+ e-jk)ε(k) ←→
方程取单边z变换yzz1yzy12z2yzy2y1z1fz2z2fz12224212121221212222212211??????????????????????????zzzzzzzzzzfzzzzzyyzzy1221221242kkyzzzzzzzzzykkzizi??????????????231212123121221kkyzzzzzzzykkzszs?????????????二系统函数zazbzfzyzhzs??2与时域的关系
第六章 离散系统的z域分析
第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:
离散信号与系统的Z域分析
8 离散信号与系统的 Z 域分析 p 16
例: F(z) = 1/(za) |z| a 求f [k]。 解:
1 F ( z) z 1 1 az
z 例: (3) u[k ] , z 3 z 3
k
类似于傅氏、拉氏变换的尺度变换特性。
1 1 s L f (at ) F ( j ) f (at ) F ( ), a a a a
F
8 离散信号与系统的 Z 域分析 p 18
a 0, a 0
例*:求aksin(0k) u[k] 的z变换及收敛域
1 cos 0 z 1 1 2 z 1 cos 0 z 2 sin 0 z 1 1 2 z 1 cos 0 z 2
五、单边z变换的主要性质
f [k ] F ( z), z R f
f1[k ] F1 ( z), z R f 1
1 2
sin 0 z 1 za 2 2 z 1 cos 0 z 2
8 离散信号与系统的 Z 域分析 p 19
五、单边z变换的主要性质
4. z域微分特性(时域线性加权)
dF ( z ) kf [k ] z dz
Z
Z Rf
m d m d F ( z) Z m m 或写成 : ( z ) F ( z ) k f [k ] ( z ) m dz dz
2 2
8 离散信号与系统的 Z 域分析 p 13
五、单边z变换的主要性质
2. 位移特性(记忆)
因果序列的位移
信号与系统chapter 7离散时间信号与系统的Z域分析
由此可见,位移特性Z域表达式中包含了系统的起始条 件,把时域差分方程转换为Z域代数方程,因此,可以方便 求出Z域的零输入响应和两状态响应。
式(7.3)又称为左移序性质,与拉普拉斯变换的时域 微分特性相当。式(7.4)又称右移序性质,与拉普拉斯变 换的时域积分特性相当。
进一步,对于因果序列 x ( n ) , x ( 1 ) 0 ,x ( 2 ) 0 , ,则
Z [nx(n)u(n)]zdd zn∞ 0znx(n)zdd zX(z)
求下列序列的Z变换。
(1) n 2 u ( n )
n(n 1)
(2)
u(n)
解:(1 )Z[n2 u(n)] zd d z 2zz 1 zd d z2 zd d z zz 1
dz
z2 z
z [
]
, z 1
zlnz1 1ln1 zzlnzz1,z1
(2)因为
Z1
u(n 1) , z 1 z 1
根据Z域积分特性,可得
∞1
X(z)
x 1dx∞
1
z dxln ,z1
2
z x1
z x(x1 )
z1
§ 6. 卷积和定理
若 x1(n)u(n) ZX 1(z),z Rx;x2(n)u(n) ZX2(z),z Rx,则 :
第七章 离散时间信号与系统的Z域分析
7.1引言 7.2 Z 变换 7.3 Z 变换的性质 7.4 反变换 7.5离散时间系统的 Z 域分析 7.6离散时间系统的系统函数与系统特性 7.7离散时间系统的模拟
7.1 引 言
按照与连续时间信号与系统相同的分析方法,本章将
讨论离散时间信号与系统的 z 域分析。
§ 4. Z域微分特性
离散信号与系统的 Z 域分析
第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。
这种方法的数学描述是离散时间傅里叶变换和逆变换。
如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。
这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。
Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。
z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。
离散信号与系统的变换域分析
() arctg a sin
1 a cos
1. 幅频曲线为偶对称,相频曲线为奇 对称,一般均为连续函数;
2. 不同于连续系统,曲线是周期
函数,周期为 2 ;
3. 离散系统也有高通、低通之分。
1 1 a
1 1 a
2 0
H (e j )
() arctan1 a 1 a2
2
0
0 a 1 低通 1 a 0 高通
(零状态条件下)
二阶后向差分方程的离散 系统函数求法与此类似
总结如下:
第六章 离散信号与系统的变换域分析
离散信号与系统的变换域分析概述 6.1 Z 变换 6.2 Z 变换的性质 6.3 Z 反变换 6.4 离散系统的 Z 域分析 6.5 离散系统函数与系统特性 6.6 离散系统的模拟 6.7 离散时间傅里叶变换与离散系统的频率
条件:f (k) 的终值存在意味着
F (z) 除了在 z=1 处允许有一个 一阶极点外,其余极点必须在单 位圆内部。
S 平面与 Z 平面的映射关系
例5 2 9 某序列的 Z变换为F (z) z ,试求f (k ) za
的终值f ()。
Z 变换性质综合应用的例题:
例 求图示有限长序列的Z变换。
响应特性
6.5 离散系统函数与系统特性
zr 称为系统函数的零点,pi 称为系统函数的极点,
• 可以画出H(z)的零、极点图,画法和连续系统类似。
例:系统函数为
H(z)
z2(z
(z 1)( z 1) 2 j)( z 2
j)
则其零、极点图如右图所示。
j Imz 1 Rez
• 一阶极点的位 置与自然响应 模式的关系:
离散信号与系统的变换域分析概述 6.1 Z 变换 6.2 Z 变换的性质 6.3 Z 反变换 6.4 离散系统的 Z 域分析 6.5 离散系统函数与系统特性 6.6 离散系统的模拟 6.7 离散时间傅里叶变换与离散系统的频率
离散信号与系统的Z变换分析
一.实验目的1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令二.实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④[]4()(1)()(5)f k k k k k εε=---2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析2(1)syms k zFz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/2*charfcn[0](k)+1/2*(-2)^k+1(2)syms k zFz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)(3)syms k zFz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)(4)syms k zFz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k3.(1)A=[1 7/6 1/3];B=[4 0 4];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')(2) A=[1 0 0.81];B=[1 0 -1];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线'4.A=[1 -1.2 0.35];B=[1 0.25 0];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')四.实验总结。
《信号与系统》讲义教案第6章离散信号与系统的Z域分析
第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。
Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。
当然, Z 变换与拉氏变换也存在着一些重要的差异。
6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。
当 z= e j时, Z 变换就转变为傅立叶变换。
因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。
而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。
那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。
只有当式 (6.3) 的级数收敛,X (z) 才存在。
X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。
在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。
6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。
在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。
第8章 z变换离散时间系统的z变换分析
-n -n
收敛域 为 z >1
3. 斜变序列
间接求 解方法 已知 两边对(z -1)求导
两边乘(z -1)
∴
同理,两边再求导,得
…
4. 指数序列
x(n) a n u(n)
运用留数定理来进行运算。又称为留数法,即
f (n) Res[F ( z )z n1 ]z pm
m
略!
二、幂级数展开法(长除法)
F ( z ) f (n)z n f (0) f (1)z 1 f ( 2)z -2
n 0
!
一般为变量z的有理分式,可用长除法,
例
s = 2,
例题 解
求x(n) = ?
∴
∴
见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性 若 x(n) ←→ X(z) y(n) ←→ Y(z)
则
Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
ax(n) + by(n) ←→ aX(z) + bY(z)
F ( z ) f (0) f (1) z 1 f (2) z 2
所以
f (0) 0, f (1) 1, f (2) 0, f (3) 3, f (4) 4,
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) (|z|>R) ← Z → x(n)
对于N阶LTI离散系统的差分方程:
信号与系统 第六章离散系统的Z域分析
Z平面
k 1 k (1 z ) ( 3z ) 3 k 1 k 0
0
|z|<3时,第一项收敛于
z ,对应于左边序列。 z 3 z |z|>1/3时,第二项收敛于 ,对应于右边序列。 1 收敛域 z3
1 3
3
1 当 | z | 3 时, 3
8 z z 3 z F ( z) 1 z 3 z 3 ( z 3)( z 1 3)
应用尺度变换:
k
sin k (k )
z a
z sin z 2 2 z cos 1
0< a <1
sin a z sin a sin k (k ) z 2 z ( a ) 2( a ) cos 1 z 2 2 a z cos a 2
§6.2
Z变换的性质
| k-3|(k)
解:(1) F z
k k k z 1
k 1
(2) 双边z变换: F z
k
f k z
k
2 1 z 2z 3 2 z z
2
0 z
单边z变换: F z f k z
k 0
长春理工大学
零点:0 极点:3,1/3
§6.1
Z 变换
Z变换的收敛域
收敛域内不包含任何极点,在极点处,F(z)为无穷大, Z变换不收敛。 有限长序列的收敛域为整个Z平面, 可能不含z=0, z=。 因果有限长序列: F(z)=f (1)z -1+ f (2)z -2+· · · · |z|>0 反因果有限长序列: F(z)=f (-1)z 1+ f (-2)z2+· · · · |z|< 如果是因果序列,收敛域为|z|>0圆的外部。 如果是左边序列,收敛域为|z|<0 。 如果是双边序列,收敛域由圆环组成。
第七章 离散信号与系统的Z域分析
f (k ) 3k (k 1) 3k (k 2)
31 3k 1 (k 1) 32 3k 2 (k 2)
由表7.1
根据双边Z变换位移性质,得: z z2 3k 1 (k 1) z z 3 z 3
z 3 (k ) z 3
(2) 无限长因果序列双边Z变换的收敛域为|z|>|z0|,z0为复数、虚数或实数, 即收敛域为半径为|z0|的圆外区域。 (3) 无限长反因果序列双边Z变换的收敛域为|z|<|z0|,即收敛域为以|z0|为 半径的圆内区域。
(4) 无限长双边序列双边Z变换的收敛域为|z1|<|z|<|z2|,即收敛域位于以|z1| 为半径和以|z2|为半径的两个圆之间的环状区域。
k 0
f (i) z
( i m )
z
1
m
i m
f (i) z
i
z [ f (i) z
m i i 0
i m
f (i) z
1
i
]
z m [ F ( z )
i m
f (i) z i ]
z
7.2 Z变换的性质
例 7.2-3 已知f(k)=3k[ε(k+1)-ε(k-2)],求f(k)的双边Z变换 及其收敛域。 解: f(k)可以表示为
(5) 不同序列的双边Z变换可能相同,即序列与其双边Z变换不是一一对 应的。序列的双边Z变换连同收敛域一起与序列才是一一对应的。
7.1 Z 变 换
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )
F ( z)
k
(k ) z k (0) z 0 1
§6.4 离散系统的Z域分析
z 2z 9z 8z z2 z z4 2 Y ( z) 1 2 z 5z 6 z 4 z 2 z 3 z 4 1 5z 6 z
y(k ) [2(2) k 9(3) k 8(4) k ]U (k )
1 k 例2: 已知h(k ) ( ) U (k ), f (k ) G5 (k ), 求系统零状态响应 f (k ). y 2 z z z 2z z 5 解: H ( z ) )(1 z ) [ ](1 z 5 ) Y ( z) H ( z) F ( z) ( )( 1 z 1 z 1 z 1 z 1 z 2 2 2
i N
1
y (i) z i
a N a N 1 z 1 a0 z N
3)求反变换,得差分方程时域解。
Y ( z ) y (k )
信号与系统
例: 已知某线性时不变系统数学模型如下: y(k)-5y(k-1)+6y(k-2)=0 初始状态y(-1)=4,y(-2)=1,求零输入响应y(k)。 解: 对差分方程进行Z变换(用移序性质) ;
z z 5 F ( z) z z 1 z 1
1 k 1 k 5 y f (k ) [2 ( ) ]U (k ) [2 ( ) ]U (k 5) 2 2
信号与系统
3、全响应Z域求解: y (k ) y x (k ) y f (k ) 例1: 已知系统框图,列出系统的差分方程;
2
4
信号与系统
y(n) x(n) 2 y(n 1) 4 y(n 2) y(n) 2 y(n 1) 4 y(n 2) x(n) n (n 2) 2为二阶差分方程 后向差分方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.实验目的
1.学会使用MATLAB 表示信号的方法并绘制信号波形
2.掌握使用MATLAB 进行信号基本运算的指令
二.实验内容
1. 求出下列离散序列的Z 变换
① 1122()()cos()()k k f k k πε= ② 223()(1)()()
k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④
[]4()(1)()(5)f k k k k k εε=---
2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z
=++++ ③2342(36)()z z F z z
++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用
① 122344()()()z H z z z +=++ ② 221()0.81
z H z z -=+ 4. 已知描述离散系统的差分方程为:
() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-
请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析
2(1)
syms k z
Fz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/2*charfcn[0](k)+1/2*(-2)^k+1
(2)
syms k z
Fz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)
(3)
syms k z
Fz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)
(4)
syms k z
Fz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k
3.
(1)
A=[1 7/6 1/3];
B=[4 0 4];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
(2) A=[1 0 0.81];
B=[1 0 -1];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线'
4.
A=[1 -1.2 0.35];
B=[1 0.25 0];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
四.实验总结。