跃进二号东高点储层敏感性分析
《油层物理学》第5节:储层岩石的敏感性研究
油藏物理学——储层岩石的敏感性研究
华北坳陷第三系:
接触胶结中的φ:23~30%,K:(50~1000)×10-3μm2 孔隙胶结中的φ:18~25%,K:(1~150)×10-3μm2 基底胶结中的 φ:8~17%, K < 1×10-3μm2
油藏物理学——储层岩石的敏感性研究
5. 影响粘土膨胀的因素:effect factor on clay swelling 粘土类型 clay type 含量 clay content 分布clay distribution 水的矿化度 water saltiness/salinity 阳离子交换性cation exchange
第五节 储层岩石的敏感性研究
Research on sensitivity of reservoir rock
油藏物理学——储层岩石的敏感性研究
讲课提纲
一. 问题的提出 二. 胶结物与胶结类型 三. 敏感矿物
●水敏性矿物 ●盐敏性矿物 ●酸敏性矿物 ●碱敏性矿物 ●速敏性矿物 ● 盐敏 四. 储层敏感性的评价方法 ●推荐程序 ●试验流程 ●发展趋势
油藏物理学——储层岩石的敏感性研究
(1)粘土遇水膨胀 ― 水敏性矿物
Clay swelling ——water sensitivity mineral 1. 起因:晶层间联系的牢固性 水敏性矿物由于其在晶层间的吸水引起的膨 胀,砂粒上的粘土颗粒的絮解和在粘土片外表形 成的定向水化层。
如:蒙脱石是硅氧四面体结构,晶层间的 距离与所嵌离子的离子半径的差会引起阳离子 的交换,或水分子的进入,因而引起膨胀。
油藏物理学——储层岩石的敏感性研究
储层的敏感性特征及开发过程中的变化
储层的敏感性特征及开发过程中的变化摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。
不同的敏感性产生的条件和产生的影响都有各自的特点。
本文主要从三个部分研究分析了储层的敏感性特征。
即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。
通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。
关键词:粘土矿物;储层;敏感性1.粘土矿物的敏感性特征随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。
由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。
1.1 粘土含量在粒度分析中粒径小于5um者皆称为粘土,其含量即为粘土总含量。
当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。
1.2 粘土矿物类型粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。
粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。
不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。
目前多彩采用X射线衍射法分析粘土矿物。
常见粘土矿物及其敏感性如表1所示。
1.3 粘土矿物的产状粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。
在三种粘土矿物类型中,以分散式储渗条件最好;薄层式次之;搭桥式由于孔喉变窄变小,其储渗条件最差。
除此之外,还有高岭石叠片状,伊/蒙混层的絮凝状等,而且集中粘土矿物的产状类型也不是单一出现的,有时是以某种类型为主,与其它几种类型共存。
储层敏感性研究
二、外来流体与岩石的相互作用
1. 粘土矿物的水化膨胀 外来流体使地层内一些粘土矿物发生水化、 膨胀,堵塞孔喉。 2. 地层内部微粒迁移
外来流体流动速度及压力波动使地层内部微粒发生 迁移,堵塞孔喉,使渗透率降低,或疏通孔喉,使 渗透率升高。速敏性
3. 酸化过程中的化学沉淀 酸化增产措施中,若配方不合适,或措施不当,酸 化后可发生再沉淀,堵塞孔喉,使渗透率降低。
膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒:石英、长石等 油层酸化处理后释放的碎屑微粒
3. 流体性质对速敏性的影响
盐度、 PH值、分散剂 低盐度流体: 水敏矿物水化、膨胀和分散,
在较低流速下发生迁移。
高PH值:减弱颗粒与基质间结构力,胶结差的地层微粒
释放到流体中,使地层微粒增加。
(3)油水分层流动的情况
在油流区,水 湿微粒受束缚 水影响被约束 不移动; 在水流区水湿 微粒会移动。
(由于压力波动,一般不形成稳定的桥堵)
(4)混性润湿微粒在油流中的迁移情况
(当储层中的油流动时,微粒位于束缚水与油的油水界面处, 微粒受油的拉力而沿油-水界面运动)
(5)在注入油-水互溶剂时的微粒迁移情况
发生迁移: 堵塞孔隙; 解堵
加入油-水互溶剂时,会使得本来由于润湿性和界面张力 控制而固定的微粒发生迁移作用。相反,发生解堵作用。
三、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
HCl: 含铁矿物(绿泥石、铁碳酸盐等) 生成Fe(OH)3 SiO2 HF: 高含钙矿物(如方解石、钙长石、沸石等) CaF2 SiO2
与喉道微粒匹配的微粒 开始移动,形成“桥堵” 速度大,移动微粒数量 骤然增加。
跃进二号东高点油田开发存在的问题
跃进二号东高点油田开发存在的问题浅析【摘要】跃进二号东高点油田是一个长井段、高丰度的复杂断块油田,是一个被断层复杂化、以构造控制为主、受岩性影响的岩性构造圈闭油藏。
目前油藏已进入中高含水期,剩余资源分布复杂,油田开发及稳产过程中发现诸多问题。
【关键词】水驱控制动用程度断块非均质性1 开发现状探明含油面积2.4km2,累计探明石油地质储量2365×104t,可采储量473×1044。
截止2012年12月底全油田共有油水井269口,其中采油井209口,开井123口;共有注水井60口,开井54口。
年平均核实日产油280.31吨,累计产油391.09万吨,采出程度18.29%;年产水26.3466万吨,累计产水525.05万吨;年注水81.47万方,年井口注采比1.95,累积注水895.16万方。
目前油藏综合含水67.87%,相对去年年均含水上升率-9.97%,老井自然递减率16.83%,老井综合递减率12.60%。
2 开发存在的问题分析2.1 地质构造复杂构造破碎,断块面积小,难以形成较完善的注采井网,水驱控制程度低。
油田含油面积2.25km2,各层系构造主体部位断块面积一般小于0.2km2,难以形成较完善的注采井网(图1)。
图1 地质构造对比图2.2 储层非均质性强、平面、纵向层间矛盾突出储层含油岩性主要为粉砂岩和细砂岩,胶结物为方解石,胶结类型以孔隙型胶结为主,储集空间以孔隙型为主。
(1)平面上:岩性横向变化大,油砂体连通性较差,储层非均质性强(2)纵向上:沉积韵律明显,层间非均质性较大,层间干扰严重(3)n1~n21储层成岩作用较弱,砂岩固结程度差,油层出砂严重,开发难度大。
2.3 局部注采井网不完善(1)部分层系井网不完善:一层系、二层系、八层系,油水井数比分别为6:1、5.5:1、4:1,一线油井供液不足,平面注采井网需要通过转注、加密进行完善;(2)三层系、四上层系井网相对较完善,但由于注水受断层影响二次分配,导致一线采油井普遍水淹;(3)四下层系、五层系井网相对较完善,但主体部位注水不受效,考虑后期加大井间监测力度明确水驱方向;(4)六、七层系构造边部无效注水量大,后期需要进行平面注水调整,沿十号断层一线无注水井,在精细地层对比基础上,后期考虑转注试验。
柴达木盆地跃进II号地区油源研究
4)。
石 油 地 质
南 I 科 技 2 1年第6 1 1 . : 02 期
柴达木盆地 跃进I号地 区油源研 究 I
石 正 灏① 陈
①西南 石油大学
勇① 熊 坤 ② 霍 鹏 ②
61 5 0 成 都 ;② 青 海 油 田 采 油 一 厂 0 0
摘 要 跃 进 I号 地 区 位 于柴 达 木 盆 地 柴 西 南 区 ,毗 邻 红 狮 凹 陷 ,扎 哈 泉 凹 陷 ,是 柴 西 南 区重 要 的 油 气勘 探 区域 。本 文通 过 以 工 I 区烃源岩 、原油 以及储层抽提 物等地球化 学特征研 究为基础 ,讨论跃进I号、跃 东、跃 西构造 油气来源 问题 ,研 究表 明,位于阿拉 尔 I
表 1研 究工区不同层位 烃源评 价参数类型
南 肛 种 技 2 1年第6 02 期
石 油 地 质
泉凹陷 ,而是来 自 东北面 的凹陷 ,与尕斯油 田的原油具有 同一来源 。 跃进 Ⅱ号 。跃进 Ⅱ 原 油 的伽玛 蜡 烷 丰度 较 低 , 甾烷 以c 为 号 主 ,与扎 西 1 井B 源岩相 似 ,源岩 的伽玛 蜡烷 丰度 低 ,以c淄 烷 为
( 3 Km2 20 )。多年勘 探实践表 明跃进 二号构造 带是一 个油气 聚集有 利区带 。目前 已发现跃西及跃进I I 号东 高点油 田。 该 区地层 自上而下 为 :狮 子沟组 、上油砂山组 、下油砂山组 、上
跃进二号复杂断块油田砂岩油藏注采系统评价及开发调整研究
跃 进 二 号 油 田是 一 个 含 油 井 段 长 、 量 丰 度 高 储 的 同沉 积 复 杂 断 块 油 田 , 于 柴 达 木 盆 地 西 部 南 区 , 位 为 西 部 坳 陷 区 昆北 断 阶 亚 区 铁 木 里 克 凸 起 内 的一 个 三 级 构 造 。该 油 田 位 于 阿 拉 尔 断 层 上 盘 , 北 为 尕 西 斯库勒油 田, 为跃 西构 造 , 与跃 东构 造 相邻 , 西 东 油
复 杂 断 块 油 田的 复 杂 性 主要 来 源 于 众 多 而 密 集 的断 层 。 跃 进 二 号 油 田在 断 层 作 用 下 被 分 成 多 个 大 小 不 等 的 断 块 , 数 断 块 面 积 小 于 0 5k 2 多 . m 。多 套 含 油 层 系 和 极 复 杂 的构 造 使 得 跃 进 二 号 油 田的油 水 关 系十 分 复 杂 : 方 面 , 水 关 系 主要 受 构 造 和 断层 控 一 油 制 , 层 在 油 藏 形 成 后 的原 始 状 态 下 , 油 气 的分 布 断 对 和 油 水 关 系 有 一 定 的控 制 作 用 ; 一 方 面 , 于 断 层 另 由
跃 进 二 号 构 造 是 阿拉 尔 断 层 与 Ⅶ 号 断 层 上 盘 的
一
个 被 复 杂 化 的 、 基 岩 隆 起 基 础 上 长 期 发 育 的 同 在
跃 进 二 号 油 田是 一 个 在 背 斜 构 造 背 景 上 发 育 并 受 岩 性 影 响 的 复 杂 断 块 油 田 。储 集 空 间 以孔 隙 型 为 主储 层 沉 积 相 类 型 主要 为 网状 河 、 流 河 和 辫 状 河 。 曲 平 面 上 , 性 横 向 变 化 大 , 砂 体 连 通 性 较 差 , 层 岩 油 储 非 均 质 性 强 ; 向 上 , 积 韵 律 明 显 , 间 非 均 质 性 纵 沉 层 较 大 , 间 干 扰 严 重 。 根 据 跃 进 二 号 油 田历 年 测 试 层 资料 统 计 : 田பைடு நூலகம் 量 动 用 程 度 为 5 . % , 明 油 田 油 56 说 存 在一定层 间干扰 。
储层敏感性流动实验评价方法
SY/T 5358-2010代替SY/T 5358-2002储层敏感性流动实验评价方法储层敏感性流动实验评价方法FtidltibflttFormation damage evaluation by flow test2 0 1 1 年6 月中石化胜利油田分公司地质科学研究院2 0 1 1 年6 月一、编制说明一、编制说明二二《《储层敏感性流动实验评价方法储层敏感性流动实验评价方法》》二、二、《《储层敏感性流动实验评价方法储层敏感性流动实验评价方法》》油标委秘字油标委秘字〔〔20092009〕〕1919号号《《国家能源局关于下达国家能源局关于下达20092009年第一批能源年第一批能源任务来源油标委秘字油标委秘字〔〔20092009〕〕1919号号《《国家能源局关于下达国家能源局关于下达20092009年第一批能源年第一批能源领域行业标准制修订计划的通知领域行业标准制修订计划的通知》》。
计划编号能源。
计划编号能源2009002320090023。
标准修订的原则及主要内容标准起草工作组本着标准起草工作组本着科学发展、合理完善科学发展、合理完善的原则的原则在原标准的基础在原标准的基础上充分调研国内外相关资料根据储层伤害基本理论及国内同行业生上充分调研国内外相关资料根据储层伤害基本理论及国内同行业生产研究中对储层敏感性实验测定的要求结合目前的室内实验分析的实产研究中对储层敏感性实验测定的要求结合目前的室内实验分析的实际、油田具体的矿场情况进行修订。
际、油田具体的矿场情况进行修订。
内容主要包括原标准中内容主要包括原标准中实验范围、实验原理、术语和定义、实验项实验范围、实验原理、术语和定义、实验项目的选取、敏感性程度的判断、临界值的确定、部分分析项目的实验程目的选取、敏感性程度的判断、临界值的确定、部分分析项目的实验程目的选取、敏感性程度的判断、临界值的确定、部分分析项目的实验程目的选取、敏感性程度的判断、临界值的确定、部分分析项目的实验程序序等方面。
储层敏感性研究
无微粒运动:<0.05 有微粒运动0.05-0.25 中等0.25-0.5 严重>0.5
6. 体积流量评价试验
(流体低于临界流速,考察胶结物的稳定性)
体积敏感指数: Iq = (KL - KLp)/ KL
Iq :体积敏感指数; KL :用标准盐水或地层水测定的渗透率; KLp :用工作液测定的渗透率。
第三节 储层敏感性评价
潜在敏感性分析 岩心流动试验与储层敏感性评价 储层性质动态变化的空间规律研究
一、潜在敏感性分析
1. 储层岩石基本性质的实验分析 岩石薄片鉴定:提供基本性质 X衍射分析:鉴定微小矿物 扫描电镜分析:确定粘土矿物和胶结物类型 粒度分析:并非所有粒度都运动 常规物性分析:选择合适储层进行专项实验 毛管压力分析:获取孔隙结构参数
2. 水敏性流动实验与评价
水敏指数: Iw = (KL- K*w)/ KL
Iw :水敏指数; KL :岩样水化膨胀前的液体渗透率, 通常用标准盐水测得的渗透率; K*w :去离子水(或蒸馏水)测得的渗透率
3. 盐敏性流动实验与评价
临 界 盐 度
(Sc)
临界盐度越大,盐敏性越强
4. 酸敏性实验与评价
2. 流体(成分)分析
地层水、注入水、射孔液、泥浆滤液
3. 水敏性预分析
粘土膨胀实验 阳离子交换实验 测定膨胀率 测定阳离子交换容量
4. 酸敏性预分析
酸溶分析:酸溶失率,检验酸-岩反应过程中是否存在 产生二次沉淀的可能性。 浸泡观察:盐酸、土酸、氯化钾溶液、蒸馏水浸泡
二、岩心流动试验与储层敏感性评价
与喉道微粒匹配的微粒 开始移动,形成“桥堵” 速度大,移动微粒数量 骤然增加。
临 界 速 度
高速流体冲击“桥塞” , 并使微粒带出岩石, 导致渗透率增大。
第024章:储层敏感性及其评价
储层敏感性
油气储层与外来流体发生各种物理或 化学作用而使储层孔隙结构和渗透性 发生变化的性质
(一) 储层损害的原因和类型
外来颗粒的侵入和堵塞 外来固相颗粒的侵入和堵塞 外来微粒的侵入和堵塞 外来流体与岩石的相互作用 粘土矿物的水化膨胀 地层内部微粒迁移 酸化过程中的化学沉淀 外来流体与储层流体的不配伍性 乳化堵塞 无机结垢 有机结垢 铁锈与腐蚀产物的堵塞 微生物作用 细菌堵塞
(二) 储层敏感性机理
储层的水敏性 储层速敏性 储层酸敏性
1、储层水敏性
(1) 概念 当与地层不配伍的外来流体进入地层 后,引起粘土矿物的水化、膨胀、分散、 迁移,从而导致渗透率下降的现象
(2) 粘土矿物的膨胀性 水敏性矿物:蒙脱石、伊蒙混层 (3) 外来流体性质与临界盐度
2、储层速敏性
(1)概念 储层因外来流体流动速度的变化引 起地层内部微粒迁移,堵塞喉道,造成 渗透率下降的现象。
(2)水敏性流动实验与评价
水敏指数: Iw = (KL- K*w)/ KL
(3)盐敏性流动实验与评价
(4)酸敏性实验与评价
酸敏指数: Ia = (Kw - Kwa)/ Kw
(5) 正反向流动试验
运移敏感指数:
Im = (Kmax - Kmin)/ K反
(6) 体积流量评价试验
(胶结物的稳定性)
(2)速敏矿物与地层微粒
储层中的速敏矿物:高岭石、毛发状伊利石 膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒 油层酸化处理后释放的碎屑微粒
(3)流体性质对速敏性的影响
低盐度:水敏矿物膨胀 高PH值:使地层微粒增加 分散剂:释放地层微粒
3、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
储层五敏
储层敏感性(“五敏”)
几乎所有井的油层都会受到不同程度的损害,油层损害必然导致产能损失及产量下降。
储层对于各种类型地层损害的敏感性程度,即为储层敏感性。
1、速敏性是指因流体流动速度变化引起地层微粒运移、堵塞喉道,导致渗透率下降的现象。
速敏性研究的目的是在于了解储层的临界流速及渗透率的变化与储层中液体流动速度的关系。
地层微粒是指地层中包括粘土微粒和其它矿物的碎屑微粒在内的所有可移动微粒,它的存在是引起速敏性的内因。
2、水敏性储层中粘土矿物及其它自生矿物在原始地层条件下处于一种含有一定矿化度的盐水环境中,当淡水或低矿化度的水进入地层后,由于环境条件的改变,这些矿物就会发生膨胀、分散、脱落和运移,减小或堵塞储层喉道,造成储层渗透率降低,地层这种遇淡水降低渗透率的现象称水敏性。
3、酸敏性:用各种酸液处理地层,已成为油气田开发改造过程中的常用措施,它可以清除井筒附近地层的酸溶性堵塞,溶蚀岩石矿物,扩大油气流通通道,改善油气层渗流能力。
在酸处理过程中,如果酸液选择或施工程序不合理,也会对地层造成损害。
酸液进入地层后,与地层中的酸敏性矿物发生反应,产生沉淀或释放出微粒,使地层渗透率下降的现象称为酸敏性。
4、碱敏性是指碱性工作液进入储层后,与储层岩石或储层液体接触,并使储层渗流能力下降的现象。
5、压敏性:应力敏感性是指岩石渗透率随有效应力(或称净围压)的增加而下降的现象。
储层敏感性
(4)粒度分析 原因:未胶结或胶结差的细粒→外来液体→冲散、运移
分析方法: •较疏松碎屑岩―筛析法、沉降法 •泥质外的胶结物―
(5)常规物性分析 岩石孔隙度、渗透率、流体饱和度 低孔、
(6)毛管压力测定 Barkman & Davidson研究成果(1975): 孔隙结构越差↑→储层损害↑
2、流体分析 分析不同流体化学成分,预测化学结垢的可能性 流体种类: 地层流体―地层水 外来流体―注入水、工作液(泥浆滤液、射孔液等)
•氢氟酸:
酸敏性矿物:含钙高的矿物,方解石、白云石、钙长石
沸石类(浊沸石、钙沸石、斜钙沸石、片沸石、辉沸石等)
储层矿物与敏感性分析表(据姜德全等,1994,有修改)
敏感性矿物 蒙脱石
伊利石
高岭石
绿泥石 混层粘土
含铁矿物 方解石 白云石 沸石类 钙长石 非胶结微粒: 石英、长石
潜在敏感性
水敏性 速敏性 酸敏性
注:3―强;2―中;1―较弱
第三节 储层敏感性评价
一、潜在敏感性分析
1、岩石基本性质实验分析 测试项目:岩石薄片鉴定、X衍射分析、毛管压力测定、粒 度分析、阳离子交换试验等。
(1)岩石薄片鉴定 岩石最基本性质、敏感性矿物的存在与分布。鉴定内容: •碎屑颗粒、胶结物 •自生矿物和重矿物 •生物或生物碎屑 •含油情况 •
(2)X衍射分析 鉴定微小的粘土矿物,测定其相对和绝对含量:
•蒙脱石 •伊利石 •高岭石 •绿泥石 •伊/蒙混层
•绿/蒙混层
(3)扫描电镜分析 •粘土矿物及其它胶结物:类型、形状、产状、分布 •岩石孔隙结构:特别是喉道大小、形态及喉道壁特征 •孔隙结构与颗粒、充填物之间的空间联系 • 粘土矿物水化前后的膨胀特征 •电子探针:了解岩样化学成分、含铁矿物含量及位置
油区储层敏感性评价
伊—蒙混层:具有一定阳离子交换能力,在注水开发中易水 化膨胀,应考虑加入适量防膨剂,减少对储层的伤害(水敏) 。
伊利石
速敏伤害机理
是2:1层型层状构造硅酸盐
晶面间距: 1.0nm
水分子难以进入 晶层间,不膨胀
范德华力 K离强健
伊利石的结晶构造
伊利石
51.8 44.0 47.9
高岭石 %
4.0 5.3 4.6
绿泥石 %
14.0 13.5 13.8
伊蒙混 层%
30.3 37.3 33.8
样品数 块 4 4 8
敏感性评价指标
1.1水敏性评价指标:
采用水敏指数来评价储层的水敏性。
水敏指数定义如下:Iw=(Kw-Kw*)/Kw Kw —地层水渗透率,10-3μm2 Kw*—去离子水渗透率,10-3μm2
充填孔隙
晶层内牢固,晶层间联系弱,在机械力作用下易沿层面解离, 形成鳞片状微粒;同时与颗粒表面的附着力差,易脱落。
敏感性矿物
高岭石:易充填粒间孔,多见于小孔隙水活 跃处,另外高岭石集合体由于其吸附性较差, 在流体作用下,井筒附近有较强剪切力,高岭 石易被打碎向喉道运移而堵塞喉道,在注水时 应加入一定粘土稳定剂(速敏)。
速敏伤害机理
花菜头状
敏感性矿物
绿泥石:一族层状结构硅酸盐矿物,主要为 Mg和Fe的矿物,有较强的酸敏性,在高氧及弱 酸环境中,易产生胶状氢氧化铁沉淀而堵塞喉 道。
矿物类 结构 型 类型
黏土矿物结构性质
层间 连接
晶面 间距
阳离交 换容量
比表面
自由 膨胀水
高岭石 1:1 分子键、氢 7.15 键
1~10
柴达木盆地跃进二号油藏沉积相及平面展布
个主 力 油组 。长期 以来 ,~ 直 认 为 它 是 一 般 的辫 状 河 三 角洲 沉 积 .主要 砂 体 类 型 为 分 流 河 道 、 口坝 和 一 河
席 状 砂 。笔 者 在 研 究 过 程 中 ,通 过 岩心 观 察 、测 井 相 分 析 ,并 根 据 沉 积 物 粒 度 、砂 体 空 展 布 规 律 和 现
维 地 质 模 型 .完 成 了 数 值 模 拟 。尽 管 前 期 的 研 究 工
收 稿 日期 2 0 — 9 0 ;修 回 日期 :2 0 — - 0 90 —3 0 91 2 O 基 金项 目 中 国石 油 天 然气 股 份有 限 公 司科 学 研 究 与技 术 开 发项 目 r { J 一 0 ) Qf ' 0 01 I 作 者 简 介 叶 萍 ( 9 1) 1 8 一 .岔 .硕 士 , 岩 石学 、 矿 物 学 、矿 床学 专 业 。T na y x # 2 ( 3{ ( Q 1 3 m、 — u io 8 ) l ) . i 3 66 S (
动 勘 探 证 实 ,该 油 田 纵 向 [ { N?、N 、E。 个 油 三
分 布状况 分析是 该 区的难点 和重 点 .而正 确认 } 只俯 集砂 体沉 积微相 成 因类 型直 接 影响 到剩余油 的分 布
研究。
藏组 成 。
9 6年 上 报 的 I 探 明 石 油 地 质 储 量 为 : 类
代 河 流沉 积 模式 类 型 , 为本 区 大 的 沉 积背 景 仍然 为辫 状 河 三 角 洲 . 沉 积 微 相 类 型 和 砂 体 成 因 模 式 与 认 但
一
般 辫 状 河 三 角 } 同 ,即骨 架 砂 体 以 水 F分 流 砂 坝 为 特 征 .分流 河 道 和河 口坝 天 发 二 号 油 藏 沉 积 相 及 平 面 展 布
青海油田解堵技术
中国化 工 贸 易
Ch i n a Ch e mi c a l Tr a d e
第 9期
2 0 1 3 年 9月
青海油 田解堵技术
周建新 马海军
8 1 6 4 0 0 ) ( 青海油 田公 司采油 一厂 跃进接 转站 。青海茫崖
摘
要 :该文调查 了我所在的青海油田跃进二号钻井、完井过程 中的堵塞和生产过程 中的堵塞。对油藏的地层特征 和储层敏感性进行 分析。论
这些 堵塞物 随着开采 时间 的延长一 部分被带走 沉积堵塞 在新的孔 喉处 , 另 一部 分 难溶 物 质如 B a S O , 在 经 历高 温 高压 式长 时间 的地 层 水 浸泡 下 ,势必会造 成一小 部分溶解 ,这些溶 解的 B a 2 + ,S O z 一 遇到 与之 发生 沉 淀的入井 流体 ,又 造成新 的沉淀 物堵塞 。 在钻探 老油 田跃进 二号 低压 低渗 油 田时 ,如 用普 通钻 井液 ,当钻 遇孔 隙较大且 相连性 较好 的油气层 ,不可避免 地要产 生钻井液 的浸入 , 造 成固相 颗粒 的堵塞 和粘 土矿 物的水 化膨 胀 ,会 大大 降 低油气 层 的渗 透 率 ,影 响油气层 产能 。 2 . 生产 过程 中的堵塞伤 害 原油在地 层 中的粘度会 增大 ,一些 高凝 的有机物 ( 如石蜡 、胶质 、 沥 青质 等)便 会 以结 晶或 胶粒 形式在 近井 地 带沉积 下来 ,造成 油层 堵 塞 。对于 粘土含 量高的地 层各种入 井流体容 易使粘土 水化膨胀 、分散 、 脱 落 、运移 。如果 注入水 的水 质 ( 矿化度 、化 学成份 、固相 含量和 粒 径 、细 菌量 、含氧 量 、含 铁量 )不 符合要 求 ,则可 能 引起地层 的粘 土 膨 胀 、颗粒运 移 、பைடு நூலகம் 杂堵 塞 、有机和 无机 物 沉淀等 伤害 ,以及 酸化 压 裂 过程 中酸 液和压 裂液 与地层 的不 配伍 ,产 生二 次沉淀 ,施 工参数 不 当造成 的地层 速敏 等伤 害 ,施 工 中外来 固体 颗粒 、酸液 滤失 、地层 出 砂 等伤 害 。 3 . 跃 进二号 油藏 的地质特 征与储层敏 感性分 析
考虑温度因素的储层敏感性预测方法
考虑温度因素的储层敏感性预测方法近年来,随着石油资源的日益枯竭和环境污染的加剧,对油气储层的有效开发和管理日益成为焦点。
而储层敏感性预测是油气勘探开发中关键的一环,其能够为储层优化开发和管理提供科学依据和指导。
而在考虑储层温度因素的情况下,预测储层敏感性的方法就显得尤为重要。
储层敏感性是指储层岩石对采油活动的敏感程度,这种敏感程度反映了岩石物性与采油活动之间的相互影响关系。
储层敏感性预测方法可以通过分析储层岩石的物性参数及层位结构、耐受破坏能力等方面,对储层对采油活动的响应进行定量分析和评估。
传统的储层敏感性预测方法主要以地质统计分析为主,忽略了温度因素对储层敏感性的影响。
实际上,储层温度是影响储层敏感性的重要因素之一。
温度会改变储层岩石的物性参数和层位结构,从而影响储层的响应。
针对这种情况,本文提出了一种考虑储层温度因素的敏感性预测方法,其主要包括以下步骤:(1)储层物性参数测试和分析首先,对储层进行物性测试,包括孔隙度、渗透率、饱和度、流体粘度等参数的测定,并对测得的数据进行分析和处理。
这些参数是决定储层敏感性的关键因素,可以通过统计分析等手段研究其变化规律和敏感性关系。
(2)搜集和分析温度数据通过地质勘探和测井工作,获取储层的温度数据,分析其分布规律和变化趋势。
同时,将获得的温度数据与物性参数进行匹配,以研究温度对物性参数变化的影响,进而评估储层敏感性。
(3)储层敏感性评估模型构建针对以上收集和分析的数据,可以建立储层敏感性评估模型,该模型可以通过统计学方法建模,并考虑到温度对储层敏感性的影响,从而对储层敏感性进行更加准确的预测和评估。
(4)预测模型验证建立模型后,需要对模型进行验证,以确定模型的准确性和可靠性。
其中,可以通过地球物理数据和实际开采数据和采油实验数据作为参考,评估模型的准确性、稳定性和预测效果。
综上所述,考虑温度因素的储层敏感性预测方法可以更全面地评估储层的响应,提高储层的开发和管理效率,具有重要的研究价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跃进二号东高点储层敏感性分析
【摘要】跃进二号油田造成油层伤害的主要因素有水敏伤害、附加毛管阻力和速敏伤害,酸敏性相对较弱。
浅层可膨胀性粘土矿物占较高比例,胶结程度弱,因而对各种类型的伤害都很敏感。
深层比浅层的敏感性要弱一些,主要原因在于可膨胀性粘土矿物相对含量少,而且岩石的胶结程度相对较好。
孔隙结构好的储层,敏感性较弱,而孔隙结构差的储层,由于其孔隙小、喉道细,粘土矿物含量高,工作制度不当时最易受到伤害。
在注水开发中,要做好储层保护,提高水驱开发效果。
【关键词】储层敏感性;水敏;速敏;附加毛管阻力;酸敏;
油层自身的敏感性程度是油层伤害的一个重要因素。
岩性、物性研究以及敏感性流动实验是进行油层敏感性分析的主要手段。
其敏感性程度随敏感矿物含量增多、孔隙结构变异而升高。
敏感矿物主要有水敏感矿物、速敏矿物、酸敏矿物、碱敏矿物等。
1.储层物性特征
跃进二号东高点构造是青海省柴达木盆地西部坳陷区昆北断阶亚区铁木里克凸起内的一个三级构造。
通过岩心薄片分析,本区的储层具有砂岩近源、低成熟的岩石学特征。
从岩心样品分析得出,全油田的平均孔隙度为16.76%,样品分布主峰在15-25%之间,平均渗透率为18.7×10-3um2,残余油饱和度平均为30.83%,物性特征呈中低孔隙度和中低渗透率。
本区油层的润湿性具非均质特点,高渗透层多表现为中性或偏亲油,而低渗透层则多表现为偏亲水。
在偏亲油的砂岩模型中,残余油主要分布于颗粒表面、小孔隙、孔隙角隅和死孔隙之中;而在偏亲水的砂岩模型中,残余油则主要以孤立的油滴分布于孔隙之间。
2.储层敏感性分析
2.1水敏伤害
跃进二号油田粘土矿物X衍射分析结果表明。
伊利石是该地区的主要粘土矿物,其相对含量达40-90%;蒙脱石分布于浅层,其相对含量达10-50%;伊蒙混成矿物作为蒙脱石向伊利石转化的中间产物,则普遍分布于浅层和深层,相对含量在1-25%之间。
YⅡ264井E31地层的水敏实验和盐敏实验数显示,这些样品用标准盐水测得的渗透率远低于样品的克氏渗透率,下降幅度大于50%。
美国岩心公司通过对
砂岩的测定,总结出克氏渗透率K∞与气测渗透率Ka的关系,其中当Ka为100×10-3μm2左右时,K∞=0.88Ka。
跃进二号油田地层水分析结果表明,E31油藏地层水的矿化度在100000-160000ppm之间,而实验用的标准盐水矿化度只有80000ppm,这此选用克氏渗透率作为评价水敏程度的标准[1-3]。
实验结果说明,E31地层的水敏程度在中偏强范围之内。
盐敏性也十分明显。
盐敏实验结果表明,可膨胀性粘土的水化膨胀程度决定于介质的矿化度,尤其当遂步降低介质矿化度时,岩心的水敏性明显增加。
在降低矿化度时,如果((Ki-1—Ki)/Ki-1)×100%≤5%,说明发生了盐敏,临界盐度即为对应Ki-1的矿化度值。
同时用损害程度评价其敏感程度。
损害程度%=((Kmax—Kmin)/Kmax)×100%。
Kmax为实验过程中的最高渗透率值;Kmax为实验过程中的最低渗透率值。
损害程度≥70%,强盐敏;30%
在反排过程中,虽然凹向水相的弯液面的毛管压力是一个有利的因素,但由大量分散水珠产生的贾敏效应,仍然是一个不可忽略的毛细管阻力。
为此用Y12井E31油藏亲油砂岩孔隙模型进行了由贾敏效应造成地层伤害的模拟实验。
实验之初,首先用已饱和地层水的②号模型在压力1.2Mpa下进行油驱水实验。
当模型出口处无水流出时,模型的含油饱和度为71%,并同时测定了残余水饱和度下的油相有效渗透率,为11.94×10-3μm2。
之后用盐水进行驱油,在驱替压力0.04Mpa、剩余油饱和度为40%时停止驱替。
然后重新进行油驱水实验,此时驱替压力明显升高,在0.1Mpa下进行驱替,模型中无流动现象,升高压力至1.37Mpa,模型中才见有缓慢的流动现象.在这种高压下持续驱替30分钟,流动仍然很缓慢,其含水量油饱和度仅由40%上升至55%,此时测定其油相有效渗透率仅为3×10-3μm2。
从实验可见,外界水体浸入而产生的附加毛细管阻力是造成油层伤害的另一重要原因。
理论上来说,亲水地层的毛细管阻力伤害作用要比亲油地层更加严重。
如果在工作液中加入适当量的表面活性剂,减小油水界面张力,则会减小毛细管阻力造成的地层伤害[3-5]。
2.4储层酸敏伤害
酸敏性指酸液进入地层后与酸敏矿物反应产生沉淀,或使岩石骨架解体释放出微粒,导致地层渗透率下降。
盐酸敏感性矿物主要是含铁矿物,如浊沸石、绿泥石和黄铁矿等。
酸化后它们释放出铁离子,当地层中PH值不断升高时,很容易生成氢氧化铁和氢氧化铝沉淀。
据岩石学分析,铁铝矿物(如绿泥石)在跃进二号油田浅层和深层油藏都有分布,其相对含量在10-20%之间,黄铁矿含量在0.1-0.5%之间,沸石是含钙的方解石,而普遍分布的是碳酸盐矿物[4-5]。
3.结论
造成跃进二号地区油层伤害的主要因素可能有水敏伤害、附加毛管阻力和速敏伤害,酸敏感性相对较弱。
为了使油田能够保持较长时间的稳产,在今后的注水采油过程中,应切实加强保护油层的有力措施。
参考文献:
[1]徐同台,赵敏.保护油气层技术[M]1北京:石油工业出版社,2003:30-361
[2]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:62-69.
[3]万仁溥.采油工程手册[M].北京:石油工业出版社,2003:1-9.
[4]张玄奇.储层敏感性的灰色评价[J]1大庆石油地质与开发,2004,23(6):60-621
[5]中国石油天然气总公司行业标准SY/T5358)20021储层敏感性流动实验评价方法[S]。