不可压缩流体动力学基础

合集下载

流体力学热能第5章 不可压缩流体动力学基础讲解

流体力学热能第5章 不可压缩流体动力学基础讲解
第七章 不可压缩流体动力学基础
本章讨论三元流动,主要内容是有关流体运动的基本概念和基本原理, 以及不可压缩流体流动的基本方程。 积分形式的基本方程用于解决控制面上的流动参数问题。 微分方程可用于解决流 动参数在流场中的分布问题。
一、运动形式
§7-1 流体微团运动的分析
1、流体微团:指体积微小,随流体一起运动的一团流体物质。与流体质点不 同,虽体积微小,但包含无数个流体质点。各质点间存在着相对位置的变化。
?x
?
?ux ?x
?y
?
?uy ?y
差值为正,发生伸长变形。
?z
?
?uz ?z
3、旋转角速度
逆时针为正
对角线EMF 的旋转角速度定义为
A
整个流体微团在oxy 平面上的旋转角速度。 E
? ?
?
?
z
?
1
?u (
y
2 ?x
?
?ux ) ?y
?
??
?
y
?
1 (?ux 2 ?z
?
?uz ) ?x
?
??
?
x
?
2、基本运动形式
平移运动
旋转运动
线变形、
变形运动
角变形
BF
二、运动分析
以二元流动的情况为例,研究几种
A
uy
ux C
dy
基本运动形式的速度表达式。
M
E
如图,方形流动微团
D
dx
各侧边中点A、B、C、D的流速分量分别为
M
A
ux
ux
?
?ux ?x
? dx 2
B
ux
?
?ux ?y

流体力学第七章不可压缩流体动力学基础

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。

但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。

本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。

第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。

位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。

在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。

基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。

二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了dy yu y ∂∂,而yu y ∂∂就代表1=dy 时液体基体运动时,在单位时间内沿y 轴方向的伸长率。

x u x ∂∂,y u y ∂∂,zuz ∂∂ 三、角变形(角变形速度)ddd DCABCDBAdt yu dy dt dy y u d x x ∂∂=⋅∂∂=α dt x udx dt dx x u d yy∂∂=⋅∂∂=β θβθα+=-d d 2βαθd d -=∴ 角变形: ⎪⎪⎭⎫⎝⎛∂∂+∂∂=+=-=x u y u d d d y x z 212βαθαθ ⎪⎭⎫⎝⎛∂∂+∂∂=x u z u z x y 21θ⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y x 21θ 四、旋转(旋转角速度)⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-=y u x u x y z 21θω ⎪⎪⎭⎫⎝⎛∂∂-∂∂=z u y u y zx 21ω 即, ⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ωzyxu u u z y x k ji ∂∂∂∂∂∂=21ω 那么,代入欧拉加速度表达式,得:z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t xu u u u u u u u dt t y u u uu u u u u dt t z αθθωωαθθωωαθθωω∂∂⎫==++++-⎪∂∂⎪∂∂∂⎪==++++-⎬∂∂⎪⎪∂∂∂==++++-⎪∂∂⎭各项含义: (1) 平移速度(2)线变形运动所引起的速度增量(3)(4)角变形运动所引起的速度增量 (5)(6)微团的旋转运动所产生的速度增量流体微团的运动可分解为平移运动,旋转运动,线变形运动和角变形运动之和。

流体动力学基本原理的内容及成立条件

流体动力学基本原理的内容及成立条件

流体动力学基本原理的内容及成立条件一、流体动力学的基本概念流体动力学是研究流体在运动中所表现出来的各种力学现象的科学。

它是研究流体的物理性质、运动规律和应用的基础。

流体包括气体和液体,其特点是没有固定的形状,在受到外力作用时能够变形。

二、流体动力学基本方程1.连续性方程连续性方程描述了质量守恒原理,即在任意给定时刻,单位时间内通过任意给定截面积内的质量保持不变。

2.动量守恒方程动量守恒方程描述了牛顿第二定律,即物体受到外力作用时会发生加速度变化。

3.能量守恒方程能量守恒方程描述了能量守恒原理,即系统内总能量保持不变。

三、成立条件为了使上述基本方程成立,需要满足以下条件:1.连续性假设:假设流体是连续不断的介质,在微观尺度下不存在空隙或孔隙。

这个假设在实际应用中通常是成立的。

2.牛顿第二定律适用:流体的运动速度相对于光速较慢,所以牛顿第二定律可以适用于流体运动。

3.稳态假设:假设流体的物理状态在空间和时间上是恒定不变的。

这个假设在实际应用中通常是成立的。

4.不可压缩性假设:假设流体密度不随时间和位置而变化。

这个假设在实际应用中通常是成立的。

5.粘性效应:粘性是流体内部分子之间相互作用力导致的,它会影响流体的运动规律。

当流体处于高速运动状态时,粘性效应可以忽略不计;但当流体处于低速运动状态时,粘性效应就会显著影响流体运动规律。

四、结论综上所述,流体动力学基本原理包括连续性方程、动量守恒方程和能量守恒方程。

为了使这些基本方程成立,需要满足一定条件,如连续性假设、牛顿第二定律适用、稳态假设、不可压缩性假设以及粘性效应等。

这些基本原理和条件对于研究流体的物理性质、运动规律和应用具有重要意义。

不可压缩粘性流体动力学基础_OK

不可压缩粘性流体动力学基础_OK

uz y
u y z
zx
xz
1 ux 2 z
uz x
(7—3)
14
江汉大学化环学院
流体力学与流体机械
综上所述,可写出表示流体微团运动的基本形式如下:
表示平移的平移速度:u x、u、y u。z
表示线变形的线变形速度(又称线变率):
x
u x x
y
u y y
z
u z y
表示角变形的角变形速度(又称角变率):
一、流体微团(Material Elements of Fluid) 流体微团是由大量的流体质点所组成的一个微小质团,它
具有微小的体积,是研究流体运动的一个基本单元。
4
江汉大学化环学院
流体力学与流体机械
流体微团的尺度在微观上足够大,大到能包含大量的 分子,使得在统计平均后能得到其物理量的确定值,质 点的尺度在宏观上又足够小,远小于所研究问题的特征 尺度,使得其平均物理量可看成是均匀的;而且可以把 流体微团看成是几何上的一个点。
dx dy dz
x y z
21
江汉大学化环学院
流体力学与流体机械
在给定瞬时,在漩涡场中任取一个不是涡线的封闭曲线, 通过这条曲线上每一点作一根涡线,这些涡线就构成一个管 状曲面,称为涡管(Vortex Tube);涡管中充满着作旋涡运 动的流体,称为涡束,或称为元涡(Vortex Filament)。 涡通量(Vortex Flux)或旋涡强度(Intensity of Vorticity),以 J表示。元涡的涡通量为微元涡的断面积和速度涡量(简称涡 量)的乘积,即
y
ux d yd t y
D
C
C
uy
u y y
dy

流体力学基础知识概述

流体力学基础知识概述

流体力学基础知识概述流体力学是研究流体运动及其力学性质的学科领域,它对于了解和分析自然界中的流体现象、工程设计和科学研究都具有重要的意义。

本文将对流体力学的基础知识进行概述,帮助读者对该领域有一个全面的了解。

一、流体的特性流体是一种连续变形的物质,其特性包括两个基本的属性:质量和体积。

质量是指流体的总重量,而体积则表示流体占据的空间。

流体还具有可压缩性和不可压缩性之分,可压缩流体如气体在受力时体积可变,不可压缩流体如液体则在受力时体积基本保持不变。

二、流体的力学性质1. 流体的静力学性质:静力学研究的是流体在静态平衡下的性质。

静力学方程描述了流体静力平衡的条件,在不同的情况下有不同的方程形式。

例如,对于不可压缩流体,静力平衡方程可以表示为斯托克斯定律。

2. 流体的动力学性质:动力学研究的是流体在运动状态下的性质。

根据流体的性质和流动条件,可以使用纳维-斯托克斯方程或欧拉方程来描述流体运动。

这些方程可以通过流体的质量守恒、动量守恒和能量守恒得到。

三、流体的流动类型根据流体的运动方式,流体力学将流动分为两种基本类型:层流和湍流。

层流是指流体以有序、平稳的方式流动,流线相互平行且不交叉;而湍流则是流体运动不规则、混乱的状态,流线交叉、旋转和变化。

层流和湍流的转变由雷诺数决定,雷诺数越大,流动越容易变为湍流。

雷诺数是流体力学中一个无量纲的参数,通过流体的密度、速度和长度等特性计算而来。

四、流体的流速分布流体在管道或河流等容器中的流速分布可以通过速度剖面来描述,速度剖面是指流体速度随离开管道中心轴距离的变化关系。

一般情况下,流体在靠近管道壁面处速度较小,在中心位置处速度较大。

速度剖面可用来研究流体流动的特性,例如通过计算剖面的斜率可以确定流体的平均速度。

此外,流体的速度分布还受到管道壁面的摩擦力和流体性质的影响。

五、流体的流量计算流量是指单位时间内通过某一横截面的流体体积,计算流体流量是流体力学中的一项重要任务。

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。

本文将介绍流体的性质以及流体力学的基本原理。

一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。

流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。

流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。

2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。

而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。

3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。

流体中的每一点都承受来自其周围流体的压力。

4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。

当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。

二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。

以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。

流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。

2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。

它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。

贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。

3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。

对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz xu z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。

不可压缩流体的平均运动动能方程、雷诺应力输运方程的推导。

不可压缩流体的平均运动动能方程、雷诺应力输运方程的推导。

我们首先考虑不可压缩流体的平均运动动能方程。

平均运动动能方程的推导:
1.定义:流体的动能为21ρv2,其中ρ是流体的密度,v是流速。

2.动量守恒定律:对于不可压缩流体,动量守恒定律为∂t∂ρv+∇⋅(ρv v)=0。

3.速度的散度:v=v(x,t),则v⋅∇v=∂xi∂vi+vi∂xj∂vi。

4.应用散度定理:∫∇⋅(ρv v)dV=∫ρv v⋅d S。

5.积分:对整个流体体积进行积分,得到dtd∫21ρv2dV=−∫ρv(v⋅∇)v dV。

6.化简:由于是不可压缩流体,ρ为常数,因此dtd∫21ρv2dV=−∫(v⋅∇)(ρv2)dV。

7.应用散度定理:由于ρ为常数,所以∫(v⋅∇)(ρv2)dV=0。

8.结论:因此,不可压缩流体的平均运动动能方程为dtd∫21ρv2dV=0,即动能为常数。

接下来考虑雷诺应力输运方程的推导。

雷诺应力输运方程的推导:
1.定义:雷诺应力为τij=−pδij+2μsij,其中p是压力,μ是动力粘度,sij是应变率。

2.雷诺方程:对于不可压缩流体,雷诺方程为∂t∂vi+vj∂xj∂vi=−ρ1∂xi∂p+ν∂xj2∂2vi。

3.应变率:sij=21(∂xj∂vi+∂xi∂vj)。

4.应用散度定理:对整个流体体积进行积分,得到dtd∫τij dV=−∫sij(v⋅∇)vidV+∫(v⋅∇)(μsij)dV。

5.化简:由于是不可压缩流体,化简后得到dtd∫τij dV=−2∫(v⋅∇)(μsij)dV。

6.结论:因此,雷诺应力输运方程为dtd∫τij dV=−2∫(v⋅∇)(μsij)dV。

《流体力学》第七章不可压缩流体动力学基础分解

《流体力学》第七章不可压缩流体动力学基础分解
✓对于有旋流动,其流动空间既是速度场,又 是涡量场,涡量场中的涡线,涡管,涡通量分 别与流速场中的流线,流管和流量的概念相对 应而涡线方程和涡通量方程分别与流线方程和 元流连续性方程相对应。
通常涡通量是利用速度环量这个概念来计算 的。
在流场中任取一封闭曲线s,则流速沿曲线s 的积分称为曲线s上的速度环量。
F B
F’
B’
B
F
B’ B’’ F’ F’’ C’’
C’’
A
M
A’’
C= A
A’
C’
MC
+ A’
A’’
D’’
C’
yE E’’
D
D’’
(a)
D
E
D’
E’
(b)
D’ E’’ E’
(c)
0
x
图7-2 流体徽团的旋转运动和变形运动
对于三元流动,可得流体微团旋转角速度分量为:
X
1 (uz 2 y
uy ) z
第七章 不可压缩流体动力学基础
许多实际流体的流动差不多都是空间的 流动。
流体的三元流动。
本章的主要内容是有关流体运动的基本 概念和基本原理,以及描述不可压缩流 体流动的基本方程和定解条件。
第一节 流体微团运动的分析
刚体的运动: 平移和旋转
流体的运动: 平移、旋转、变形(线变 A 形和角变形)
uds
s
s uxdx uydy uzdz
规定积分沿s逆时针方向绕行为 s的正方向
斯托克斯定理
沿任意封闭曲线s的速度环量等于通过 以该曲线为边界的曲面A的涡通量。
汤姆逊定理
s J A
在理想流体的涡量场中,如果质量力具有 单值的势函数,那么,沿由流体质点所组 成的封闭曲线的速度环量不随时间而变。

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。

与固体相比,流体具有易变形、易流动的特点。

流体的主要物理性质包括密度、压强和黏性。

密度是指单位体积流体的质量,用ρ表示。

对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。

压强是指流体单位面积上所受的压力,通常用 p 表示。

在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。

黏性是流体内部抵抗相对运动的一种性质。

黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。

二、流体静力学流体静力学主要研究静止流体的力学规律。

(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。

(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。

浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。

三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。

对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。

(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。

其表达式为p +1/2ρv² +ρgh =常量。

即在同一流线上,压强、动能和势能之和保持不变。

伯努利方程有着广泛的应用。

例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。

四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。

(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。

阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。

流体动力学基础

流体动力学基础

第3章 流体动力学基础一、单项选择题1、当液体为恒定流时,必有( )等于零。

A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度 2、均匀流过流断面上各点的( )等于常数。

A.p B.z+gpρ C.gpρ+gu22D. z+gpρ+gu223、过流断面是指与( )的横断面。

A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交 4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为( )。

A.一元流 B.二元流 C.三元流 D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A.22dtr d B.tu ∂∂ C.(u ·▽)u D.tu ∂∂+(u ·▽)u6、在恒定流中,流线与迹线在几何上( )。

A.相交 B.正交 C.平行 D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团 B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面 9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ). A.p1=p2 B.p3=p4 C.z1+gp ρ1=z2+gp ρ2D.z3+gp ρ3=z4+gp ρ410、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.5 11、根据图3.2 所示的三通管流,可得( )。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得( )。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=( )。

流体力学教学资料 3

流体力学教学资料 3

V2 V1
V3
V4
设 ds =dxi+dyj+dzk 为流线上 A 点的一微元弧长
V = ui+vj+wk 为流体质点在 A 点的流速。
V A ds
速度矢量 V 与微元弧长 ds 相平行,所以
dx dy dz u(x, y, z,t) v(x, y, z,t) w(x, y, z,t)
对应分量成比例
相续通过流场同一空间点的流体质点所连成的曲线又 称为脉线。
在实验中经常通过在水流中的一些特定点连续注入染 色液体或者在气流中的特定点连续施放烟气的方式来演示 流场,染色液体或者烟气所形成的曲线是脉线。
在定常流动中,通过同一空间点的所有流体质点具有 相同的运动轨迹,而且它们沿着流线行进,所以染色线或 者烟线同时也是流线和迹线。在非定常流动中,脉线与流 线和迹线都不重合,所以此时不能把染色线或烟线当成流 线和迹线。
(8,6)
x
解: u=Vcos=3 x2 y2
=3x
x2 y2
x
v=3y
ax=u/t+uu/x+vu/y=0+3x·3+3y·0=9x=72m/s2 ay= v/t+uv/x+vv/y=0+3y·0+3y·3=9y=54m/s2
a ax2 ay2 722 542 90m / s2

rr
3.积分形式的连续性方程
对控制体内的质量变化和通过控制面的质量流量用积分表 达,这样就得到积分形式的连续性方程:
ρ t

dx dy xt yt
dz 0
积分后得到:
ln x t ln y t ln C1
z C2

流体力学选择题库讲解

流体力学选择题库讲解

流体力学选择题库讲解一章绪论1.与牛顿内摩擦定律有关的因素是:A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。

2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。

3.下面四种有关流体的质量和重量的说法,正确而严格的说法是。

A、流体的质量和重量不随位置而变化;B、流体的质量和重量随位置而变化;C、流体的质量随位置变化,而重量不变;D、流体的质量不随位置变化,而重量随位置变化。

4.流体是一种物质。

A、不断膨胀直到充满容器的;B、实际上是不可压缩的;C、不能承受剪切力的;D、在任一剪切力的作用下不能保持静止的。

5.流体的切应力。

A、当流体处于静止状态时不会产生;B、当流体处于静止状态时,由于内聚力,可以产生;C、仅仅取决于分子的动量交换;D、仅仅取决于内聚力。

6.A、静止液体的动力粘度为0; B、静止液体的运动粘度为0;C、静止液体受到的切应力为0;D、静止液体受到的压应力为0。

.理想液体的特征是7.A、粘度为常数B、无粘性C、不可压缩D、符合。

8.水力学中,单位质量力是指作用在单位_____液体上的质量力。

A、面积B、体积C、质量D、重量9.单位质量力的量纲是-2 2-2-1)*T L( DM*L*T( A、L*T C、、) B、M*L *T10.单位体积液体的重量称为液体的______,其单位。

2 3 3 3、密度B、容重N/Mkg/mN/mD、密度C、容重AN/m11.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。

A、相同降低B、相同升高C、不同降低D、不同升高12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。

A、减小,升高;B、增大,减小;C、减小,不变;D、减小,减小13.运动粘滞系数的量纲是:2 3 23/T L DB、L/T、/T L/TA、、CL14.动力粘滞系数的单位是:2 2/s N*s/m D、m/s C、m B、AN*s/m 、15.下列说法正确的是:A、液体不能承受拉力,也不能承受压力。

流体力学(热能)第5章 不可压缩流体动力学基础讲解

流体力学(热能)第5章 不可压缩流体动力学基础讲解

的下标表示发生角变形的所在平面的法线方向。
三、亥姆霍兹速度分解定理 (了解)
设流体微团内某点M0(x,y,z),速度为ux0 、u y0 、uz0 ,
则邻边M0的另一点M (x+dx,y+dy,z+dz)的速度为
ux ux0 dux uy uy0 duy
uz uz0 duz
了。
四、 N-S方程
把(7-5-1)式和(7-5-6)式代入(7-4-1)式,消去应力
ux
对不可压缩流体有 x
uy y

uz z
0
代入得
X

1

p x

(
2u x x 2

2u x y 2

2u x z 2
)

dux dt
Y

1

p y

(
2u y x 2
3 xx
yy
zz
(7-5-4)
(3)
p


1 3
(
pxx

pyy

pzz )

pt

2 3
( ux
x

u y y

uz z
)
(7-5-5)
式中, pxx 、 pyy 、 pzz表示法向应力,
p 表示压强,
pt 表示理想流体压强。
代入(7-5-4)
(4)
p xx


p

2
u x x
(2)
ur

2r
cos 2

1 r
u 2r sin 2
解: ur

七章不可压缩流体动力学基础-

七章不可压缩流体动力学基础-

二 涡通量和速度环量
1. பைடு நூலகம்通量
定义: 在微元涡管中,二倍角速度与涡管断面面积dA的
乘积称为微元涡管的涡通量(旋涡强度)dJ
dJ2dA
(2)
对任一微元面积dA而言,有
dJ2dA2ndA
对有限面积,则通过这一面积的涡通量应为
J 2AndA
(3)
2.速度环量
定义: 某一瞬时在流场中取任意闭曲线 l,在线上取一微 元线段 d l ,速度v 在d l 切线上的分量沿闭曲线 l 的线积分, 即为沿该闭合曲线的速度环量。
得到
dx dy dz
(1)
x y z
这就是涡线的微分方程。
2. 涡管 定义: 某一瞬时,在漩涡场中任取 一封闭曲线c(不是涡线),通过曲线 上每一点作涡线,这些涡线形成封 闭的管形曲面。 如果曲线c构成的是微小截面,那 么该涡管称为微元涡管。 横断涡管并与其中所有涡线垂直的 断面称为涡管断面,在微小断面 上,各点的旋转角速度相同。 3.涡束 涡管内充满着作旋转运动的流体称为涡束,微元涡管中 的涡束称为微元涡束。
dy,设顶点A坐标为(x,y),流速分量为u ,v。
利用泰勒级数展开且仅保留一阶小量,可得微团各顶点 的速度分量,
正四边形微团在经历了时间后将变成斜平 行四边形
1.正四边形微团ABCD在经历了 dt时间后将变成斜平行
四边形 A’B’C’D’(略,请参考书中证明过程)。 2.微团运动过程分解
1) 平移:正四边形流体微团作为一个整体平移到新的
u x u x 0 x z d y y d z x d x x x d y y x d z z
u y u y 0 x x d z z d x y d y y y d z z y d x x

空气动力学基础:第3章 理想不可压缩流体平面位流

空气动力学基础:第3章  理想不可压缩流体平面位流

27/65
EXIT
如果偶极子轴线和 x 轴成θ角,正向指向第三象限如图所示
,在 x’y’ 坐标系中的位函数及流函数可写为:
M
x, x,2 y,2
y
M
y, x,2 y,2
根据二坐标系的旋转变换关系:
x
x, x cos y sin
y, y cos x sin
28/65
EXIT
代入上述位函数和流函数表达,并注意到坐标旋转时向径不 变:x’2+y’2 = x2+y2 ,得到在 (x,y) 坐标系中的偶极子:
3/65
EXIT
§3.1 平面不可压位流的基本方程
1. 位函数φ 及流函数 ψ 所满足的方程
有无旋条件,就有位函数φ 存在,并且位函数与速度分量
之间满足:
u
x
v
y
平面流动的连续方程是:
u v 0 x y
结合两式,得平面不可压位流必须满足的方程:
2 2 0
x2 y 2
该方程称为拉普拉斯方程,是个只与速度有关的线性方程
7/65
EXIT
数学上满足拉氏方程的函数称为调和函数。故要找 一代表具体的定常不可压理想位流运动,就是要找 一个能符合具体流动边界条件的调和函数,求出位 函数或流函数之后,即可求出速度分布,然后用伯 努利方程求解压强分布。
3. 边界条件 边界条件是在流场边界上规定的条件,边界通
常分为内边界和外边界。对飞行器或物体而言,内 边界即飞行器或物体表面,外边界为无穷远。
积分后得:
arctg y
2 2
x
显然等位线Φ=C是 一系列射线
32/65
EXIT
求流函数可由极座标下流函数与位函数的柯西-黎曼关系:

不可压缩流体静止的充要条件

不可压缩流体静止的充要条件

不可压缩流体静止的充要条件1.引言1.1 概述流体静力学是研究不可压缩流体的力学性质和行为的学科。

在流体静力学中,静止的不可压缩流体是一个重要的研究对象。

本文将讨论不可压缩流体静止的充要条件。

不可压缩流体是指其密度在空间中变化不大的流体。

在许多实际应用中,例如水流、气体流动等情况下,可以将流体视为不可压缩流体,这是因为其密度变化相对较小。

这种特性使得不可压缩流体在工程、自然科学等领域中具有广泛的应用价值。

在研究不可压缩流体的静止条件时,我们必须考虑流体中各点处的压力分布、重力、惯性力等因素的平衡。

只有当这些力平衡时,流体才能处于静止状态。

对于不可压缩流体的静止状态,有一些重要的定律和条件需要满足。

其中,流体的静力平衡定律是指在流体静止的情况下,各点处的压力分布必须满足平衡条件。

这包括了流体内部的各点压强之间的平衡关系,以及流体表面处的压强和表面法线方向的关系。

此外,在研究不可压缩流体的静止条件时,我们还需要考虑流体的可压缩性。

虽然不可压缩流体在很多情况下可以被近似为不可压缩,但是在特定的情况下,我们需要考虑流体的可压缩性对静止条件的影响。

总而言之,不可压缩流体静止的充要条件是流体内部各点处的压力分布平衡,并考虑流体的可压缩性。

在本文中,我们将进一步探讨这些条件,并给出详细的证明和解释。

通过深入研究不可压缩流体静止的充要条件,我们将更好地理解流体的力学行为,为实际应用提供可靠的理论依据。

文章结构部分的内容可以按照以下方式编写:文章结构:本文通过引言、正文和结论三个部分来探讨不可压缩流体静止的充要条件。

1. 引言引言部分主要对文章的主题进行概述,说明文章的目的和重要性。

1.1 概述在本部分,我们将对不可压缩流体静止的问题进行介绍。

不可压缩流体在物理学中具有重要的地位,研究其静止的充要条件具有理论和实际意义。

1.2 文章结构本文将按照以下结构进行叙述和论证:第一部分:引言。

在本部分,我们将首先对不可压缩流体静止的问题进行概述,阐明研究的目的和重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu x x +=∂∂=2θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x ,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 由z y x dz dy dxωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为:旋转角速度分别为:0=x ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c ydz z dy +-=⎰⎰ 可得涡线的方程为:c c y =+224.求沿封闭曲线2 22b y x =+,0=z 的速度环量。

(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。

其中A 为常数。

解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。

在z =0的平面上速度分布为:Ax u x =,0=y u涡量分布为:0=z Ω根据斯托克斯定理得:0==⎰z Az s dA ΩΓ (2)涡量分布为:A z -=Ω根据斯托克斯定理得:2b A dA z Az s πΩΓ-==⎰ (3)由于0=r u ,r A u =θ则转化为直角坐标为:22b Ay y r A u x -=-=,2b Ax u y = 则22bA y u x u x yz =∂∂-∂∂=Ω 根据斯托克斯定理得:A dA z Az s πΩΓ2==⎰ 5.试确定下列各流场是否满足不可压缩流体的连续性条件?答:不可压缩流体连续性方程 直角坐标:0=∂∂+∂∂+∂∂zu y u x u z y x (1) 柱面坐标:0=∂∂+∂∂+∂∂+zu r u r u r u z r r θθ (2) (1)0,,=-==z y x u ky u kx u 代入(1) 满足(2)y x u x z u z y u z y x +=+=+=,, 代入(1) 满足(3)0),(),(2222=+=-+z y x u y x k u y xy x k u 代入(1) 不满足(4)0,sin ,sin =-==z y x u xy k u xy k u 代入(1) 不满足(5)0,,0===z r u kr u u θ 代入(2) 满足(6)0,0,==-=z r u u r k u θ 代入(2) 满足 (7)0,sin 2,cos sin 22=-==z r u r u r u θθθθ 代入(2) 满足6.已知流场的速度分布为y x u x 2=,y u y 3-=,22z u z =。

求(3,1,2)点上流体质点的加速度。

解:y x y x x y xy y x z u u y u u x u u t u a x z x y x x x x 22322320320-=+⋅-⋅+=∂∂+∂∂+∂∂+∂∂= 将质点(3,1,2)代入a x 、a y 、a z 中分别得:27=x a ,9=y a ,64=z a7.已知平面流场的速度分布为2224y x y t u x +-=,222yx x u y +=。

求0=t 时,在(1,1)点上流体质点的加速度。

解:()()()⎥⎥⎦⎤⎢⎢⎣⎡+-+-++⎥⎥⎦⎤⎢⎢⎣⎡+⋅⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂=2222222222222420222244y x y y x y x x y x y x y x y t y u u x u u t u a x y x x x x 当0=t 时,()()2222222222284y x y x x y x xy a x +--+-= 将(1,1)代入得3=x a当t=0时,将(1,1)代入得:1-=y a8.设两平板之间的距离为2h ,平板长宽皆为无限大,如图所示。

试用粘性流体运动微分方程,求此不可压缩流体恒定流的流速分布。

解:z 方向速度与时间无关,质量力:g f x -=运动方程:z 方向:2210dxu d z p υρ+∂∂-=x 方向:→∂∂--=x p g ρ10 积分:)(z f gx p +-=ρ∴p 对z 的偏导与x 无关,z 方向的运动方程可写为z p dyu d ∂∂=μ122 积分:21221C x C x z p u ++∂∂=μ 边界条件:h x ±=,0=u得:01=C ,221h z p C ∂∂-=μ ∴⎥⎦⎤⎢⎣⎡-∂∂-=22)(12h x z p h u μ 9.沿倾斜平面均匀地流下的薄液层,试证明:(1)流层内的速度分布为()θμγsin y by u 222-=;(2)单位宽度上的流量为θμγsin 33b q =。

解:x 方向速度与时间无关,质量力θsin g f x =,θcos g f y -=运动方程:x 方向:221sin 0dyu d x p g υρθ+∂∂-= ① y 方向:yp g ∂∂--=ρθ1cos 0 ② ②→积分)(cos x f gy p +-=θρ∴θρcos )(y h g p p a -+=∵=b 常数 ∴p 与x 无关 ①可变为μθρsin 22g dyu d -= 积分)21(sin 212C y C y g u ++-=μθρ 边界条件:0=y ,0=u ;b y =,0=dy du ∴b C -=1,02=C ∴θμμθρsin )2(2)2(2sin 2y by r y b y g u -=-= 10.描绘出下列流速场解:流线方程: yx u dy u dx = (a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43 直线族(b )4=x u ,x u y 3=,代入流线方程,积分:c x y +=283抛物线族(c )y u x 4=,0=y u ,代入流线方程,积分:c y =直线族(d )y u x 4=,3=y u ,代入流线方程,积分:c y x +=232抛物线族(e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243椭圆族(f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22双曲线族(g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22同心圆(h )4=x u ,0=y u ,代入流线方程,积分:c y =直线族(i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22 抛物线族(j )x u x 4=,0=y u ,代入流线方程,积分:c y =直线族(k )xy u x 4=,0=y u ,代入流线方程,积分:c y =直线族(l )r cu r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y +=220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x = 直线族(m )0=r u ,r cu =θ,220yx cy r x r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22同心圆11.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。

如果是有旋流动,它的旋转角速度的表达式是什么? 解:无旋流有:x u y u y x ∂∂=∂∂(或rr u u r ∂∂=∂∂θθ) (a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动 对有旋流动,旋转角速度:)(21yu x u x y ∂∂-∂∂=ω (b )23=ω (c )2-=ω (d )2-=ω (e )27-=ω (g )4-=ω (i )2-=ω (k )x 2-=ω12.在上题流速场中,求出各有势流动的流函数和势函数。

解:势函数⎰+=dy u dx u y x ϕ流函数⎰-=dx u dy u y x ψ(a )⎰+=+=y x dy dx 3434ϕ(e )⎰⎰⎰⎰-+=-+=yy x x xdy dx y xdy ydx 0034340ϕ取),(00y x 为)0,0(则积分路线可选其中0,0:0,0,0==→y dy x其他各题略13.流速场为r c u u a r ==θ,0)(,r u u b r 2,0)(ωθ==时,求半径为1r 和2r 的两流线间流量的表达式。

解:ψd dQ = ⎰⎰-=dr u rd u r θθψ∴211212ln )ln (ln r r c r c r c Q =---=-=ψψ ∴)(22221212r r Q -=-=ωψψ14.流速场的流函数是323y y x -=ψ。

它是否是无旋流动?如果不是,计算它的旋转角速度。

证明任一点的流速只取决于它对原点的距离。

绘流线2=ψ。

解:xy x 6=∂∂ψ y x622=∂∂ψ∴+∂∂22x ψ022=∂∂y ψ 是无旋流 ∴222223)(3r y x u u u y x =+=+= 即任一点的流速只取决于它对原点的距离流线2=ψ即2332=-y y x用描点法:(图略)15.确定半无限物体的轮廓线,需要哪些量来决定流函数。

要改变物体的宽度,需要变动哪些量。

以某一水平流动设计的绕流流速场,当水平流动的流速变化时,流函数是否变化? 解:需要水平流速0v ,半无限物体的迎来流方向的截面A ,由这两个参数可得流量A v Q 0=。

改变物体宽度,就改变了流量。

当水平流速变化时,ψ也变化16.确定朗金椭圆的轮廓线主要取决于哪些量?试根据指定长度m l 2=,指定宽度m b 5.0=,设计朗金椭圆的轮廓线。

解:需要水平流速0v ,一对强度相等的源和汇的位置a ±以及流量Q 。

相关文档
最新文档