初中数学建模案例
初中数学建模举例
初中数学建模举例(一)所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。
现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。
求所挂重物重量为6kg时弹簧的长度。
既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。
可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。
求解二元一次方程组,得出k=0.3,b=6。
从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。
于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。
这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。
但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。
二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。
小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。
求解二元一次方程组,得解k=0.5,b=5。
得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。
从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。
本例至此,似乎已经解决了问题。
但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。
因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。
数学建模案例精选
数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。
在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。
下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。
案例一,交通拥堵问题。
在城市交通管理中,交通拥堵一直是一个严重的问题。
如何合理规划道路和交通流量,是一个复杂的问题。
数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。
案例二,股票价格预测。
股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。
案例三,物流配送优化。
在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。
数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。
案例四,环境污染监测。
环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。
数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。
通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。
数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。
因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。
希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。
初中数学建模案例
初中数学建模案例数学建模案例:城市交通拥堵问题的优化摘要:城市交通拥堵是大城市所面临的普遍问题,本案例将通过建立数学模型对城市交通拥堵问题进行优化分析,以求解最佳车辆通行路线,提高交通运行效率。
通过引入实时的交通流数据,通过数学建模和优化算法,对现有的交通流模型进行改进。
1.引言城市交通拥堵严重影响到居民的出行效率和生活质量,同时还造成大量的汽车尾气排放,给环境带来巨大的负面影响。
因此,对城市交通拥堵问题进行优化分析,以提高交通运行效率和减少交通污染,具有重要的现实意义。
2.问题建模2.1基本假设我们对城市交通拥堵问题进行以下基本假设:1)假设城市交通网络是一个有向图,交叉口为节点,道路为边。
2)假设车辆的行驶速度在不同道路上是相同的。
3)假设车辆在交叉口处按照指定的交通规则进行行驶。
4)假设车辆的目的地是已知的。
2.2确定目标我们的目标是通过优化交通流模型,使得车辆在城市交通网络中的行驶时间最短。
2.3建立数学模型我们将采用最短路径算法求解车辆行驶的最佳路径。
首先,我们需要对城市交通网络进行建模。
假设城市交通网络中交叉口数量为N,那么可以用一个N×N的矩阵A来表示交通网络的连通关系,其中A[i][j]表示从节点i到节点j的道路长度。
如果节点i和节点j之间不存在直接的道路连接,则取A[i][j]为无穷大。
然后,我们可以采用Dijkstra算法来求解最短路径。
Dijkstra算法是一种贪心算法,它通过不断更新起点到所有其他节点的最短路径长度,从而找到起点到终点的最短路径。
具体步骤如下:1)初始化起点到所有其他节点的最短路径长度为无穷大。
2)将起点到起点的最短路径长度设为0。
3)将起点标记为已访问。
4)对于起点直接相连的节点,更新起点到这些节点的最短路径长度。
5)选择一个未访问的节点中最短路径长度最小的节点,将其标记为已访问。
6)更新这个节点直接相连的节点的最短路径长度。
7)重复步骤5和步骤6,直到所有节点都被标记为已访问。
数学建模案例分析【精选文档】
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。
数学建模_案例一
案例一
调度:如何安排救火人数,使得火被灭且费用最低。
问题分析
费用产生的途径:森林损失,人员待遇,一次消耗品。
1.森林损失的计算,森林损失为f面积为A, f=KA (K为单位面积的损失费用)
2.单个人救火人员的待遇g与救火时长L成正比. g =a *L (单位时间人员待遇)
3.一次性消耗品,每个人一次性消耗费用为常数C(经验数据)
假设派出X个消防人员,则总费用为:F= f+ gX+CX
F=KA+ a *LX+CX
二、合理假设:关于A假设失火现场的风势不大,火的扩散速度为V,失火面积为A,A=(vt)^2 (均匀扩散) r=vt
t =0时森林失火, t =t1 时,消防人员进入现场救火,t=t2时,火被子扑灭.
设失火面积A对时间的导数dA/dt,其中λ为单位时间火势传播速度的变化率,β为每个消防人员在单位时间里所灭的面积,即每位消防人员的灭火能力,其中βX与时间L成反比。
βX(t2-t1)=α
t2=t1+α/β
dA/dt=λt (0<=t <=t1)
dA/dt=λt1t2/(t2-t1)- λt1t/(t2-t1)
A=0.5t1t2
F=0.5Kλt1t2+a(t2-t1)X+cx
F=0.5kλt1t2+a*α/β+ cx
F=0.5kλt1^2+0.5kλt1*α/(βx)+a*α/β+ cx F=a/x+bx+c。
初中数学建模的若干简要案例
初中数学建模的若干简要案例初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。
问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题:( 1 )我观察的这辆自行车是什么牌子的?( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是_______cm ,精确到1cm 。
( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。
问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。
问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。
如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:选做问题4 :你认为对问题 3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?求解工作的表格省略初中数学数学建模案例 2 :----- 线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。
实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。
初中数学建模的若干简要案例
初中数学建模的若干简要案例1.找出一个公园内最短游览路径的问题假设一个公园有多个景点,每个景点之间有不同的距离,我们希望找到一条最短的路径,使得可以在最短时间内游览完所有的景点。
我们可以将每个景点表示为节点,距离表示为边,然后利用图论中的最短路径算法(如迪杰斯特拉算法)来解决这个问题。
2.优化一家快递公司的邮件投递路径假设一个快递公司需要投递邮件到不同的区域,每个区域的邮件数不同,我们希望找到一条最优的路径,使得快递员可以在最短时间内投递完所有的邮件。
我们可以将每个区域表示为节点,不同区域之间的距离表示为边,然后利用图论中的最短路径算法或者启发式算法(如A*算法)来解决这个问题。
3.设计一个购物车的最佳装载方案假设一个网上购物平台需要将一些商品装载到购物车中,每个商品有不同的体积和重量,而购物车有一定的容量限制。
我们希望找到一个最佳的装载方案,使得购物车可以装载尽可能多的商品。
我们可以将每个商品表示为节点,商品之间的限制条件(如体积和重量限制)表示为约束条件,然后利用线性规划算法(如简单的背包问题)来解决这个问题。
4.优化一条生产线的生产效率假设一个工厂有多个生产环节,每个生产环节有不同的效率和成本,我们希望找到一个最优的生产线配置方案,使得生产效率最高,成本最低。
我们可以将每个生产环节表示为节点,不同生产环节之间的依赖关系和成本表示为边,然后利用图论中的最优路径算法(如最小生成树算法)来解决这个问题。
5.设计一个最优的课程表假设一个学校有多个班级和多个教师,每个班级需要上不同的课程,每个教师可以同时教授多个班级的课程,我们希望找到一个最优的课程表,使得教师的利用率最高,学生的课程安排最优。
我们可以将每个班级和教师表示为节点,教师的教学能力和班级的需求表示为边的权重,然后利用图论中的最大流算法或者启发式算法(如基因算法)来解决这个问题。
这些案例都是初中数学建模的常见问题,通过数学建模的方法,可以帮助我们解决这些实际问题,提高问题的解决效率和准确性。
中学数学建模教育案例(3篇)
第1篇一、背景随着我国经济的快速发展和社会的进步,数学教育在中学教育中的地位越来越重要。
数学建模作为一种培养学生解决实际问题的能力、提高数学素养的重要手段,越来越受到教育部门的重视。
本文以“疫情数据分析”为背景,探讨中学数学建模教育的实践案例。
二、案例概述本次数学建模教学活动以“疫情数据分析”为主题,旨在让学生通过数学建模的方法,分析疫情数据,预测疫情发展趋势,为疫情防控提供科学依据。
活动分为以下几个阶段:1. 数据收集与整理2. 模型建立与求解3. 模型验证与优化4. 案例分析与应用三、案例实施过程1. 数据收集与整理教师首先向学生介绍疫情数据的相关信息,包括确诊病例、疑似病例、治愈病例、死亡病例等。
然后,引导学生通过互联网、政府官方网站等渠道收集疫情数据,并进行整理和归纳。
2. 模型建立与求解在数据整理完成后,教师引导学生运用数学建模的方法,建立疫情传播模型。
本次案例中,我们选择了SIR模型(易感者-感染者-移除者模型)作为分析工具。
SIR模型将人群分为三个状态:易感者(S)、感染者(I)和移除者(R)。
通过分析疫情数据,确定模型中的参数,如基本再生数、潜伏期、康复率等。
接下来,学生利用计算机软件(如MATLAB、Python等)对模型进行求解,得到疫情发展趋势的预测结果。
3. 模型验证与优化在模型求解完成后,教师引导学生对模型进行验证。
通过对比实际疫情数据与模型预测结果,分析模型的准确性。
若模型预测结果与实际数据存在较大偏差,则需对模型进行优化,调整模型参数或选择更合适的模型。
4. 案例分析与应用在模型验证与优化完成后,教师引导学生对案例进行深入分析,探讨疫情发展趋势的影响因素,如政策、经济、人口等。
同时,引导学生将数学建模方法应用于实际生活,如疫情防控策略的制定、疫情防控物资的调配等。
四、案例总结本次数学建模教学活动取得了良好的效果,主要体现在以下几个方面:1. 培养学生的数学思维:通过数学建模,学生学会了运用数学方法解决实际问题,提高了数学思维能力。
中学数学建模经典例题
中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。
为了扩大销售量,公司计划通过广告宣传来增加销售量。
经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。
问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。
运输方式的费用分别为x万元、y万元、z万元。
三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。
为确保运输过程顺利进行,单程运输能力不能超过总重量。
请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。
3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。
为了方便居民出行,市政府计划修建地铁连接这些小区。
已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。
问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。
已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。
我们要预测未来5年该城市的人口数量。
5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。
每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。
问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。
通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。
初中数学建模案例集精之2第二章 角平分线四大模型
N MOA B P 2图4321A CP B D AB C图1A B D C AB D CPP ONM BA 第二章 角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。
求证:AP 平分∠BAC 。
热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。
求证:∠BAD+∠BCD=180°。
2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。
模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
图2DP AB C D C 1图P B A ABC DA BC DE DC B AP ONM B A 模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。
数学建模各类实际问题实例
一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。
而且以下计算中,飞机航线途中站点经纬度用表一的数据。
表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。
试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。
初中数学建模题目
初中数学建模题目一、代数方程建模1. 小明每天早上7点上学,他以每分钟70米的速度走到学校,需要30分钟。
请问小明家离学校的距离是多少?2. 一个化肥厂生产化肥,每生产一吨需要耗电40度。
如果电费每度为0.6元,那么生产100吨化肥需要多少电费?二、几何图形建模1. 一个矩形花园的长是15米,宽是8米。
要在花园四周种上花边,花边的总长度是多少?2. 一个三角形ABC的三边长分别为3、4、5厘米,求三角形的面积?三、概率统计建模1. 一盒子里有红球和白球共10个,其中红球有6个。
如果随机从盒子里摸出一个球,那么摸到红球的概率是多少?2. 小华在数学考试中得了85分,全班平均分是90分。
求小华的分数高于全班平均分的概率?四、函数关系建模1. 小明从家里出发去公园,走了1小时后,他走了3公里。
如果他的速度保持不变,请问他还需要多少时间才能到达公园?2. 一个水库的水位高度与降雨量有关,当降雨量为50毫米时,水位会上升5米。
求水库的水位高度与降雨量的函数关系。
五、三角函数建模1. 一个摩天轮的高度为40米,直径为50米。
当摩天轮转过一圈时,求最顶端点到地面的高度?2. 一个登山队要从山脚爬到山顶,已知山的斜度为60度,登山队爬了300米后,他们还有多远才能到达山顶?六、数列建模1. 一个自然数列的前两项分别为1和2,以后各项都是其前面各项的和。
求这个数列的第10项是多少?2. 一个商场销售某商品,每件商品的进价为8元,售价为10元。
每天售出50件,求一个月(30天)后,商场能赚多少钱?七、线性规划建模1. 某地计划建设一个生态公园,需要种上一些树木。
已知种一棵树需要花费100元,而生态公园的总预算是5000元。
问在满足预算限制的条件下,最多能种多少棵树?2. 某公司生产两种产品:产品A的单价为20元,利润率为20%;产品B的单价为15元,利润率为15%。
公司现有资金20万元,问应如何安排两种产品的生产量,才能使公司获得最大利润?。
初中数学数学建模与实际问题的解决教学案例分享
初中数学数学建模与实际问题的解决教学案例分享数学建模是将数学理论和方法应用于实际问题的过程,通过数学模型的构建和求解,解决实际问题,培养学生的综合素质和创新能力。
本文将分享几个初中数学建模与实际问题的解决教学案例,以期为教师和学生提供一些实践和借鉴的经验。
案例一:小明的生活垃圾分类问题小明所在的城市近年来提倡垃圾分类,但是很多居民并不理解和重视这个问题。
作为数学老师,我们可以以小明的家庭为例,引导学生进行数学建模,解决小明家庭的生活垃圾分类问题。
首先,学生们可以调查小明家庭一周产生的垃圾种类和数量,并进行统计和分类。
然后,引导学生通过数学建模,计算小明家庭各类垃圾的比例和总量,分析小明家庭垃圾分类情况的合理性。
接着,学生们可以收集相关的环保政策和垃圾分类处理方法,通过数学模型计算出小明家庭如何按照要求进行垃圾分类,以及对环境的积极影响。
通过这样的实践,学生们不仅可以了解和掌握数学知识,还能培养对生活问题的分析和解决能力,提升他们的环保意识以及应对社会问题的能力。
案例二:超市购物方案优化问题学生们常常面临如何在有限的预算内购买到更多的商品的问题。
通过数学建模,我们可以引导学生优化超市购物方案,解决购物预算有限的实际问题。
首先,学生们可以研究超市各种商品的价格和折扣信息。
然后,引导学生通过数学模型,计算出在预算限制下购买各种商品的最优方案,最大化购物的实惠程度。
接着,学生们可以对比分析不同购物方案的优劣,并提出自己的购物策略。
通过这样的实践,学生们不仅能够应用数学知识解决实际问题,还能培养理财和消费规划的意识,提升他们的数学思维和实践能力。
案例三:学校足球场草坪修剪问题学生们在日常生活中常常遇到类似于学校足球场草坪修剪问题这样的实际应用。
通过数学建模,我们可以引导学生解决这个问题,并提高他们的操作和管理能力。
首先,学生们需要测量足球场的面积,并了解修剪草坪的时间和费用。
然后,引导学生通过数学模型,计算出在不同条件下(比如修剪周期、修剪高度等)草坪修剪的最优方案,使得维护费用最低。
数学建模案例精选
数学建模案例精选
1. 动物捕食模型:
假设有两种动物A和B,它们在一个共享的环境中捕食和被捕食。
设定一个数学模型来描述它们的相互作用,使用微分方程来描述A和B的数量如何随时间变化。
2. 水资源管理模型:
假设有一个山谷,它的水源受到当地人口的影响,以及当地的农业和工业活动。
设定一个数学模型来描述山谷水源的变化,并评估不同的管理策略,以确保水资源的可持续利用。
3. 城市交通模型:
假设有一个大城市,它的交通状况受到当地人口的影响,以及当地的交通基础设施。
设定一个数学模型来描述城市交通系统的变化,并评估不同的管理策略,以改善城市交通状况。
数学建模案例
数学建模案例案例1 化⼯⼚排污某河流有两个化⼯⼚,流经第⼀化⼯⼚的河流为每天500万m2,在两个⼯⼚之间有⼀条流量为每天200万m2⽀流,第⼀化⼯⼚每天排放含有某种有害物质的⼯业污⽔2万m2,第⼆化⼯⼚每天排放这种⼯业污⽔1.4万m2,第⼀化⼯⼚每天排放的⼯业污⽔流到第⼆化⼯⼚以前,有20%可⾃然净化。
根据环保要求,河流中⼯业污⽔的含量不⼤于0.2%,这两个⼯⼚都需要各⾃处理不部分⼯业污⽔。
第⼀化⼯⼚处理⼯业污⽔的成本是1000元/万m2,第⼆化⼯⼚处理⼯业污⽔的成本是800元/万m2。
现在满⾜环保要求的条件下,每⼚各应处理多少⼯业污⽔,使这两个⼯⼚总的处理⼯业污⽔费⽤最⼩。
案例2 ⾃来⽔输送收⼊:900元/千吨引⽔管理费500○⼯⼚1⽔库供⽔量(千吨)⼩区基本⽤⽔量(千吨)⼩区额外⽤⽔量(千吨)应如何分配⽔库供⽔量,公司才能获利最多?若⽔库供⽔量都提⾼⼀倍,公司利润可增加到多少?案例3 公共部门建模(ST. JOSEPH 公共事业委员会)St. Joseph公共事业委员会负责对最近⼀次洪⽔所导致的公共事业问题进⾏检查并汇报。
需要调查的项⽬包括电线、天然⽓管道以及绝缘设施。
委员会只有1星期时间⽤于检查。
委员会分到了3名电⽓专家与2名天然⽓专家,每⼈可以在其专业领域范围内进⾏40⼩时的检察⼯作。
另外委员会还预留出了$10,000⽤于绝缘设施的检查。
这$10,000可以雇⽤当地专业的绝缘设施企业Weathertight Insulation进⾏多达100⼩时($100/⼩时)的检察。
这些专家需要对当地的民宅、写字楼以及⼯⼚进⾏检查。
⽬标是在指定时间内对尽可能多的建筑进⾏全⾯检查以收集所需信息。
但是检查的写字楼及⼯⼚数量均不能低于8处,且检查的民宅数量不能低于检查总数的60%。
⼀旦确定了需要检查的每种建筑的数量,接下来就将专家随机安排到各个建筑执⾏检查⼯作。
委员会指定了每种建筑及检查项⽬的⼤致检查时间:委员会雇⽤了⼀个管理咨询团队来确定需要检查的民宅、写字楼以及⼯⼚的数量。
线性代数数学建模案例(1)
其增广矩阵
(A, b) =
1 1 0 0 500
1 0 0 1 100
1
0 0
0 1 0
0 1 1
1 0 1
100
300 300
初等行变换
0
0 0
1 0 0
0 1 0
1 1 0
600
300 0
由此可得
x1 x4 100
百甚至上千未知量和线性方程。
一个网络由一个点集以及连接部分或全部 点的直线或弧线构成。 网络中的点称作联结点
(或节点),网络中的连接线称作分支. 每一分支 中的流量方向已经指定,并且流量(或流速)已 知或者已标为变量。
x3
x1
60
x4
80
x2
(a)
x5 (b)
网络流的基本假设是(1)网络中流入与流 出的总量相等;(2)每个节点上流入和流出 的总量也相等。例如,上面两图(a)、(b)。 流量在每个节点守恒。 在类似的网络模式中, 每个结点的流量都可以用一个线性方程来表示。
线性代数数学建模案例 (1)
一、网络流模型
网络流模型广泛应用于交通、运输、通讯、电力 分配、城市规划、任务分派以及计算机辅助设计等众 多领域。当科学家、工程师和经济学家研究某种网络 中的流量问题时,线性方程组就自然产生了,例如,城市 规划设计人员和交通工程师监控城市道路网格内的交 通流量,电气工程师计算电路中流经的电流,经济学家 分析产品通过批发商和零售商网络从生产者到消费者 的分配等. 大多数网络流模型中的方程组都包含了数
Matlab练习题
某城市有下图所示的交通图, 每条道路都是 单行线, 需要调查每条道路每小时的车流量. 图 中的数字表示该条路段的车流数. 如果每个交叉 路口进入和离开的车数相等, 整个图中进入和离 开的车数相等。
数学建模简单13个例子
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大? 定性分析
因为圆的方程为:
直线BC的方程为:
当台风中心处于圆内时,有:
其中参数t 为时间(单 位为h)。
解得
所以,大约在2h以后气象台A所在地区将会遭 受台风的影响,持续时间大约为6.6h。
8、黄灯应当亮多久
交通灯在绿灯转换成红灯时,有一个过渡状态— —亮一段时间的黄灯。请分析黄灯应当亮多久。
设想一下黄灯的作用是什么,不难看
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到 点点故他,返,后那回故仍么相由似载这遇相乎着一点遇条他天这点件开他一到不往就段会够会不路合哦合会的点。地提缘需。 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
定。为确定L,还应当将L划分为两段:L1和L2。
初中数学建模教学设计案例
初中数学建模教学设计案例初中数学建模教学设计案例:一、题目:购物优惠策略设计描述:某商场推出了购物优惠活动,根据购物金额不同给予不同的折扣,要求设计一个数学模型来计算购物总金额和折扣后的实际支付金额。
方案:1. 定义变量:购物总金额、折扣比例、折扣后的实际支付金额。
2. 输入购物总金额。
3. 根据购物总金额的范围,确定折扣比例。
4. 计算折扣后的实际支付金额。
5. 输出折扣后的实际支付金额。
二、题目:燃烧热量计算描述:燃烧物体的热量可以通过测量温度的变化来计算,设计一个数学模型来计算燃烧物体的热量。
方案:1. 定义变量:燃烧物体的质量、起始温度、终止温度、比热容。
2. 输入燃烧物体的质量、起始温度、终止温度、比热容。
3. 计算温度的变化量。
4. 计算燃烧物体的热量。
5. 输出燃烧物体的热量。
三、题目:地图路径规划描述:设计一个数学模型来计算两个地点之间的最短路径,以及路径上的经过的地点。
方案:1. 定义变量:地点列表、路径列表、距离列表。
2. 输入地点列表、路径列表、距离列表。
3. 根据路径列表和距离列表计算两个地点之间的最短路径。
4. 输出最短路径和路径上经过的地点。
四、题目:人口增长模型描述:设计一个数学模型来预测未来几年人口的增长情况。
方案:1. 定义变量:初始人口、年份、增长率。
2. 输入初始人口、年份、增长率。
3. 根据增长率和年份计算未来几年的人口增长情况。
4. 输出未来几年的人口增长情况。
五、题目:饮料糖分计算描述:设计一个数学模型来计算一杯饮料中的糖分含量。
方案:1. 定义变量:饮料体积、糖分含量。
2. 输入饮料体积、糖分含量。
3. 计算一杯饮料中的糖分含量。
4. 输出糖分含量。
六、题目:公交车运行时间计算描述:设计一个数学模型来计算公交车从起点到终点的运行时间。
方案:1. 定义变量:起点、终点、公交车速度、距离。
2. 输入起点、终点、公交车速度、距离。
3. 计算公交车从起点到终点的运行时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学建模案例Last revision on 21 December 2020中学数学建模论文指导中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。
我们也把运用数学模型解决实际问题的方法统称为应用建模。
可以分五种模型来写。
论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。
一、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。
一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。
现就每个部分做个简要的说明。
1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。
建议将论文所涉及的模型或所用的计算方式写入题目。
如“用概率方法计算商场打折与返券的实惠效应”。
2. 摘要摘要是论文中重要的组成部分。
摘要应该使用简练的语言叙述论文的核心观点和主要思想。
如果你有一些创新的地方,一定要在摘要中说明。
进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。
”摘要应该最后书写。
在论文的其他部分还没有完成之前,你不应该书写摘要。
因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。
摘要一般分三个部分。
用三句话表述整篇论文的中心。
第一句,用什么模型,解决什么问题。
第二句,通过怎样的思路来解决问题。
第三句,最后结果怎么样。
当然,对于低年级的同学,也可以不写摘要。
3. 正文正文是论文的核心,也是最重要的组成部分。
在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。
其中,提出问题、分析问题应该是清晰简短。
而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。
在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。
4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。
结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。
并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。
5. 参考资料在论文中,如果使用了其他人的资料。
必须在论文后标明引用文章的作者、应用来源等信息。
二、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。
最好是找一位或几位老师帮助安排研究课题。
在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。
2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息。
同时如果有条件的话,可以去拜访相关领域的专家和学者。
然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证。
完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进。
记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议。
在论文写作结束以后,一定要得出结论。
记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设。
只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的。
最后,需要很好地写一份摘要。
摘要的字数应该是论文字数的十分之一左右。
3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等。
最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人。
喝饮料品数学湖南省株洲市北京师范大学株洲附属学校 C0812 班晏阳天指导老师:董宏亮摘要:喝饮料,品数学。
在日常生活中我们经常遇到用空瓶换汽水问题,喝完了,凉爽的汽水还能用空瓶换汽水继续喝,从中引发了我对问题的深入思考。
如果用3个空瓶换一瓶新的汽水,当原有瓶数X为偶数时,当原有瓶数为 X 时, 总共能喝到多少瓶汽水呢如果现有 X 瓶汽水,每Y个空瓶可以换一瓶新的汽水。
总共又能喝到多少瓶汽水呢这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。
关键词:饮料瓶数空瓶兑换优化一.问题的发现日常生活中,我们经常遇到过空瓶换汽水问题。
喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。
如果没有经历过,那么这道小学时的奥林匹克数学题你应该见到过:现有10 瓶汽水,每三个空瓶可以换一瓶新的汽水。
问总共能喝到多少瓶汽水呢我曾经问过不少人这道题,他们给的结果通常都是14 瓶(先喝10 瓶,用9空瓶换来3整瓶,喝3瓶,还有3+1=4 个空瓶。
然后用3个空瓶再换一整瓶,喝掉。
最后剩下2个空瓶。
共10+3+1=14 瓶)当我提示他们剩下的两个空瓶仍然能够利用的时候,有些聪明人就给出了正确答案:借来一个装满饮料瓶,喝完后,连同那剩下的两个空瓶一起还给人家。
所以共喝了15 瓶。
这就是这道题的正确答案。
最近我突然想到了这个问题,它能不能被深入地推广一下呢于是我就开始了对这个论文题目的思考与研究。
二. 建立数学模型我列出了原有饮料瓶数和实际能喝到的瓶数的一些数据:注意观察:看下方整理过的列表发现什么了吗根据不完全归纳的情况,我得出这样一个重要的规律:当原有偶数瓶饮料时,实际能喝到原来倍瓶数的饮料。
当原有奇数瓶时,则实际喝到原来倍瓶数取整数的饮料。
但这只是不完全归纳,如何从正面直接推导呢三. 数学模型的分析与问题的解决又经过我细致的观察,发现:只要是每有两个空瓶,都可以运用文章开头那种“借瓶子”的方法再喝一瓶饮料。
这个发现太重要了。
我可以这样处理那些剩余的空瓶:分为两个两个一组,每一组等于一瓶“没有空瓶”的汽水(只可以喝,但不能得到空瓶)。
这样就可以正面对待问题了。
当原有瓶数 X 为偶数时:先喝掉X瓶,然后把空瓶分为2 个组,每组个正好分完。
每组又是一瓶。
共喝掉X + = X 瓶。
当原有瓶数X为奇数时:先喝掉 X 瓶,然后把空瓶分为2个组,每组(X-1)个,还剩一个空瓶,浪费掉。
共喝 X +(X—1)= 瓶。
其实取整之后结果是和上述整理过的表格一一对应的。
这正验证了上文中不完全归纳得出的结论。
通过这种思想,我们能不能进一步再推广呢如果是 4 个、5 个或更多空瓶换一瓶饮料,又会怎么样呢四. 数学模型的进一步推广现有 X 瓶汽水,每 Y 个空瓶可以换一瓶新的汽水。
问总共能喝到多少瓶汽水呢由上文的推导过程来看,如果是Y个空瓶可以换一瓶饮料,那么每拥有(Y—1)个空瓶,就可以用借瓶子法得到一瓶饮料。
所以当喝完X瓶饮料得到X个空瓶之后,又能喝到 [ X/(Y—1)]瓶饮料。
总共就是 [ X + X /(Y—1)] 瓶饮料(若除不尽时则向下取整数)。
整理该式子,就得到了最后的结论:可以喝到 [ XY /(Y—1)] 瓶饮料(若除不尽则向下取整数)。
五. 论文总结问题:现有 X 瓶饮料,每 Y 个空瓶可以换一瓶新的饮料。
问总共能喝到多少瓶饮料呢答:总共可以喝到 [ XY /(Y—1)] 瓶饮料(若除不尽则向下取整数)这篇文章的题目是我在坐长途汽车时偶然想到的。
在百般无聊的时候,我给我父亲出了此论文开始时那样的一道问题,却引发了我们长时间的讨论。
这种题目的类型不止用于换饮料当中。
啤酒、酱油、醋……生活中的这类问题也并不少见。
而细致地进行处理,周密地进行思考,就可以从容地应对那些看似复杂的问题。
这个问题的探讨与解决,对于我们在日常生活中如何处理使开支与效益达到最优化具有一定的指导意义。
参考文献:[1]韩中庚。
数学建模方法及其应用[M].北京:高等教育出版社.2005[2]庞军:对边际分析和最优化原理地探讨[J].商业时代,2005[3]赵胜民:经济数学.科学出版社,2005[4]陈宝林:最优化理论与算法[M].北京:清华大学出版社,2005致谢:在论文完成之际,我要特别感谢我的指导老师,他在论文的写作过程中给我提出了许多宝贵的建议,给予了许多无私的支持和帮助,感谢所有关心、支持、帮助过我的良师益友,在此一并致以诚挚的谢意。
最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位专家表示衷心地感谢!北京师范大学株洲附属学校初中部 C0812 班晏阳天2010-4-28 《红色警戒》中兵种战斗力的数字建模与统计研究:以苏联为例北京二中初一(2)班韩澈摘要:数学建模是应用知识从实际课题中抽象、提炼出数学模型的过程。
本文利用数学建模的方法,对游戏《红色警戒 red alert》中的兵力情况进行分析,以苏联的9 种兵力为例,探讨了在如此多的兵种中,哪个兵种的攻击力更有价值问题。
研究通过数学建模的思想,运用统计分析方式,发现在此款游戏中,炮兵综合值最高,在战争中最有价值,其次是光凌坦克,最弱的是战斗机。
在今后的对比研究中还可继续拓展分析,以便得到更全面的数据。
关键字:数学建模;红色警戒;比较;统计红色警戒是一款策略游戏,玩家控制苏联或美国来制造军队,配合正确的战略手段,最终将敌人消灭。
在这款游戏中,苏联和美国各有9个兵种,每个兵种都有自己的优势和劣势。
在游戏《红色警戒 red alert》当中,苏联共有9种兵力,在如此多的兵种中,究竟哪个更有价值当玩家在玩“红警”时,总会想到这个问题,只要自己制造的兵力的价值最高,就能在战争中获得胜利。
我把这九种兵力按照“制造时间”、“制造金钱”、“生命”、“攻击”、“打击范围”这几个方面进行统计制成下表:为了更加清楚地比较出哪种兵力更好,我又分别制成了条形统计图,具体分析了每种兵力的特点。
如下:“制造时间”的条形统计图:由于在战争中,速度决定成败,所以制造时间越短,在时间上的优势就越大。
通过图表我们可以很清楚地看出:制造“熊”所需的时间最短,其次是步兵,然后是炮兵,制造所需时间最长的是天启坦克。
“制造金钱”的条形统计图:金钱是战争中必要的资源之一,所以花费的金钱数额相对越少,就有更多优势,可以利用有效的资金建造更多武器资源。
此图标分析出:“熊”的花费最少,“天启”耗资最多。
“生命”的条形统计图:上图表明:天启坦克的生命值最多,其次是光凌坦克,最低为步兵、炮兵、熊。
“攻击”的条形统计图:此图研究出攻击力最强的是天启坦克和飞艇,它们的攻击力是2,最弱的是步兵。
“打击范围”的条形统计图:打击范围是指:此种兵力在空对空、地对地、空对地、地对空的战争中所占的种类。
打击范围越大,对战争越有利。
有图可知:炮兵和直升机的打击范围最大,在战争中最占优势。