现代斜拉桥的发展
我国公路桥梁施工技术现状及发展趋势
我国公路桥梁施工技术现状及发展趋势我国公路桥梁施工技术现状当前,我国公路桥梁施工技术经历了从传统施工向现代化施工方式的转变。
其中,钢结构桥梁、混凝土桥梁、斜拉桥、预应力桥等各种桥梁工程,都经过了创新成果的应用和不断的技术进步。
1. 钢结构桥梁钢结构桥梁具有轻质、高强度、易于制造和安装等优点,逐渐成为我国公路桥梁建设的主要发展方向。
此类桥梁适用于大跨度、重载、高速公路等场合。
2. 混凝土桥梁混凝土桥梁的主要特点是设计先进、材料可靠、施工方便、耐久性好。
近年来,混凝土桥梁的施工技术也得到了较大的发展,如旋转施工法、连续刚构法、精细满浆等,提高了混凝土桥梁的质量与安全性能。
3. 斜拉桥斜拉桥是我国近年来发展较快的一种桥梁形式,主要采用大直径、高强度的钢缆进行支撑,对支座的要求较低,可跨越水面、山谷和公路等障碍。
同时,斜拉桥具有优美、大气的造型,也成为吸引游客的景点之一。
4. 预应力桥预应力桥梁的优点主要表现在强度和耐久性能的提高,具有较好的反抗荷载和抗震的能力。
预应力桥梁在建设中需要在钢筋加工、张拉钢筋、灌浆、松弛处理等方面做好技术细节工作,才能确保桥梁的质量和安全。
发展趋势未来,公路桥梁建设将面临一系列新的挑战。
其中,强调绿色建设、节能减排和资源循环,将成为公路桥梁建设的主要目标。
为实现高质量、高效益、低风险、可持续发展,公路桥梁建设将逐渐呈现以下发展趋势:1. 信息化模式逐渐实现工程全过程信息化管理,利用先进技术手段实现工程设计、施工、运营、管理的无缝衔接,提高工程的效率和质量。
2. 高强度材料和新技术采用新型材料和新技术,提高桥梁设计和施工的质量、效率和安全性,降低桥梁的建设成本。
3. 建筑工程智能化利用数字化技术、智能化设备和物联网等先进技术手段,实现公路桥梁建设的智能化、自动化、智能协同等,提高施工效率和质量。
4. 节能减排在公路桥梁建设中采用生态环保的设计和施工方式,充分利用可再生资源和节能技术,降低对环境的影响,实现可持续发展。
斜拉桥发展史及现状综述
从斜拉桥看桥梁技术的发展姓名:马哲昊班级:1403专业:建筑与土木工程学号:143085213086摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。
关键词: 斜拉桥;发展史;现状;展望Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward.Key words: Cable-stayed bridge; Review; Looking forward to1.斜拉桥的发展1.1 斜拉桥的历史斜拉桥是一种古老而年轻的桥型结构。
早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。
在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。
以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。
1818 年,英国一座跨越特威德河的人行桥也毁于风振。
浅谈对现代斜拉桥发展与现状的认识
随着科学技术的进步, 现代斜拉桥发展 越
来越快。 桥(Cable- sta yed br dge)的上 斜拉 i
部结构由 索、 梁、 塔三类构件组成 。它是一 种桥面 体系以 加劲梁受压(密索)或受弯稀索)
为主、支承体系以斜索受拉及桥塔受压为主
的桥梁
斜拉桥的塔, 索、 梁பைடு நூலகம்各自 振动特性有
很大差别, 给地震设计带来很大的复杂性。此
盔璐和 SIN 3T W.二 70 C 0E Y 、。 0EE& } CO 7N
工 业 技 术
浅谈对现代斜拉桥发展与现状的认识
陈一统
‘ 汕揭高速公路 公司 广东 广东 有限 揭阳 52203们
摘 要: 简单对 斜拉桥的认识。
关键词 斜拉桥 斜索 桥塔 中图分类号 T U1 文献标识码: A 文章编号 1672- 3791(2007)10(c)--0016- 02
高。
7 各种桥塔形式的特点 7, ,单柱形桥塔
单柱形桥塔的优点是全桥外观简洁, 桥塔 结构简单 塔墩的宽度可以缩减: 缺点为桥面 中央分隔带所占宽度较大。
7 2 双柱形桥塔
双柱形桥塔的优点是两根塔柱之间不设
1.4 设计理 和计算技术的进 论 步
杭风抗 震的计算 理论有了 长足的 进展, 电 子计算机有限元 分析计算软件 的应用。
斜拉桥早在 19 世纪初期在欧洲就曾 风行 一时。但由于当时对于理论认识的不足, 对于
3 设计上存在改进的问题
3 .1 杭风设计
6 3 铰支桥塔
高次超静 定结构无法精确计算以及缺乏 高强 材料等原因, 致使建成的桥梁多 次发生毁 桥事 故, 甚至造成严重的伤亡悲剧, 这就使得 此种
新的桥型没有得到发展。
斜拉桥的作用 (2)
斜拉桥的作用1. 简介斜拉桥是一种桥梁结构,其特点是在桥墩或桥塔上布置了一定数目的斜拉索或斜拉链,用以支撑主梁或悬索。
斜拉桥的作用可以从多个角度进行解析,包括交通运输、城市发展和工程建设等方面。
2. 交通运输作用2.1 跨越大型水体斜拉桥在交通运输方面的最主要作用之一是跨越大型水体,例如江河、湖泊或海洋等。
由于斜拉桥具有悬浮式结构和较大的跨度设计,因此它们可以轻松地跨越这些水体,为人们提供便利的交通通道。
这种桥梁结构的使用不仅缩短了通行距离,还减少了交通拥堵和行车时间,方便了市民的出行。
2.2 支持大型车辆负荷斜拉桥的设计使其具有出色的承重能力,能够承受大型车辆的负荷。
这对于城市交通来说非常重要,因为城市交通往往需要支持大量的私家车、公共交通工具和货车。
斜拉桥的作用在于提供一个可靠的结构,使这些车辆能够安全、快速地通过桥梁。
3. 城市发展作用3.1 城市地标和景观斜拉桥的建造往往追求独特的外观设计,使其成为城市的地标和景观之一。
这种独特性能够提升城市的美观度和知名度,吸引更多的人们来到这座城市,促进城市的发展和经济增长。
因此,斜拉桥在城市规划和城市发展方面起到了重要的作用。
3.2 促进城市扩展和人口迁移斜拉桥所连接的两个地区之间往往存在着城市的扩展需求,例如新兴的住宅区或工业区。
通过建造斜拉桥,可以方便人口和企业的迁移,促进城市的快速扩展和发展。
这对于城市经济增长和社会进步起到了积极的作用。
4. 工程建设作用4.1 技术创新与发展斜拉桥是桥梁工程的一项重要创新,在工程建设方面起到了积极的推动作用。
从设计到施工,斜拉桥要求工程师具有高超的技术和丰富的经验,促使他们不断进行技术创新和发展。
这些技术创新不仅能够应用于其他桥梁工程,还可以推动相关工程领域的进步和发展。
4.2 提高施工效率和安全性斜拉桥的建设依赖于现代化的施工技术和先进的工程设备。
这些施工技术和设备的应用使得斜拉桥的建设更加高效、安全。
通过采用现代化的施工方法,可以大大缩短工程建设周期,减少工程风险,提高工程质量。
中国大跨度桥梁现状
桥梁建设的回顾和展望改革开放以来,我国社会主义现代化建设和各项事业取得了世人瞩目的成就,公路交通的大发展和西部地区的大开发为公路桥梁建设带来了良好的机遇。
十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期,在中华大地上建设了一大批结构新颖、技术复杂、设计和施工难度大、现代化品位和科技含量高的大跨径斜拉桥、悬索桥、拱桥、PC连续刚构桥,积累了丰富的桥梁设计和施工经验,我国公路桥梁建设水平已跻身于国际先进行列。
现综述大跨径桥梁建设和发展情况。
斜拉桥斜拉桥作为一种拉索体系,比梁式桥有更大的跨越能力。
由于拉索的自锚特性而不需要悬索桥那样巨大锚碇,加之斜拉桥有良好的力学性能和经济指标,已成为大跨度桥梁最主要桥型,在跨径200~800m的范围内占据着优势,在跨径800~1100m特大跨径桥梁角逐竞争中,斜拉桥将扮演重要角色。
斜拉桥由索塔、主梁、斜拉索组成,选择不同的结构外形和材料可以组合成多彩多姿、新颖别致的各种形式。
索塔型式有A型、倒Y型、H型、独柱,材料有钢、混凝土的。
主梁有混凝土梁、钢箱梁、结合梁、混合式梁。
斜拉索布置有单索面、平行双索面、斜索面,拉索材料有热挤PE防护平行钢丝索、PE 外套防护钢绞线索。
现代斜拉桥可以追溯到1956年瑞典建成的主跨182.6米斯特伦松德桥。
历经半个世纪,斜拉桥技术得到空前发展,世界已建成主跨200米以上的斜拉桥有200余座,其中跨径大于400m有40余座。
尤其20世纪90年代以后在世界上建成的著名的斜拉桥有法国诺曼底斜拉桥(主跨856米),南京长江二桥钢箱梁斜拉桥(主跨628米)、福建青州闽江结合梁斜拉桥(主跨605米)、挪威斯卡恩圣特混凝土梁斜拉桥(主跨530米),1999年日本建成的世界最大跨度多多罗大桥(主跨890米),是斜拉桥跨径的一个重大突破,是世界斜拉桥建设史上的一个里程碑。
(表一)表一:世界大跨度斜拉桥我国自1975年四川云阳建成第一座主跨为76米的斜拉桥,二十多年过去了,这种在二次大战后复兴的桥型,在中国改革开放的形势下,得到了充分的发展和推广,至今已建成各种类型斜拉桥100多座,其中跨径大于200米的有52座。
斜拉桥施工工艺的创新与应用
斜拉桥施工工艺的创新与应用在现代城市建设中,桥梁作为连接不同区域和分隔城市交通的重要设施,占据了重要地位。
然而,随着城市规模的不断扩大和交通负荷的增加,传统的桥梁设计和施工方法已经难以满足日益增长的需求。
为此,斜拉桥施工工艺的创新与应用成为了解决问题的一个重要途径。
本文将探讨斜拉桥施工工艺的创新与应用,并对其优势和前景进行分析。
一、斜拉桥施工技术的创新斜拉桥的施工方式主要有两种:一种是先施工主塔,再拉索悬挂桥面;另一种是先施工桥面,再通过索具连接至主塔。
传统的施工方式往往需要大量的人力和物力投入,且施工周期较长。
然而,随着科技的发展,斜拉桥施工技术得到了不断创新。
现代化的斜拉桥施工技术充分利用了机械化和自动化设备,极大地提高了施工效率。
例如,引入了大型龙门吊和液压起重机,可以快速安装主塔和桥面模块;使用先进的测量设备和控制系统,可以精确控制斜拉索的张力和桥面的水平度。
这些创新的施工技术大大缩短了桥梁的建设周期,减少了施工成本。
二、斜拉桥施工技术的应用斜拉桥施工技术的创新不仅体现在个别工程中,也得到了广泛的应用。
例如,在一些大型城市建设中,斜拉桥已成为城市发展的标志性建筑。
由于斜拉桥的外观独特,可以满足城市形象建设的需求。
同时,斜拉桥具有良好的工程性能,能够承受大跨度和高载荷的要求。
这使得斜拉桥在城市道路、高速公路和港口码头等交通工程中得到了广泛应用。
斜拉桥的施工技术也得到了越来越多的关注和应用。
既有基于传统施工方式的改进,也有全新的施工技术的探索,如采用预制构件、模块化施工等。
这些应用不仅提高了施工效率,更重要的是改善了桥梁的使用性能和安全性。
三、斜拉桥施工工艺创新的优势斜拉桥施工工艺创新的优势主要表现在以下方面:1. 缩短施工周期:创新的施工工艺利用了机械化设备和自动化系统,可以提高施工效率,缩短施工周期。
这对于紧急情况下的桥梁修复和新建项目的开工日期非常重要。
2. 降低施工成本:创新的施工工艺使施工过程更加精确,减少了浪费和误差。
有关斜拉桥的发展与创新
有关斜拉桥的发展与创新一、斜拉桥的发展历程世界上第一座现代的斜拉桥——斯特伦松德桥是德国工程师弗兰茨·狄辛格从1955年开始在瑞典主持设计的。
1975年,这种桥型传入我国,第一座试验性斜拉桥——四川云阳汤溪河大桥(当时重庆属四川管辖)建成。
虽然我国斜拉桥的建造比世界晚了二十年,但是经过中国桥梁工程师们不懈的理论探索和创新实践,中国的斜拉桥事业发展迅速,到现在中国已经成为世界第一桥梁大国。
根据查找资料了解到我国斜拉桥的发展历程大致可以分为三个阶段。
第一阶段是我国斜拉桥的起步阶段,从1975~1982年,是我国斜拉桥发展的第一次高潮。
在这期间所修建的斜拉桥均为混凝土斜拉桥。
除了一开始提到的于1975年2月我国建成的第一座试验性斜拉桥——四川云阳汤溪河大桥以外;还有1980年建成的第一座预应力混凝土斜拉桥——三台涪江大桥;然后是1980年,我国在广西建成的第一座铁路预应力混凝土斜拉桥——红水河铁路桥;还有1981年我国建成了第一座独塔斜拉桥——四川金川县曾达桥,这座桥创造性地采用了平转法施工;1982年建成了上海泖港大桥为双塔双索面预应力混凝土斜拉桥,是中国第一座真正意义上的大跨度斜拉桥。
第二阶段是我国斜拉桥的提升阶段,从1983~1991年。
为何会有提升阶段的划分呢?这是由于第一阶段的建成的斜拉桥大多有拉索上的损坏问题,危及桥梁安全。
在这种情况下,越来越多优秀的桥梁工程师开始了斜拉桥的深入研究。
1985年,上海市政设计院的林元培先生主持设计了重庆嘉陵江石门大桥及上海恒丰北路桥,为日后设计建造南浦大桥积累了宝贵的技术经验。
1987年建成了天津永和大桥。
该桥是跨越永定新河的一座公路桥,是津汉公路的重要通道。
第三阶段是我国斜拉桥的飞跃式发展阶段,从1991年至2023年。
从1990年以后,我国经济迅速发展,交通的建设也必须提上日程,所以中国迎来了桥梁建设的春天。
尤其是造型美观的斜拉桥往往成为首选桥型。
结构设计知识:结构设计中的斜拉桥原理
结构设计知识:结构设计中的斜拉桥原理斜拉桥是一种采用钢索拉拔承载荷载的桥梁结构,是桥梁工程中一种非常常见的结构形式。
其大跨度、美观、安全、经济的特点,使得斜拉桥成为了现代化城市中最具有标志意义的建筑之一。
1.斜拉桥的定义斜拉桥是一种悬臂式桥梁结构,其主跨在一侧支撑,另一侧通过斜拉索将荷载传递到支撑侧。
斜拉索与主梁之间以倾角拉伸,使得主梁受力形成压弯、斜拉索受力形成拉伸,从而达到桥梁结构整体的稳定。
2.斜拉桥的原理(1)力学原理:斜拉桥的传力方式为张索承载,传递的力主要集中在索的上沿,支点处受力的剪力、正弯矩、剪力与正剪力的作用远小于横梁的。
同时,也避免了对斜拉索产生任何的损伤。
(2)优点:斜拉桥主跨悬空,岸塔占用地面较小,有利于提高航道和涉水公路的通行条件。
(3)视觉效果:斜拉桥在结构性上和造型美观上都表现良好,有时候设计师的创意在构造中受较小影响,以达到更好的视觉效果。
3.斜拉桥的结构形式(1)桥面梁:一般采用钢结构桁架梁、钢箱梁桥、钢混合结构。
斜拉桥采用桁架梁结构时,高强度钢材的使用量越来越大,优点是自重可控,安装高效、需要空间小等。
(2)索:斜拉桥使用的索材料一般是钢材,经过拉伸后可以达到较大的抗弯能力。
索一般分成主索和斜拉索两种,其中主索是跨越主桥墩的长索,通过桥墩支撑节点和钢支座进行传力;斜拉索则是连接主索和桥面梁,起到将荷载转移至主梁的作用。
(3)塔:斜拉桥中的塔起到支撑主索、斜拉索的作用,是斜拉桥中非常重要的组成部分。
塔的数量以两个为基本单位,每个塔都有稳固的支撑基础,可以承受相应的荷载。
(4)锚固:索以特制的锚固方式固定在主梁和塔上,固定具有可拆卸性和可调节性,方便调整索的张拉度和锚固位置。
4.斜拉桥的设计原则(1)主跨采用大跨度,力度平衡的设计原则,塔和索的高度要使斜拉力的夹角较大,达到均衡受力。
(2)合理分配斜拉索的长短,使得受拉索、主索、撑杆处于最佳受力状态。
(3)锚固点的布置应使得索材料受力均匀,防止应力集中而产生的材料劣化和疲劳断裂。
现代斜拉桥的发展趋势
现代斜拉桥的发展趋势
近年来,现代斜拉桥的发展趋势主要体现在以下几个方面:
1. 载重能力增强:随着交通和贸易的不断发展,斜拉桥需要承载更多的交通载荷和人流量。
现代斜拉桥的设计和建造致力于提高桥梁的载重能力,通过增加主梁和拉索的数量和尺寸等方式来增强桥梁的承载能力。
2. 结构优化:现代斜拉桥在结构上进行了优化,利用新材料和新技术,减少了桥梁的自重,提高了桥梁的可靠性和耐久性。
例如,采用更轻的复合材料作为主梁材料,采用预应力技术来增强桥梁的稳定性等。
3. 美学和环保要求的提升:现代斜拉桥不仅要满足功能需求,还要注重桥梁的外观设计和环境保护。
设计师和建筑师在桥梁的外形、色彩、灯光设计等方面加入了更多的美学元素,使得斜拉桥成为城市的地标和风景线。
同时,为了减少对环境的影响,现代斜拉桥在材料的选择、施工过程的环保措施等方面也更加注重可持续发展。
4. 智能化和数字化应用:随着科技的发展,现代斜拉桥也开始应用智能化和数字化技术。
通过传感器和监测系统,实时监测桥梁结构的变化和健康状况,提前发现潜在故障,保障桥梁的安全性。
同时,与交通管理系统和智能交通技术相结合,实现桥梁的智能化管理和运营。
总之,现代斜拉桥在载重能力、结构优化、美学要求、环保要求以及智能化和数字化应用方面都有了显著的发展趋势,以满足不断增长的交通需求和城市发展的要求。
现代桥梁结构及施工特点
现代桥梁结构及施工特点周外男2008、08、02一、现代桥梁建造技术的发展★1、二十世纪40~50年代1947年,德国Leanhardt首创各向异性钢桥面板新结构。
1953年,德国Finsterwald在Worms桥首创挂蓝悬浇预应力混凝土节段施工新技术。
1955年,中国大桥局在武汉长江大桥首创钢筋混凝土管柱钻孔基础。
1956年,德国Dishinger建成第一座现代斜拉桥,主跨182.6m。
1958年,德国Leonhardt在主跨260m的杜塞尔多夫北桥中首创斜拉桥“倒拆分析法”的施工控制技术。
★2、二十世纪60年代1962年,意大利Morandi设计了第一座预应力混凝土斜拉桥,主跨235米的委内瑞拉马拉开波桥。
1964年,瑞士Menn首创了混凝土连续刚构桥。
1964年,法国Oleron岛跨海大桥,全长3000m,首创用造桥机进行预制节段悬拼施工工法。
1966年,德国Homberg设计了第一座密索体系的斜拉桥,主跨288m的波恩莱因河桥。
1966年,英国Freeman—Fox公司设计的Sevem悬索桥,第一座采用流线型扁箱梁桥面主跨988m的现代悬索桥。
还有:德国在跨深谷的长桥中首创了移动托架的悬臂施工工法和顶推施工工法;法国首创了各种预应力锚固技术;德国发明了高强螺栓连接新技术。
★3、二十世纪80年代1983年,日本名港西大桥,主跨405m,首次采用新开发的热挤PE护套的平行钢丝成品索。
1988年,日本主跨1100m的南备赞悬索桥,首创新型的平行钢丝索股代替传统的美国“空中纺缆法”编制主缆。
★4、二十世纪90年代1995年,法国诺曼第斜拉桥采用超长悬臂施工控制、新型的平行钢绞线拉索及其防雨振的螺旋线表面处理和阻尼器等。
1997年,丹麦大海带桥西桥110m箱梁的整体化施工,预制件的最大重量6500t。
1998年,日本明石海峡大桥,主跨1991m,首次采用180MPa级高强钢丝,使主索直径缩小并简化了连接构造。
斜拉桥
42
1 主梁的构造
主梁的作用:
1、将恒、活载分散传给拉索。梁的刚度越小,则承担的弯矩越小; 2、与拉索及索塔一起成为整个桥梁的一部分,主梁承受的力主要是拉索的 水平分力所形成的轴压力,因而需有足够的刚度防止压屈; 3、抵抗横向风载和地震荷载,并把这些力传给下部结构。
主梁的型式:
1、实体梁、板式;2、箱型截面梁;3、叠合梁;4、钢桁梁
斜拉桥多数是自锚体系。只有在主跨很大边跨很小时,少 数斜拉桥才采用部分地锚体系。
图1-11 西班牙卢纳桥
40
(6)矮塔/部分斜拉桥体系
按塔高分类:常规斜拉桥和矮塔部分斜拉桥 矮塔部分斜拉桥受力性能介于梁式桥和斜拉桥之间。
图1-12 矮塔部分斜拉桥
41
二 斜拉桥的构造
1 主梁的构造
2 索塔
3 拉索
45
单索面箱形截面主梁
(a)法国布鲁东纳(Brotonne)桥
(b)美国日照(Sunshine Skyway)桥
单箱单室: 采用斜腹板,可以改善抗风性能,又可减小墩台的宽度,且箱形截面的抗 扭刚度也大。
46
单箱三室:
30100
1.5% 1.5%
300
4900
2650
15000
2650
4900
宽达30-35m,悬臂施工时, 须将截面分成三榀,先施 工中间箱,待挂完拉索后, 再完成两侧边箱的施工, 呈品字形前进,将截面构 成整体。
12
海参崴俄罗斯岛跨海大桥(L=1104,2012)成为全世界第三座跨度超过千米的 13 斜拉桥,全球主跨最长的斜拉桥。
( 286+560+560+560+286m ,2003年)
现代桥梁发展概况及趋势
首先,绿色化和可持续发展已经成为现代桥梁发展的重要方向。未来的桥梁设 计将更加注重环保和节能,例如采用可再生能源、降低碳排放等措施,以实现 与环境的和谐共生。
其次,数字化和智能化技术的应用将进一步拓展。通过采用先进的数字化技术 和智能化设备,实现对桥梁的实时监测、预警和控制,提高桥梁的安全性和耐 久性。例如,物联网技术的应用可以实现对桥梁状态数据的实时采集和传输, 为后续的维护和管理提供数据支持。
梁式桥作为最古老的桥梁类型之一,在现代得到了新的发展。其结构简单、施 工方便等特点使得梁式桥在公路和城市桥梁中占据了主导地位。斜拉桥作为一 种新型桥梁,以其优美的造型和高效的结构受力赢得广泛。中国的苏通长江大 桥和法国的诺曼底桥是斜拉桥的典型代表。组合体系桥则综合了多种桥梁类型 的优点,具有更大的灵活性和适应性,适用于复杂的地理环境和多样化的交通 需求。
2、现状和趋势
当前,现代桥梁发展正处于一个新的阶段。数字化、智能化和绿色化成为现代 桥梁发展的新趋势。数字化技术为桥梁设计和建造提供了更精确的工具,如数 字建模和仿真技术,有助于提高桥梁的结构效率和使用寿命。智能化技术则使 桥梁具备自我检测、自我修复和自我学习能力,大大提高了桥梁的安全性和耐 久性。绿色化则强调了桥梁与环境的和谐共生,采用环保材料和节能技术,减 少桥梁建设对环境的影响。
3、可持续发展
为了更好地适应市场需求和环境保护的需要,可持续发展已成为PVC加工助剂 行业的重要发展趋势。未来的PVC加工助剂将更加注重环保性能,减少对环境 的污染和人体的危害,同时将更加资源的有效利用,推动行业的可持续发展。
四、结论
综上所述,PVC加工助剂在改善PVC材料加工性能方面具有重要作用,其发展 状况直接关系到PVC行业的整体发展水平。在未来,随着市场需求和技术进步 的不断推动,PVC加工助剂将朝着环保、高效、多功能方向发展,市场前景广 阔。因此,我们应该加大研发力度,提高技术水平,推动PVC加工助剂行业的 可持续发展。
小议大跨度斜拉桥施工技术发展现状及发展趋势
小议大跨度斜拉桥施工技术发展现状及发展趋势大跨度斜拉桥施工技术发展的现状如下:1、斜拉索材料的发展:传统的斜拉索材料主要采用钢材,但随着新材料的发展,现在也有采用碳纤维、高强度钢丝等材料作为斜拉索的新型斜拉桥。
这些新材料具有重量轻、强度高、耐腐蚀等特点,能够提高斜拉桥的承载能力和使用寿命!2、斜拉索施工技术的改进:传统的斜拉索施工主要采用吊索法或者拉索法,但这些方法存在一定的施工难度和风险。
现在,一些新的斜拉索施工技术被引入,如预应力张拉法、预制张拉法等,能够提高斜拉索的施工效率和质量。
3、斜拉桥结构设计的创新:传统的斜拉桥结构设计主要采用单塔单索或者双塔双索的形式,但这些结构存在一定的限制。
现在,一些新型的斜拉桥结构被提出,如多塔多索、斜塔斜索等,能够适应更大跨度和更复杂的地形条件。
4、斜拉桥施工技术的自动化和智能化:随着科技的发展,大跨度斜拉桥施工技术也在向自动化和智能化方向发展。
例如,施工机械的自动化控制、无人机的应用、人工智能的辅助设计等,能够提高施工效率和质量。
大跨度斜拉桥施工技术的发展趋势主要包括以下几个方面:1、施工工艺的优化:随着施工技术的不断发展,施工工艺也在不断优化。
传统的大跨度斜拉桥施工通常需要大量的人力和物力投入,而现代化的施工工艺可以通过使用先进的机械设备和自动化技术来提高施工效率,减少施工时间和成本。
2、材料的创新:大跨度斜拉桥的施工需要使用高强度、轻质的材料,以保证桥梁的结构稳定性和承载能力。
随着材料科学的不断进步,新型材料的开发和应用将为大跨度斜拉桥的施工提供更多选择,例如高强度钢材、碳纤维等。
3、结构设计的优化:大跨度斜拉桥的结构设计是保证桥梁安全可靠的关键。
随着计算机技术的发展,结构设计分析软件的应用越来越广泛,可以对桥梁的结构进行更加精确和详细的分析,优化结构设计,提高桥梁的承载能力和抗震性能。
4、施工监测技术的应用:大跨度斜拉桥的施工过程需要进行实时的监测和控制,以确保桥梁的安全性和稳定性。
斜拉桥的结构形式、原理及发展
斜拉桥的结构形式、原理及发展斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
一、结构斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。
斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182.6米的斯特伦松德(Stromsund)桥。
目前世界上建成的最大跨径的斜拉桥为俄罗斯的俄罗斯岛大桥,主跨径为1104米,于2012年7月完工。
斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。
它由梁、斜拉索和塔柱三部分组成。
斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。
梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。
按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。
2013年已建成的斜拉桥有独塔、双塔和三塔式。
以钢筋混凝土塔为主。
塔型有H形、倒Y形、A形、钻石形等。
斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。
钢绞线斜拉索在汕头石大桥采用。
钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。
斜拉桥的钢索一般采用自锚体系。
开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。
地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。
斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。
斜拉桥有哪些方案
斜拉桥有哪些方案引言斜拉桥作为现代桥梁的一种重要形式,因其独特的结构和美观的外观而备受关注。
斜拉桥以其高度的稳定性和较小的建设成本而成为跨越较大跨度的理想选择。
本文将介绍斜拉桥的概念、原理以及现有的几种常见的斜拉桥方案。
斜拉桥的概念和原理斜拉桥是一种借助拉索的张力来支撑桥梁结构的桥梁形式。
它由主桥梁、斜拉索和塔组成。
主桥梁是横跨河道或其他障碍物的主体结构,斜拉索则通过拉伸和压缩来支撑主桥梁。
塔则作为斜拉桥的支点,承受着主桥梁和斜拉索的力。
斜拉桥的原理主要依靠桥塔和斜拉索的相互作用来承受桥梁上的荷载。
斜拉索从桥塔顶部斜向两侧延伸,与主桥梁连接。
斜拉索以张力形式存在,能够承受拉力荷载。
通过斜拉索的张力传递,主桥梁上的荷载被均匀地分散到桥塔上,桥塔再将荷载通过基座传递到地基。
常见的斜拉桥方案单塔斜拉桥单塔斜拉桥是最简单和最常见的斜拉桥方案之一。
它只有一座塔,与主桥梁和斜拉索相连。
单塔斜拉桥通常适用于较小跨度的桥梁,能够有效地传递荷载并提供稳定性。
单塔斜拉桥的外观通常简洁明快,成为城市地标建筑。
双塔斜拉桥双塔斜拉桥是较大跨度的斜拉桥常见方案之一。
相比于单塔斜拉桥,双塔斜拉桥在桥梁两端各设置一座桥塔。
这样能够增加结构的稳定性,并提供较大的张力支持。
双塔斜拉桥常用于跨越较大河流或其他较宽水域的桥梁设计,节省材料且能够承载更大的荷载。
多塔斜拉桥多塔斜拉桥是针对特殊地形和设计需求而出现的方案。
相比于单塔和双塔斜拉桥,多塔斜拉桥在主桥梁长度上增加了更多的塔和斜拉索。
这样能够克服地形难题并提供更大的荷载承载能力。
多塔斜拉桥多用于特殊地理环境下的跨越,如山区及峡谷。
斜塔斜拉桥斜塔斜拉桥是一种特殊设计的斜拉桥,其桥塔倾斜的角度与斜拉索的倾斜角度一致。
这样的设计可以使桥梁更加紧凑,减少对周围环境的影响。
斜塔斜拉桥在设计上要求更高,但能够提供独特的视觉效果和结构性能。
结论斜拉桥作为一种重要的桥梁结构形式,具有独特的外观和高度的稳定性。
斜拉桥与悬索桥
13.2.3 构造细节 (1) 主缆 悬索桥主缆构成有3种形式:平行钢丝、平行钢丝索股
和钢丝绳。 主缆在温度变化和荷载作用下,有伸长或缩短,要求
主缆在塔顶处有水平移动:在中、小跨径的悬索桥中,采 用刚性桥塔,塔顶设活动的索鞍;采用摆柱式桥塔,主缆 在塔顶固定,塔脚设铰,塔柱以微小的摆动来满足主缆水 平移动的要求;采用柔性桥塔,主缆与塔顶固结(通过主 缆鞍),塔脚亦与墩身(或基础)固结。
标高加上跨中吊杆高度和矢高来确定。 (3)吊杆间距 吊杆间距与加劲梁局部受力、桥面构造和桥面材料用量有
关,应进行经济比较。100m~400m的悬索桥,吊杆间距5m~8m; 跨径增大,吊杆间距也增大,有时可达20m左右。
(4)锚索倾角
悬索桥锚索(边跨主缆)倾角的确定原则是使主缆在中 跨与边跨内的水平拉力相等或接近。锚索的倾角与中跨主缆 在桥塔处的水平倾角应相等或接近锚索倾角常采用30°~ 40°,受地形限制时两角之差宜控制在10°以内。
a) b) c) d)
⑤辅助墩及外边孔 斜拉桥在边孔设置辅助墩,应根据边孔高度、通航要求、 施工安全、全桥刚度以及经济和使用条件等具体情况而定。 在边孔高度不大或不影响通航时,在边孔设置辅助墩,可 改善结构的受力状态,增加施工期的安全。当辅助墩受压 时,减少边孔主梁弯矩,而受拉时则减少中跨主梁的弯矩 和挠度,从而大大提高了全桥刚度。 辅助墩的位置由跨中挠度影响线确定,同时考虑索距及施 工要求。
(4)加劲梁与支座 1)加劲梁构造 悬索桥的加劲梁可做成钢板梁、钢桁梁和钢箱梁以及
混凝土箱、板梁。
2)加劲梁支座
简支加劲梁的支座与一般简支梁相同,即一端设固定 支座,另一端设活动支座;加劲梁是连续梁时,固定支座 通常布置一个在中间桥塔上,这样可使梁体伸缩变形分散 在加劲梁的两端,并使变形缝构造容易处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、桥塔的形式和布置
1)桥塔纵向形式 主要有三种类型: 单柱形、倒V形、倒Y形
2)桥塔的横向形式 桥塔的横向形式与索面布置密切相关。当采用单面索中,横向形式主要为 三种类型:单柱形、倒V形、A形
当采用双索面时,桥塔横向形式有5种:独柱形、A形、菱形、门形、梯形。
Knie Bridge(中文:格尼桥),位于德国杜塞尔多夫。该桥为独塔竖琴式 双索面斜拉桥,桥塔为柱形。
4、锚拉体系与支承体系 1)斜索的锚拉体系 有三种:自锚式、地锚式、部分地锚式。
2、桥塔支承体系 (1)、塔墩固结、塔梁分离 (2)、塔梁固结、梁墩分离 (3)、铰支桥塔 (4)、塔、梁、墩固结
三、现代斜拉桥发展趋势
现代斜拉桥的发展趋势是: (1)桥跨向特大跨度(即1000m以上)发展; (2)结构形式更为美观,表现为桥塔独特异形,桥面加劲梁更为轻巧。 因此需要存在改进的问题为: (1)、抗风设计 风的随机性和其动力振动行为极为复杂,尽管依靠风洞试验来验证抗风设 计,但风洞模型与实际还是存在差异。因此,需要多收集跨海峡大桥的风振方 面实际资料加以研究。 (2)、抗震设计 斜拉桥的塔、索、梁的各自振动特性有很大差别,给地震设计带来很大的复 杂性。此外结构的阻尼特性也还研究不够,再加之对于大跨度桥梁,地震的行 波效应也需要考虑。 (3)、斜索的使用寿命 影响斜索的使用寿命是两个方面的问题:腐蚀与疲劳。 (4)结构材料强度的提高 结构材料强度的提高可以减轻结构自重,从而提高桥梁跨越能力。
长沙浏阳河洪山大桥,主桥结构形式为无背索斜塔竖琴式单索面斜拉桥,主 跨206米,等截面薄壁空心钢筋混凝土结构,钢箱梁高4.4米,桥面宽33.2米。
4)多塔多跨式 斜拉桥与悬索桥很少采用多塔多跨式。主要原因是多塔多跨式斜拉桥的中间 桥塔顶没有很好的方法来有效地限制它的变位。
希腊里约—安蒂里奥大吊桥(Rio-Antirio bridge):位于希腊,拥有四座桥塔、 世界上第二长的拉索式斜拉挢,横跨在帕特雷附近的科林斯湾之上。
1955年在捷克建成的182m斜拉桥
1958年在德国的杜塞尔道夫上建成的260m斜拉桥
50年代中期,瑞典建成第一座现代斜拉桥。从此以后斜拉桥出现了迅速的发 展。我国70年代中期开始修建混凝土斜拉桥,改革开放后,我国修建斜拉桥的更 是飞速发展。截至目前,中国已建成斜拉桥100多座,是世界上修建斜拉桥最多 的国家,其中跨径400米以上的有20多座,居世界之首。目前已建成苏通大桥主 孔跨度达1088米,为世界第一跨径斜拉桥。
泉州晋江大桥为独塔扇形双索面斜拉桥,桥塔采用门式桥塔。
扎金大桥(Zakim)为独塔扇形空间索面斜拉桥,桥塔采用倒Y形桥塔。
瓦斯科· 达伽马大桥(英文:Ponte Vasco da Gama)是位于葡萄牙首都里斯 本跨越塔霍河的一座跨海斜拉桥,为双塔扇形双索面斜拉桥,桥塔采用H形桥塔。
Glebe Island Bridge(中文: 搁里岛桥),位于澳大利亚悉尼,于1997年通车。 该桥为双塔扇形空间索面斜拉桥,采用宝石形桥塔。
(5) 南京长江三桥
648米,中国,2005年
杭州湾跨海大桥为独塔扇形空间索面斜拉桥,桥塔采用倒V形桥塔。
1997年9月29日建成通车的南昌新八一大桥,位于原八一大桥上游50米处, 全长3000多米, 它为一座双塔竖琴式双索面斜拉桥,桥塔采用H形。
汕头宕石大桥,是我国第一座钢箱梁与PC箱粱混合结构斜拉桥。它为一座 双塔空间索面斜拉桥,桥塔为A形。
双塔三跨式斜拉桥可以布置成两个边跨相等的对称形式,也可以布置成两个 边跨不相等的非对称形式。
宜宾长江大桥,全长941.43m,主桥为双塔双索面混凝土梁斜拉桥。它为 对称双塔三跨式斜拉桥。
巴拿马世纪大桥是巴拿马运河上修建的第二座大桥。该桥主桥设计为独柱式 双塔、中央单索面混凝土斜拉桥,主跨420m。
1977年的法国勃鲁东桥,320m
3)斜拉桥种类的多样化 斜拉桥从早期的钢斜拉桥,发展到预应力混凝土斜拉桥、结合梁(叠合梁) 斜拉桥、混合梁(即边跨混凝土梁与主跨钢梁连结)斜拉桥。
上图为天津保定桥,该桥为钢与混凝土组合结构,主跨采用钢箱梁结构,边跨采 用预应力混凝土箱梁结构。桥梁主塔高50米采用风帆造型。
4)斜拉桥的桥塔和拉索形式的多样化
上图为广州的海印大桥,其桥塔侧面看如同大鹏的嘴。
二、 现代斜拉桥的结构形式
1、孔跨布置 现代斜拉桥最典型的孔跨布置为:双塔三跨式与独塔两跨式。然后是在这 两种形式的变体。 1)双塔三跨式
主跨跨径L2与边跨跨径L1的比例关系有: 钢斜拉桥 2.2~2.5 其他斜拉桥 2.0~3.0
目前在建大跨度斜拉桥:鄂东长江公路大桥 926m,九江长江公路大桥 818m,荆岳长江大桥 816m
(1) 苏通大桥
1088米,中国,2008年
苏通大桥位于江苏省东部的 南通市和苏州(常熟)市之间, 是交通部规划的黑龙江嘉荫至 福建南平国家重点干线公路跨 越长江的重要通道,是我国建 桥史上工程规模最大、综合建 设条件最复杂的特大型桥梁工 程。 苏通大桥工程起于通启高速 公路的小海互通立交,终于苏嘉杭高速公路董浜互通立交。路线全长32.4 公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成。
现代斜拉桥的发展
现代斜拉桥
桥塔 拉索
加劲梁
斜拉桥(Cable-stayed bridge)的上部结构由梁、索、塔三类构件组成 。 它是一种桥面体系以加劲梁受压(密索)或受弯(稀索)为主、支 承体系以斜索受拉及桥塔受压为主的桥梁。
一、斜拉桥的历史与发展
1、斜拉桥的历史 斜拉桥的历史很早,在几百年之前就存在有斜拉桥的雏形。其承重索是用藤 罗或竹材编制而成 。
湖南岳阳洞庭湖大桥是岳阳市跨越洞庭湖口的一座特大型桥梁。大桥总长 5784.5米,主桥主跨采用2×310米三塔双斜面索混凝土斜拉桥。
宜昌夷陵长江大桥,2001年底建成通车。大桥全长3246米,主桥主跨采用 2×348米三塔混凝土斜拉桥。
2、斜拉索布置 1)斜索在空间内的布置形式 一般有3种类型:单索面、双索面、空间索面。
通化西昌大桥位于吉林省通化市,全长637米,主桥为独塔单索面预应力混 凝土斜拉桥,主塔墩为塔、梁、墩固结体系,桥面以上塔高81.8米。
3)单跨式 单跨式斜拉桥一般只需要一个桥塔,由于不存在边跨的关系,塔后斜索只能 采用地锚形式。
西班牙的阿拉米罗大桥为举办1992年世界博览会建成的。大桥全长200m, 由13对钢索斜拉固定在142m高的斜桥塔上,桥塔与地平成58度角。该桥也称 无背索斜拉桥。
重庆奉节长江大桥,大桥全长930米,于2006年6月建成。主跨采用460米 扇形空间索面预应力混凝土斜拉桥,采用A形桥塔。
美国Dames Point Bridge(但点桥),位于佛罗里达。这座桥桥面34米宽, 主跨396米,为竖琴式双索面斜拉桥,采用H形桥塔。
德国塞弗林大桥,建于1959年,是最早的A型独塔斜拉桥,主跨302 米。它为放射形双面索斜拉桥,采用倒V形桥塔。
斜拉桥的发展,有着一段十分曲折而漫长的历程。18世纪下半叶, 在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成 的斜拉桥。
1784年德国人设计的木斜拉桥
1817年英国人设计的两座斜拉桥
1868年捷克人设计的斜拉桥
1873年在英国泰晤士河上建造的斜拉桥
1907年和19昂船洲大桥
1018米,在建
昂船洲大桥位于香港,是全 球第二长的双塔斜拉桥。大桥主 跨长1018米,连引道全长为 1596米。是本港首座位处市区环 境的长跨距吊桥,在香港岛和九 龙半岛都可以望到这座雄伟的建 设。 昂船洲大桥离海面高度73.5 米,而桥塔高度则为290米,两 者都比青马大桥为高。桥面为三 线双程分隔快速公路。
2、现代斜拉桥发展的原因与条件 1、对300m~800m跨度最有竞争力; 与悬索桥相比,斜拉桥有比较好的刚度。 2、景观方面的新颖感; 塔的型式多样性,拉索布置的灵活性,可以构造出许多新型的桥梁形式。 3、新材料开发配合; 高强度钢索材料的发展,防腐技术的提高。 4、设计理论和计算技术的进步; 抗风抗震的计算理论有了长足的进展,电子计算机有限元分析计算软件的应 用。 5、施工技术的进步; 自架式平衡施工技术的发展,施工控制技术的进步。 6、整体桥面的开发与配合。 扁平箱形截面的构造技术的发展。
双塔三跨式斜拉桥的两个边跨可以根据结构受力的需要,布置中间辅助墩。
法国诺曼底桥,建于1994年。主跨856米,为混合梁,其中624米为钢梁, 其它为混凝土梁;边跨全部为混凝土梁。
日本的多多罗大桥于1999年5月1日建成通车,主跨长890米,连引道全长为
1480米。
2)独塔双跨式
独塔双跨式斜拉桥常布置成两跨不对称的形式,即分为主跨与边跨;也可以 布置成两跨对称的形式。
单索面和双索面与主梁抗扭问题有密切关系。一般而言,采用单索面,斜索 对抗扭不起作用,因此要求主梁有较大抗扭刚度;采用双索面,作用于桥梁的扭 矩可由斜索的轴力来抵抗,因此对主梁的抗扭刚度要求不高。
2)斜索在索面内的布置形式 一般有四种形式:放射形、扇形、竖琴形(或称平行形)、星形。
在主跨与边跨内布置不同的索面形状,可以取得几种不同的混合索面。
陕西咸阳渭河二号大桥是目前西北地区最大的单塔斜拉式大桥,于1995年 12月19日建成通车。
韩国首尔奥林匹克大桥(Olympic Bridge),位于韩国首尔广津区九宜洞和 松坡区风纳洞之间,横跨汉江。大桥于1985年11月20日开工建造,1990年6月 才建成通车。
济南黄河三桥,采用倒Y形索塔、独塔双索面斜拉式设计,主塔高195米,大 桥全长4473.04米,主跨长386米、宽40.5米。
(3)多多罗大桥
890米,日本,1999年
多多罗大桥是位于日本濑户内海 的斜拉桥,连接广岛县的生口岛 及爱媛县的大三岛之间。大桥于 1999年竣工,同年5月1日启用, 最高桥塔224米钢塔,主跨长 890米,主梁采用钢箱梁,是当 时世界上最长的斜拉桥,连引 道全长为1480米,四线行车。 世界最长斜拉桥和最高桥塔 的纪录被2008年建成通车的中国 苏通长江公路大桥(苏通大桥)打破,苏通大桥跨径1088米,混凝土桥 塔高300.4米。