概率论与数理统计 随机变量及其分布
概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
概率论与数理统计-随机变量及其分布

解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
概率论与数理统计随机变量及其分布

问题三 随机变量的一些例子
在随机试验中,试验结果很多本身就由数量表示 每天进入教室的人数X 某个时间段吃饭排队的人数X 电灯泡使用的寿命T 而在另一些随机试验中,比如检查一个产品是否合格,此时样本空间
S={合格品,不合格品},若用1对应合格品,-1对应不合格品,这 样就都有唯一确定的实数与之对应。
P { 而a 且 Xx i所 成b } 的 任P 何{ a 事 x i 件 b { 的X 概 率x 都i} 能} 够a 求 x i出 b 来p i,
2.2 离散型随机变量及其概率
分P {X 布 I} P {Xxi} p i
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布 两点分布(0-1分布):若一个随机变量X只有两个可能
1.随机变量的引入
从上面的例子可以看出随机试验的结果都可用一个实数 来表示,这个数随着试验的结果不同而变化,它是样本
点的函数,这个函数就是我们要引入的随机变量。
2 随机变量的定义
随机变量:设随机试验的样本空间为S,称定义在样本空间S 上的实值函数X=X( )为随机变量。
随机变量的表示: 常用大写字母X,Y,Z或希腊字母
时,
b(k,n, pn)=
lim
讲课本n 例6,例7
l i m k
n
Cnkpnk(1pn)nk
e k!
2.3 随机变量的分布函数
随 机 变( 量 的 分布x函数)
定义1 设X是一个随机变量,称F(x)=P{X≤x} 为X的分布函数。有时记作X~F(x) 这个概率具有什么特点呢? 具有累积性 这个概率与x有关,不同的x此累积概率的值也不同。 注:①X是数轴上随机点的坐标,则分布函数F(x)的值就表示X落在区间
海南大学《概率论与数理统计》课件 第四章 随机变量及其分布

X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).
概率论与数理统计 第二章 随机变量及其分布

6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
概率论与数理统计-随机变量及其分布-随机变量与分布函数

7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
《概率论与数理统计》第二章 随机变量及其分布

两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
概率论与数理统计第2章随机变量及其分布

1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
概率论与数理统计:随机变量及其分布

以X记 A在 n 次试验中发生 的次数,X为一个随机变量 其分布律为
n k P( X = k ) = p (1 p) n k 记 q = 1 p k
n k nk P( X = k ) = p q k
n k n k L p q L k 称这样的分布为二项分布 二项分布.记为 称这样的分布为二项分布 记为 X ~ b(n, p).
X
0
1
1
2
2
3
5 3 2 0.6 0.4 3
4
5
pk (0.4)6 0.4 0.65 4
二项分布随机数演示 二项分布随机数演示
例3 某人进行射击 , 设每次射击的命中率为 0.02, 独立射击 400 次 , 试求至少击中两次的概 率 . 解 设击中的次数为 X ,
X
pk
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
均匀分布随机数演示 均匀分布随机数演示
3.二项分布 二项分布
n 重伯努利试验
伯努利资料
设试验 E 只有两个可能结果 : A 及 A, 设 P ( A) = p (0 < p < 1), 此时P( A) = 1 p.
将 将 E 独立地重复地进行 n 次 , 则称这一串重 复的独立试验为 n 重伯努利试验 .
(3)随机变量与随机事件的关系 随机变量与随机事件的关系 随机事件包容在随机变量这个范围更广的概 念之内.或者说 : 随机事件是从静态的观点来研究 念之内 或者说 随机现象,而随机变量则是从动态的观点来研究随 随机现象 而随机变量则是从动态的观点来研究随 机现象. 机现象 (4) 随机事件可以用随机变量表示
4. 泊松分布
概率论与数理统计第二章--随机变量及其分布

第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )
概率论与数理统计01 第一节 随机变量及其分布函数

第二章随机变量及其概率分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节一维随机变量及其分布函数内容分布图示★随机变量概念的引入★随机变量的定义★例1★例2★例3★引入随机变量的意义★课堂练习★习题2-1内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)XX(e 为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1 (讲义例1) 在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为=S {正面, 反面},记赢钱数为随机变量X , 则X 作为样本空间S 的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面ϖϖϖX 例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH ϖ易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.四. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F 为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→例4 判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ解 (1)由题设, )(x F 在),(+∞-∞上单调不减, 右连续, 并有,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.(2)因)(x F 在),2/(ππ上单调下降, 所以)(x F 不可能是分布函数. (3)因为)(x F 在),(+∞-∞上单调不减, 右连续, 且有 ,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.离散型随机变量的分布函数例5(讲义例2)设随机变量X 的分布律为 ,2/16/13/121i p X求)(x F .解 }{)(x X P x F ≤=当0<x 时,,}{∅=≤x X 故0)(=x F 当10<≤x 时,31}0{}{)(===≤=X P x X P x F 当21<≤x 时, 216131}1{}0{)(=+==+==X P X P x F 当2≥x 时,1}2{}1{}0{)(==+=+==X P X P X P x F 故 ,2,121,2/110,3/10,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=x x x x x F )(x F 的图形是阶梯状的图形, 在2,1,0=x 处有跳跃, 其跃度分别等于},0{=X P },1{=X P }.2{=X P例6 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F )2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤=……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤=)(n x x ≥时,1}{)(=≤=x X P x F故 )(x F ⎪⎪⎩⎪⎪⎨⎧<=≥<),,max(,1),,2,1(),,min(,/),,min(,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当例7(讲义例3)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.解 由于)(x F 是一个阶梯型函数, 故知X 是一个离散型随机变量, )(x F 的跳跃点分别为1, 2, 3, 对应的跳跃高度分别为 9/19, 6/19, 4/19, 如图.故X 的概率分布为 .19/419/619/9321i p X课堂练习设随机变量X 的概率分布为4/12/14/1321i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k!
, 0, k 0,1, 2,...
2.2 离散型随机变量及其概率分布
在实际中,许多随机现象都可用泊松分布来 描述.例如,一批产品的废品数;一本书中 某一页上印刷错误的个数;某汽车站单位时 间内前来候车的人数;某段时间内,某种放 射性物质中发射出的α粒子数等等,均可用 泊松分布来描述.泊松分布是概率论中的又 一个重要分布,在随机过程中也有重要应用。
X(e) 的所有可能取值是什么?
(3)设某射手每次射击打中目标的概率是0.8,现该射手不断向目 标射击 , 直到击中目标为止,用随机变量
X (e ) 抽得的白球数,
X (e ) 所需射击次数 ,
X(e) 的所有可能取值是什么? (4)某公共汽车站每隔 5 分钟有一辆汽车通过, 如果某人到达该 车站的时刻是随机的, 用随机变量
问题三 随机变量的一些例子
在随机试验中,试验结果很多本身就由数量表示 (1)每天进入教室的人数X (2)某个时间段吃饭排队的人数X (3)电灯泡使用的寿命T 而在另一些随机试验中,比如检查一个产品是否 合格,此时样本空间S={合格品,不合格品}, 若用1对应合格品,-1对应不合格品,这样就都 有唯一确定的实数与之对应。
2.2 离散型随机变量及其概率分布
二项分布的图形特点: (1)当(n+1)p不为整数时,二项概率 P{X=k}在k=[(n+1)p]时达到最大值 (2)当(n+1)p为整数时,二项概率 P{X=k}在k=(n+1)p和k=(n+1)p-1时达 到最大值 讲课本例3和例4 注意二项分布b(n,p)和两点分布的关系
问题二:随机事件与随机变量的联系与区别 是什么?
随机试验中可能发生也可能不发生的事情为随机事 件,比如,对1、2、3的数集抽取,A是抽中1,B 是抽中2,C是抽中3,那么A、B、C就是随机事件。 随机变量是定义在样本空间上的变量,比如我们设 抽中的是X,那么X可能是1,也可能是2,或是3。 X完整的描述了该样本空间,即X可能值的全部是 样本空间。 随机事件是从静态的观点来研究随机现象,而随机 变量则是一种动态的观点。
第2章 随机变量及其分布
问题一:为什么引入随机变量? 问题二:随机事件与随机变量的区别是什么? 问题三:随机变量的一些例子?
问题一:为什么引入随机变量?
概率论是从数量上来研究随机现象内在规律性的, 为了更方便有力的研究随机现象,就要用数学的方 法来研究,因此为了便于数学上的推导和计算,就 需将任意的随机事件数量化.当把一些非数量表示 的随机事件用数字来表示时,就建立起了随机变量 的概念。 引入随机变量后我们就由对事件及事件概率的研究 转化为随机变量及其规律的研究。
A = “出现正面”, A “出现反面”;在射击试验中, A=“命中 目标” A , “未命中目标”;它们都可用(0-1)分布来描述.(0-1)分 布是实际中经常用到的一种分布.
2.2 离散型随机变量及其概率分布
二项分布:若一个随机变量X的概率分布由式
给出,则称X服从参数为n,p的二项分布。记为X~b(n,p)(或 B(n,p)). 注:当n=1时, P( X k ) p k (1 p)1k (k 0,1) 随机变量X即服从0-1分布 在实际中,把概率很小(一般要求在0.05以下)的事件称 为小概率事件.由于小概率事件在一次试验中发生的可能性 很小,因此,在一次试验中,小概率事件实际上是不应该发 生的. 这条原则我们称它为实际推断原理.需要注意的是,实 际推断原理是指在一次试验中小概率事件几乎是不可能发生 的,当试验次数充分大时,小概率事件至少发生一次却几乎 是必然的。 如何证明以上这个结论是正确的呢?
n n
2.3 随机变量的分布函数
1.随机变量的分布函数 定义1 设X是一个随机变量,称F(x)=P{X≤x} ( x ) 为X的分布函数。有时记作X~F(x) 这个概率具有什么特点呢? ①具有累积性 ②这个概率与x有关,不同的x此累积概率的值也不 同。 注:①X是数轴上随机点的坐标,则分布函数F(x) 的值就表示X落在区间 (, x] 的概率。
2.2 离散型随机变量及其概率分布
当试验次数n很大时,对二项分布b(n,p)的概率计 算起来不方便,此时须寻求某种近似计算方法,其 中一种就是二项分布的泊松近似。 定理1(泊松定理):在n重伯努利试验中,事件A 在每次试验中发生的概率为pn(注意这与试验的次 npn ( 0为常数), 数n有关),如果 n 时, 则对任意给定的k,有 k k k nk lim b(k,n, pn)= lim Cn pn (1 pn ) k ! e 讲课本例6,例7
k k P{x k} Cn p (1 p)nk , k 0,1,..., n.
2.2 离散型随机变量及其概率分布
二项分布在经济管理方面的应用: 在实际问题中,很多商品的销售量都是服从二项分 布的。因为每件商品都只有售出和库存两种状态, 而每件商品售出的概率在一段时间内是基本固定, 因此商品的进货量即为二项分布中的参数n,参数 p的值可利用数理统计方法进行估计,估计公式为 p≈ mn/n。mn为所出售的商品的件数。 在不增加成本的前提下, 追求利润的最大化是迫切 需要解决的问题。其实在有些情况下, 产品可靠性 数据可按二项分布加以分析, 我们只需作出小小的 调整,就能收到良好的效果。
2.2 离散型随机变量及其概率分布
2.概率分布 定义1 设离散型随机变量X的可能取值为 xi , P{X xi } pi , i 1, 2,...
称为X的概率分布或分布律,也称概率函数。 X的概率分布常用表格的形式来表示。 讲课本例1 练习题:设离散随机变量X的分布列为 X -1 2 3 pi 0.25 0.5 0.25 试求P(X≤0.5),P(-1≤X≤2.5)
2 随机变量的定义
注意: (1)随机变量与普通的函数不同
随机变量是一个函数 , 但它与普通的函数有着本质的差 别 ,普通函数是定义在实数轴上的,而随机变量是定义在 样本空间上的 (样本空间的元素不一定是实数)。 (2)随机变量的取值具有一定的概率规律
随机变量随着试验的结果不同而取不同的值, 由于试验的 各个结果的出现具有一定的概率, 因此随机变量的取值也 有一定的概率规律.
0 F ( x) 1
2.3 随机变量的分布函数
②对x1, x2
( x1 x2 ),随机点落在区间 ( x1 , x2 ]
的概率
P{x1 X x2} P{X x2} P{X x1} F ( x2 ) F ( x1 )
③随机变量的分布函数完整地描述了随机变量的统 计规律性。 分布函数的性质: (1)单调非减。若 x1 x2 ,则 F ( x1 ) F ( x2 ) (2) F () limF () 0, F () limF ( x) 1 x x (3)右联系性,即 limF ( x) F ( x) xx 讲课本例1
2.2 离散型随机变量及其概率分布
分布律的说明: 当已知一个离散型随机变量X的概率分布时,
P{a xi b} P{ {X xi }}
a xi b a xi b
而且X所成的任何事件的概率都能够求出来,
P{X I } P{X xi } pi
X (e ) 此人的等车时间,
X(e) 的所有可能取值是什么?
2.2 离散型随机变量及其概率分布
1.离散型随机变量:设X是一个随机变量,如果它 全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 连续型随机变量:假如一个随机变量X的可能取值 充满数轴上的一个区间(a,b),则称X为一个连续 型随机变量。 例(1)投掷一颗骰子点数X的可能取值只有{1, 2,3,4,5,6},则X是什么型的随机变量? (2)电灯泡的使用寿命T,可能取值{T≥0},所 以T是一个什么型的随机变量?
2 随机变量的定义
讲课本例1,例2 练习题: (1)在有两个孩子的家庭中,考虑其性别 , 共 有 4 个样本点:
e1 (男,男), e2 (男,女), e3 (女,男), e4 (女,女).
若用X表示该家女孩的个数时,则应该怎么 表示?
2 随机变量的定义
(2)设盒中有5个球 (2白3黑), 从中任抽3个,用随机变量
1.随机变量的引入
从上面的例子可以看出随机试验的结果都可 用一个实数来表示,这个数随着试验的结果 不同而变化,它是样本点的函数,这个函数 就是我们要引入的随机变量。
2 随机变量的定义
随机变量:设随机试验的样本空间为S,称定义 在样本空间S上的实值函数X=X( )为随机变量。 随机变量的表示: 常用大写字母X,Y,Z或希腊字母 等表示 随机变量所取的值,一般采用小写字母x,y,z
2.2 离散型随机变量及其概率分布
泊松分布:若一个随机变量X的概率分布为
P{ X k} e
k
则称X服从参数为 的泊松分布,记为X~P() 泊松流:若随机事件流具有平稳性、无后效性、普 通性,则称该事件流为泊松流。 对泊松流,在任意时间间隔(0,t)内,事件发生 的次数服从参数为 的泊松分布。 称为泊松流的 强度。
2.2 离散型随机变量及其概率分布
在经济管理决策中,利用泊松分布可以合理安排工 作岗位。 例如某车间有90台相同的机器,每台机器需要维 修的概率均为0.01,在同一时间每人只能维修一 台机器,在岗位设置中,不同的设置的方法使得机 器出现故障而等待维修的概率是不同的。如果三个 人明确分工,每人负责30台,此时λ=0.3,机器 需要维修的概率为P{X>1}=0.0369;若三个人 共同负责90台,此时λ=0.9,机器需要维修的概 率为P{X>3}=0.0135;通过概率的对比可知, 共同协作比各自为政的维修效率有所提高。 讲课本例5