城市地铁轨道智能交通解决方案

合集下载

智慧交通解决方案

智慧交通解决方案

智慧交通解决方案随着城市化进程的加快和交通拥堵问题的日益突出,智慧交通解决方案逐渐成为人们关注的焦点。

智慧交通解决方案是指利用信息技术和通信技术,对城市交通系统进行智能化管理和优化,以提高交通运行效率、减少交通事故、缓解交通拥堵等目的。

本文将从几个方面介绍智慧交通解决方案的相关内容。

一、智能交通信号灯系统1.1 交通信号灯智能控制:通过智能控制系统,根据实时交通流量和道路情况,自动调整信号灯的时间间隔,优化交通流动。

1.2 信号灯联动控制:不同路口的信号灯可以实现联动控制,避免交通拥堵和事故发生。

1.3 信号灯优化调度:根据历史数据和预测模型,对信号灯的调度进行优化,提高交通效率。

二、智能交通监控系统2.1 实时监控交通状况:通过视频监控和传感器技术,实时监测道路上的交通情况,及时发现问题。

2.2 交通事故预警:系统可以根据交通事故的发生概率和预警模型,提前预警可能发生的事故,减少交通事故发生率。

2.3 交通违法监测:通过智能监控系统,对交通违法行为进行监测和记录,提高交通管理效率。

三、智能交通导航系统3.1 实时路况导航:结合交通监控系统和实时数据,为驾驶员提供实时路况信息和最佳路线规划。

3.2 智能导航推荐:系统可以根据驾驶员的出行习惯和偏好,推荐最适合的路线和出行方案。

3.3 智能停车导航:通过智能导航系统,为驾驶员提供停车位信息和停车导航服务,减少停车难题。

四、智能公交系统4.1 公交车辆调度优化:通过智能调度系统,实现公交车辆的动态调度和优化,提高公交运营效率。

4.2 公交线路规划优化:根据乘客出行需求和交通状况,优化公交线路规划,提高公交服务水平。

4.3 公交车辆监控:通过GPS定位和监控系统,实时监测公交车辆的运行情况,提高公交运营效率。

五、智能停车系统5.1 车位智能管理:通过智能停车系统,实现停车位的智能管理和分配,提高停车位利用率。

5.2 无人停车系统:结合自动驾驶技术和智能停车系统,实现无人停车服务,提高停车效率。

便捷智慧地铁系统设计方案

便捷智慧地铁系统设计方案

便捷智慧地铁系统设计方案智慧地铁系统是一种利用现代科技手段,提升地铁运营效率、改善出行体验的系统。

该系统通过智能化技术,包括物联网、人工智能、大数据等,实现地铁列车和站点的智能管理、用户信息的实时互动以及运营数据的监测和优化,从而为乘客提供更便捷、安全、舒适的出行环境。

以下是一个简要的便捷智慧地铁系统设计方案。

一、车站自助服务设施1. 智能自助售票和充值设备:通过自助售票和充值设备,乘客可以方便地购买车票和充值电子卡,减少人工售票压力。

2. 可视化导航系统:在车站设置导航屏幕,显示乘客所需的出行信息,包括到站时间、列车运行状态、乘车路线等,方便乘客快速找到目的地,并提供实时交通状况的预警信息。

二、列车智能管理系统1. 智能安检设备:在地铁列车上配备智能安检设备,可以快速准确进行安全检查,提高安全性和效率。

2. 视频监控系统:安装视频监控设备,实时监测列车运行状态和车厢内的情况,及时发现异常情况,保障乘客安全。

3. 无线传感器网络:通过无线传感器网络,获取列车的温度、湿度、气压等参数,对车辆进行实时监测和预警,提高列车的运行安全性。

三、用户互动系统1. 手机APP:开发一款移动应用程序,可以提供实时到站时间、乘车路线规划、列车运行状态、站内设施等信息,方便乘客快速出行。

2. 人脸识别系统:通过人脸识别技术,实现乘客身份的自动识别和刷码支付,提高乘客进出站的便利性和效率。

四、运营数据监测与优化系统1. 大数据分析:利用大数据技术对乘客出行数据进行分析,如热门出行时段、热门目的地等,以便优化车次调度和列车运营计划。

2. 运营监控中心:建立一个运营监控中心,通过监控中心的运营数据分析和预测,进行智能化调度和判断,提高地铁运营的效率和准确性。

3. 故障预警系统:通过数据监测和分析,可以实时监测地铁设备的运行状态,预测故障风险,及时采取维修措施,提高地铁的运行稳定性。

总结:便捷智慧地铁系统的设计方案主要包括车站自助服务设施、列车智能管理系统、用户互动系统以及运营数据监测与优化系统等方面的内容。

轨道交通数字化智能化解决方案

轨道交通数字化智能化解决方案
智能预警:利用大数据和人工智能技术,对潜在风险进行预测和预警,提 前采取措施
自动控制:通过自动控制技术,实现列车运行、车站设备、乘客管理等自 动化,降低人为失误风险
应急处置:制定应急预案,提高应急处置能力,降低事故损失和影响
轨道交通数字化智 能化解决方案的应
用案例
某城市轨道交通数字化智能化改造
项目背景:某城市轨道交通面临运 营压力、设备老化等问题
智能化调度系统
实时监控:对 轨道交通的运 行情况进行实 时监控,及时 发现和处理异
常情况。
智能调度:根 据轨道交通的 运行情况,自 动生成调度方 案,提高调度
效率。
预测分析:通 过对历史数据 的分析,预测 轨道交通未来 的运行情况, 提前做好应对
措施。
优化管理:对 轨道交通的运 营数据进行分 析,优化管理 流程,提高运

提高运营效率
实时监控:对轨道交通设备、运行状态进行实时监控,提高运营效率 智能调度:利用大数据和人工智能技术,实现智能调度,提高运营效率 预测性维护:通过数据分析,预测设备故障,提前进行维护,提高运营效率 节能减排:通过优化运行方案,降低能源消耗,减少排放,提高运营效率
降低运营成本
提高能源效率:通 过数字化智能化技 术,实现能源消耗 的实时监测和优化, 降低能源成本。
境污染。
政策支持
国家政策:支 持轨道交通数 字化智能化发

地方政策:各 地出台相关政 策推动轨道交 通数字化智能
化建设
国际合作:加 强国际合作, 引进国外先进
技术和经验
产业政策:推 动轨道交通数 字化智能化相
关产业发展
技术进步
互联网技术的发展:为轨道交通数字化智能化提供了基础 物联网技术的应用:实现了轨道交通设备的互联互通 大数据技术的应用:为轨道交通运营提供了数据支持 人工智能技术的应用:提高了轨道交通运营效率和安全性

轨道交通智能化调度系统建设方案

轨道交通智能化调度系统建设方案

轨道交通智能化调度系统建设方案第1章项目背景与需求分析 (3)1.1 轨道交通发展概述 (3)1.2 智能化调度系统需求分析 (4)1.2.1 提高运营效率 (4)1.2.2 保障运营安全 (4)1.2.3 降低运营成本 (4)1.2.4 提高服务质量 (4)1.3 建设目标与意义 (4)1.3.1 建设目标 (4)1.3.2 建设意义 (4)第2章智能化调度系统技术架构 (4)2.1 系统总体架构 (5)2.2 系统功能模块设计 (5)2.3 技术路线选择 (5)第3章数据采集与传输 (6)3.1 数据采集技术 (6)3.1.1 传感器布置 (6)3.1.2 数据采集设备 (6)3.1.3 采集频率与策略 (6)3.2 数据传输网络 (6)3.2.1 传输技术选型 (6)3.2.2 网络架构 (6)3.2.3 网络安全 (7)3.3 数据存储与管理 (7)3.3.1 数据存储方案 (7)3.3.2 数据管理策略 (7)3.3.3 数据质量管理 (7)第4章信号系统智能化 (7)4.1 信号系统概述 (7)4.2 信号设备智能化升级 (7)4.2.1 设备选型与布局 (7)4.2.2 智能化设备功能 (7)4.3 信号系统安全控制 (8)4.3.1 安全监控 (8)4.3.2 安全控制策略 (8)第五章车辆运行监控与调度 (8)5.1 车辆运行监控技术 (8)5.1.1 实时监控系统构建 (8)5.1.2 数据处理与分析 (8)5.1.3 信息可视化展示 (9)5.2 车辆调度策略 (9)5.2.2 实时调度策略 (9)5.2.3 应急调度预案 (9)5.3 车辆运行安全保障 (9)5.3.1 安全防护技术 (9)5.3.2 安全管理制度 (9)5.3.3 安全培训与演练 (9)5.3.4 安全信息共享 (9)第6章线路与基础设施智能化 (10)6.1 线路自动化监测 (10)6.1.1 监测系统概述 (10)6.1.2 系统组成 (10)6.1.3 系统功能 (10)6.1.4 关键技术 (10)6.2 基础设施智能化改造 (10)6.2.1 智能化改造概述 (10)6.2.2 信号系统智能化改造 (10)6.2.3 供电系统智能化改造 (10)6.2.4 通信系统智能化改造 (11)6.3 线路维修与养护 (11)6.3.1 维修与养护策略 (11)6.3.2 预防性维修 (11)6.3.3 计划性维修 (11)6.3.4 应急维修 (11)6.3.5 维修与养护技术 (11)第7章客流分析与预测 (11)7.1 客流数据采集与处理 (11)7.1.1 数据源选择 (11)7.1.2 数据采集方法 (12)7.1.3 数据处理 (12)7.2 客流分析与预测方法 (12)7.2.1 客流时空分布特征分析 (12)7.2.2 客流预测方法 (12)7.3 客流调控策略 (12)7.3.1 客流调控目标 (12)7.3.2 客流调控措施 (12)第8章乘客服务与信息发布 (13)8.1 乘客服务系统设计 (13)8.1.1 系统概述 (13)8.1.2 乘客服务界面设计 (13)8.1.3 服务流程优化 (13)8.1.4 服务渠道拓展 (13)8.2 信息发布技术 (13)8.2.1 信息发布系统概述 (13)8.2.3 信息发布内容管理 (14)8.3 乘客出行辅助决策 (14)8.3.1 出行辅助决策系统概述 (14)8.3.2 出行路径规划 (14)8.3.3 出行时间预测 (14)8.3.4 出行方式推荐 (14)8.3.5 个性化出行服务 (14)第9章系统集成与测试 (14)9.1 系统集成技术 (14)9.1.1 集成框架设计 (14)9.1.2 集成关键技术 (14)9.1.3 集成实施策略 (15)9.2 系统测试与验证 (15)9.2.1 测试目标 (15)9.2.2 测试内容 (15)9.2.3 测试方法与工具 (15)9.3 系统优化与升级 (15)9.3.1 系统优化 (15)9.3.2 系统升级 (15)第10章项目的实施与保障 (16)10.1 项目组织与管理 (16)10.1.1 项目组织架构 (16)10.1.2 项目管理流程 (16)10.2 技术培训与支持 (16)10.2.1 技术培训体系 (16)10.2.2 技术支持与维护 (16)10.3 项目验收与评估 (16)10.3.1 项目验收标准与方法 (16)10.3.2 项目评估与优化 (16)第1章项目背景与需求分析1.1 轨道交通发展概述我国城市化进程的加快,轨道交通作为城市公共交通的重要组成部分,得到了迅速发展。

使用AI技术改善城市交通问题的解决方案

使用AI技术改善城市交通问题的解决方案

使用AI技术改善城市交通问题的解决方案优化城市交通方式的AI解决方案概述:作为全球城市化进程的产物,城市交通问题日益凸显。

堵车、拥堵和环境污染已成为许多城市居民普遍面临的挑战。

为了应对这些问题,人们开始探索基于人工智能(AI)技术的解决方案,以改善城市交通情况。

本文将介绍使用AI技术来解决城市交通问题的方案。

一、智能交通信号灯管理系统交通信号灯是城市道路上最重要的组成部分之一。

为了提高道路利用率,并减少拥堵时间,可以借助AI技术来改进信号灯管理系统。

通过大数据分析和深度学习算法,可以实时监测道路上的车流量,并根据实际需求智能调整信号灯周期,以最优化交通流量控制。

该系统可以借助摄像头和传感器等设备收集实时数据,并通过计算机视觉和模式识别技术进行处理。

利用深度学习算法对数据进行训练和分析,系统能够准确预测未来时间段内的道路交通状况,并相应地做出信号灯调整。

此外,系统还可以结合实时导航应用程序,通过车辆位置信息进行动态优化。

根据道路拥堵情况和车辆流量变化,系统可智能地分配信号灯周期,以确保交通流畅度和通行效率的最大化。

二、智能公交车调度系统公共交通是缓解城市交通压力和减少环境污染的重要途径之一。

然而,在传统的公交运营模式下,公交车往往无法高效地应对不断变化的乘客需求和道路状况。

利用AI技术来改进公交车调度系统可以提供更加便捷和高效的公共交通服务。

AI技术可以通过收集并分析大量数据来预测乘客需求,并相应地安排运输计划。

利用机器学习算法,可以对历史数据进行建模和训练,从而预测特定时间段和地区的乘客流量,并相应地分配合适数量的公交资源。

此外,结合实时位置跟踪技术,调度系统可以监测公交车辆当前位置和运行状态。

当遇到突发事件或道路拥堵时,系统可以快速做出反应,并重新规划最佳路线,以确保公交车运营的准时性和高效性。

三、共享出行平台的智能匹配共享出行已成为许多城市居民的交通选择之一。

然而,在当前共享出行平台中,用户往往需要手动选择乘车方式和路线,这可能导致不同供需方信息不对称和匹配效率低下。

城市轨道交通系统的智能化升级方案

城市轨道交通系统的智能化升级方案

城市轨道交通系统的智能化升级方案
1. 背景介绍
随着城市人口增长和城市化进程加速,城市轨道交通系统成为人们生活中不可
或缺的重要部分。

传统的城市轨道交通系统可能存在效率低下、运营不稳定等问题,因此智能化升级迫在眉睫。

2. 智能化升级方案
2.1 智能票务系统
引入智能票务系统,实现线上购票、自助取票、刷脸进站等功能,提高乘车效率,降低人工成本。

2.2 轨道交通运行监控系统
通过安装监控摄像头、传感器等设备,实时监测轨道车辆运行情况,提高运行
安全性和效率。

2.3 列车调度优化算法
利用人工智能技术,优化列车调度算法,减少列车间隔时间,提高运行效率,
缓解客流高峰时段的拥堵情况。

2.4 车站信息智能化展示
在车站安装液晶屏、LED屏等显示设备,实时展示列车到站信息、客流情况、
换乘线路等,提高乘客体验。

3. 收益与影响
通过智能化升级方案,城市轨道交通系统可以提高运行效率、降低运营成本,
提升服务质量和用户体验,为城市交通发展带来积极影响。

以上是关于城市轨道交通系统智能化升级方案的详细介绍,希望对大家有所启
发和帮助。

城市轨道交通智能调度系统

城市轨道交通智能调度系统

城市轨道交通智能调度系统城市轨道交通智能调度系统是现代城市交通运输领域中的关键技术之一。

它利用先进的信息技术和控制模型,对城市轨道交通系统进行全面的监测、分析和优化调度,以提高交通运行效率、保障乘客出行安全和舒适度。

本文将介绍城市轨道交通智能调度系统的原理、功能和发展前景。

一、智能调度系统的原理城市轨道交通智能调度系统的原理基于大数据分析、人工智能和物联网等技术。

首先,系统会收集轨道交通运行过程中的各种相关数据,包括车站乘客流量、列车位置和速度、信号系统信息等。

然后,通过大数据分析和模型建立,对数据进行处理和挖掘,提取有用的信息,如拥堵状况、运行时刻表等。

最后,根据分析结果和预测模型,进行智能调度决策,包括列车运行计划、信号优化和应急响应等。

二、智能调度系统的功能1. 运行监测与分析:智能调度系统能够实时监测轨道交通的运行状况,包括车站客流量、车辆位置与速度等。

通过分析数据,可以得出轨道交通的拥堵状况、运行效率等指标,为下一步的调度决策提供依据。

2. 路线优化与分配:智能调度系统可以根据乘客流量和市区交通情况,优化列车的行驶路线和车站的停靠顺序,使得整个轨道交通系统的运行更加高效和流畅。

3. 信号控制与优化:智能调度系统能够对轨道交通的信号系统进行智能控制与优化,通过分析车流情况和预测交通需求,确定信号灯的配时方案,减少交通阻塞和车辆等待时间。

4. 交通调度与应急响应:智能调度系统能够根据实时的交通状况进行调度决策,包括增加或减少列车班次、调整运行计划等,以适应突发情况和高峰时段的交通需求。

三、智能调度系统的发展前景城市轨道交通智能调度系统在未来的发展前景十分广阔。

随着城市人口的不断增长和交通需求的不断增加,传统的人工调度已经无法应对复杂的运营环境和需求变化。

智能调度系统通过数据分析和预测模型,能够更好地满足乘客出行的需求,优化轨道交通系统的运行效率。

此外,随着人工智能技术的不断发展和普及,智能调度系统的应用范围将进一步扩大。

城市轨道交通系统的智能化控制

城市轨道交通系统的智能化控制

城市轨道交通系统的智能化控制随着城市交通发展的进一步完善,轨道交通系统逐渐成为城市公共交通系统中不可或缺的一部分。

然而,轨道交通系统的运营和管理需要大量的人力物力,同时,也需要高度精细和安全的控制手段。

因此,如何实现城市轨道交通系统的智能化控制,成为当前研究和探讨的热点问题。

一、城市轨道交通系统智能化的背景和意义城市轨道交通系统作为城市公共交通系统的主要组成部分,因其运载能力大、速度快、舒适安全等优势,已成为城市出行的主要交通方式之一。

然而,随着城市规模的持续扩大和人口的增加,城市轨道交通系统也面临着越来越大的运营压力和管理困难。

因此,实现城市轨道交通系统智能化控制,具有如下几个意义:1.提高交通运营效率:智能化控制可通过优化车辆的运行和调度,实现交通系统的高效运营,从而缓解城市交通拥堵,提高出行效率。

2.保证系统安全性:智能化控制可通过实时监测车辆运行状态和系统安全情况,及时发现和处理故障,保证交通系统的安全性和稳定性。

3.提升客户体验:智能化控制可通过提高交通系统的信息化程度和服务水平,提升客户出行体验,增强城市公共交通的吸引力。

二、城市轨道交通系统智能化控制技术智能化控制是城市轨道交通系统实现智能化的关键技术之一,其应用领域包括车辆调度控制、信号控制、线路预测等方面。

1.车辆调度控制技术车辆调度控制技术是智能化控制的重要方向之一,主要通过系统自主化的调度方式,根据不同的运行需求和交通状况,调整车辆的时刻表和运行路线,从而实现交通系统的优化运营。

具体技术包括:(1)智能化运行控制系统:采用先进的计算机技术和数据处理方式,实时监测车辆、线路和站点等信息,快速响应系统中的各种需求和变化。

(2)智能按需调度系统:根据客流量、交通状况和操作需求等因素,自动调整车辆运营时刻表和行驶路线,最大程度地保证了交通系统的运营效率和安全性。

2.信号控制技术城市轨道交通系统的信号控制技术是实现智能化控制的重要手段之一,主要是通过控制信号和车辆行进速度,实现线路信号与车辆运行速度、车间间隔的协调性和平衡性。

轨道交通智能化全自动运行系统建设方案(二)

轨道交通智能化全自动运行系统建设方案(二)

轨道交通智能化全自动运行系统建设方案一、实施背景随着中国城市化进程的加速和公共交通需求的增长,轨道交通成为了城市交通的重要组成部分。

然而,传统轨道交通运营面临着人力成本高、运营效率低下、安全风险难以控制等问题。

为了解决这些问题,有必要推动轨道交通产业的结构改革,引入智能化全自动运行系统。

二、工作原理智能化全自动运行系统基于先进的通信技术、信号处理技术和人工智能技术,实现列车的高效、安全和可靠运行。

该系统包括列车控制子系统、车站控制子系统和运营管理子系统。

1.列车控制子系统:通过车载传感器、信号设备等收集列车运行状态信息,结合预设的轨道几何参数、列车动力学模型等,实现列车的自动控制。

2.车站控制子系统:通过部署在车站的设备,实现对列车进出站、停靠时间等车站运营活动的实时监控和调整。

3.运营管理子系统:对整个轨道交通系统的运营数据进行集中管理和分析,为管理层提供决策支持。

三、实施计划步骤1.需求分析与规划:对现有轨道交通进行详细调研,明确智能化全自动运行系统的需求和目标。

2.技术研发与设计:组织研发团队,进行系统架构设计、功能模块开发、测试和验证等工作。

3.系统集成与部署:将各个子系统进行集成,部署到实际运营环境中。

4.人员培训与过渡:对轨道交通运营人员进行系统操作培训,确保他们能够顺利过渡到智能化全自动运行模式。

5.运营评估与优化:在系统投入运营后,持续收集运营数据,评估系统的性能和效果,进行必要的优化和改进。

四、适用范围该智能化全自动运行系统适用于大中城市的轨道交通网络,尤其是客流量大、运营效率要求高的线路。

五、创新要点1.全自动运行:通过先进的信号处理和列车控制技术,实现列车的全自动运行,大大降低人力成本。

2.智能化管理:运用人工智能技术对运营数据进行深度分析,为管理层提供决策支持,提高运营效率。

3.安全保障:通过实时监控列车运行状态和车站运营情况,及时发现并处理潜在的安全风险。

4.兼容性设计:考虑到现有轨道交通系统的特点和需求,设计兼容性强的接口和模块,减少改造工作量。

地铁智慧运营系统解决方案

地铁智慧运营系统解决方案

地铁智慧运营系统解决方案一、介绍随着城市发展和人口增长,地铁运营出现了越来越多的挑战。

为了更好地解决这些挑战,需要引入智慧运营系统来提高地铁运营效率,提升乘客出行体验。

本文将介绍地铁智慧运营系统的必要性、关键技术和解决方案。

二、地铁智慧运营系统的必要性地铁智慧运营系统是一种基于信息技术的运营管理模式,通过传感器、大数据分析、人工智能等技术手段,实现对地铁运营过程的全面监控、智能调度和精细化管理。

地铁智慧运营系统具有以下必要性:1、提高运营效率。

地铁智慧运营系统可以实时监控列车运行情况、站点客流及设备状态,通过智能调度和预测算法,优化列车运行计划,提高列车运行效率,减少运行延误。

2、提升乘客出行体验。

地铁智慧运营系统可以基于乘客需求和运营情况实时调整列车运行计划,减少换乘时间和拥挤状况,提升乘客出行体验。

3、降低运营成本。

地铁智慧运营系统通过精细化管理和优化运营方案,可以降低列车能耗、设备维护成本和人工调度成本,实现运营成本的降低。

三、地铁智慧运营系统的关键技术地铁智慧运营系统依托于一系列关键技术的支撑,包括传感器技术、大数据分析、人工智能、云计算等。

1、传感器技术。

通过在列车、站点、设备等地铁运营关键位置安装传感器,可以实时感知列车运行情况、站点客流及设备状态。

传感器可以实现对地铁运营过程的全面监控,并将采集的数据传输至系统后端进行分析和处理。

2、大数据分析。

通过对传感器采集到的大量数据进行分析,可以实现对列车运行、站点客流和设备状态的深入理解和挖掘,为智慧调度和管理提供基础数据支撑。

3、人工智能。

人工智能技术可以实现对列车运行和站点客流的预测,通过算法模型对未来一定时期内的列车运行和客流情况进行预测,为精细化调度提供依据。

4、云计算。

通过云计算技术,可以实现对大规模数据的存储、计算和管理,同时实现智慧运营系统的信息共享与协同。

四、地铁智慧运营系统的解决方案地铁智慧运营系统的解决方案主要包括智慧调度系统、智能客流管理系统和设备状态监控系统。

轨道交通系统的智能化设计

轨道交通系统的智能化设计

轨道交通系统的智能化设计随着城市化进程的加快,轨道交通系统已成为各大城市必不可少的公共交通工具。

在传统轨道交通系统的基础上,智能化设计成为了轨道交通系统发展的必然趋势。

本文将就轨道交通系统的智能化设计展开探讨。

一、什么是轨道交通系统的智能化设计轨道交通系统的智能化设计是指依靠现代信息技术手段,通过数据采集、分析与处理,为交通系统的运行、安全、服务等提供全面、高效、可靠的解决方案。

智能化设计的核心是信息化,即各种数据的采集分析、预测和优化运算。

智能化设计是基于人的需求,强调在保证交通安全、效率和舒适性的前提下通过数据处理实现便捷的服务,满足人们的个性化需求和多样化的出行方式。

二、轨道交通系统智能化设计的实现途径1、大数据技术轨道交通系统是大数据的重要应用场景之一。

通过大数据分析,轨道交通系统可以实时了解乘客的出行需求和情况,提供相应的服务。

比如,交通运营公司可以根据预测结果进行调度,提高运输效率,避免拥堵。

2、互联网技术互联网技术应用于轨道交通系统中,可以帮助乘客方便快捷地获取乘车信息、购票信息,实现预约服务、购票服务以及车站自助服务等。

此外,借助互联网技术,交通运营公司还可以对车站、列车进行实时监控,实现全方位掌握运营情况,提高工作效率。

3、物联网技术轨道交通系统中的车站、信号机、列车等都是物联网设备,通过物联网技术实现数据的互联、互通、互操作,可以提高整个交通系统的安全性和智能性。

例如,在列车运行中,通过车辆及轨道设备上安装的各种传感器,收集包括温度、电压、信号强度等大量数据,通过分析这些数据进行预测性维护和实时监控,提高列车的运行效率和信号环节的稳定性。

三、轨道交通系统智能化设计的优势1、提高交通系统的运行效率智能化设计可以通过大数据分析、预测及运营调度等手段,为交通系统的运行提供更加精准、高效、可靠的解决方案,提高运行效率、减少耗能。

2、提高交通系统的安全性智能化设计将数据采集和分析引入交通系统,提高了交通系统的运行安全和人身安全的保障。

智慧交通解决方案

智慧交通解决方案

智慧交通解决方案目录智慧交通解决方案 (3)1.1 方案背景 (3)1.1.1 项目背景 (3)1.1.2 需求分析 (4)1.1.3 市场规模预测 (4)1.2 智能交通综合解决方案 (4)1.2.1 交通信息采集系统 (6)1.2.2 智能停车场系统 (7)1.2.3 电子警察系统 (9)1.2.4 高速公路3G 监控 (10)1.2.5 智能公交系统 (11)1.2.6 智能出租车系统 (16)1.2.7 智能出行系统 (19)1.2.8 手机看交通 (21)1.3 商业模式 (23)1.4 成功案例 (24)1.4.1 济南公交3G 视频监控项目 (24)1.4.2 永新沧州市智能公交信息化项目 (24)1.4.3 北京快速公交安立路项目 (26)1.4.4 智能出行系统 (26)1.5 合作厂商 (27)智慧交通解决方案1.1 方案背景1.1.1 项目背景随着经济和社会发展迅速,城市规模不继扩大,城市化进程的不断加快,机动车拥有量迅速增长,交通需求极大增加,原有的交通供需平衡被打破,而相反城市的基础设施、交通管理设施和管理能力的提高跟不上交通需求发展速度,原有基础设施的缺陷和弊端不断暴露出来。

如何解决城市交通拥挤问题已经成为城市可持续发展的一个重要课题,从政府交通管理部门角度讲,需要更好地利用现有的交通运输基础设施,提高安全性,改善环境;从企业角度讲,需要提高运营效率与服务质量;从居民角度讲,需要更加便利的随时获取出行路况信息、停车服务、实时公交、地铁等信息。

这些越来越高的交通需求是传统交通运输系统所难以满足的。

从河北省政府角度来说,“十二五”规划在战略基础设施智能化工程方面,明确指出要构建智能化综合交通运输体系。

建设和完善公路、港航、运输、高速公路、铁路、城市交通、民航、邮政等八大领域综合管理系统,搭建全省统一的交通地理信息、卫星定位管理与服务、视频监控管理等平台,全面提升行业监管和服务水平;选择石家庄、承德、廊坊开展城市智能交通系统建设试点,提高城市交通指挥调度、车辆管理、危化品运输、出行服务、应急救援等方面的管理和服务水平。

智慧轨交运营解决方案设计

智慧轨交运营解决方案设计

智慧轨交运营解决方案设计1. 智慧轨交系统概述轨道交通运营是城市交通运输系统中的重要组成部分,对于解决城市交通拥堵、环境污染等问题具有重要意义。

智慧轨交系统是指通过现代信息技术,将轨道交通系统的运营管理、安全监控、乘客服务等各个环节进行全面升级,实现高效、安全、便捷的运营模式。

一个完整的智慧轨交系统应该包括以下主要组成部分:列车运行控制系统、轨道交通信号控制系统、安全监控系统、乘客服务系统、数据分析系统等。

这些系统通过互联互通,共同构建起一个智能化的轨交运营管理平台,实现对整个轨交系统的全面监测、预警和决策管理。

2. 智慧轨交系统的优势智慧轨交系统相比传统的轨道交通系统,具有以下明显优势:(1)提升运行效率:智慧轨交系统通过精准的列车运行控制和信号控制,可以实现列车运行的精准调度和拥挤疏导,优化列车运行效率,提高线路运力利用率。

(2)提升安全性:智慧轨交系统通过安全监控系统对轨道交通系统的各个部分进行实时监测和预警,可以有效提升轨道交通系统的安全性,减少事故发生概率。

(3)提升乘客服务水平:智慧轨交系统通过乘客服务系统,可以提供更加个性化、便捷的乘客服务,比如实时列车到站信息、车厢空位信息、乘客出行建议等,提升乘客的出行体验。

(4)提升管理决策能力:智慧轨交系统通过数据分析系统对运营数据进行深入分析,可以帮助运营管理者制定更加科学的运营策略,提升管理决策能力。

3. 智慧轨交运营解决方案设计(1)轨道交通信号控制系统轨道交通信号控制系统是轨道交通运营的重要保障,通过实现列车行进的安全、有序和高效。

智慧轨交系统中,我们应该基于先进的信号控制技术,构建起一个集中化的列车运行调度系统,实现对整个轨道交通线路的全面控制和调度。

具体来说,我们可以引入先进的列车自动驾驶技术和区间自动化信号控制技术,实现列车的智能驾驶和自动调度。

在列车运行的过程中,我们可以通过实时监测列车的位置、速度、阻塞情况等信息,及时调整列车运行速度和间隔,提高线路运行效率。

轨道交通行业智能交通管理系统方案

轨道交通行业智能交通管理系统方案

轨道交通行业智能交通管理系统方案第1章项目背景与需求分析 (3)1.1 轨道交通行业现状分析 (3)1.1.1 轨道交通发展概述 (3)1.1.2 轨道交通行业存在的问题 (4)1.1.3 轨道交通行业发展趋势 (4)1.2 智能交通管理系统的需求与目标 (4)1.2.1 需求分析 (4)1.2.2 项目目标 (4)第2章智能交通管理系统总体设计 (5)2.1 系统架构设计 (5)2.1.1 层次化架构 (5)2.1.2 系统组件 (5)2.2 系统功能模块划分 (5)2.2.1 数据采集与传输模块 (5)2.2.2 数据处理与分析模块 (5)2.2.3 应用服务模块 (6)2.3 技术路线与标准 (6)2.3.1 技术路线 (6)2.3.2 技术标准 (6)第3章车辆运行监控系统 (6)3.1 车辆实时监控 (6)3.1.1 系统概述 (6)3.1.2 监控内容 (7)3.1.3 监控方法 (7)3.2 车辆故障诊断与预警 (7)3.2.1 故障诊断 (7)3.2.2 预警系统 (7)3.3 车辆运行数据分析 (7)3.3.1 数据采集与处理 (8)3.3.2 数据分析方法 (8)3.3.3 应用场景 (8)第4章信号与控制管理系统 (8)4.1 信号控制策略设计 (8)4.1.1 系统概述 (8)4.1.2 控制策略 (8)4.1.3 信号控制算法 (9)4.2 信号设备监控与维护 (9)4.2.1 设备监控 (9)4.2.2 故障诊断与报警 (9)4.2.3 维护策略 (9)4.3 信号系统安全保障 (9)4.3.2 安全监控 (9)4.3.3 安全防护措施 (9)4.3.4 紧急处置 (9)第五章乘客信息系统 (9)5.1 乘客信息查询与发布 (9)5.1.1 信息查询系统 (9)5.1.2 信息发布系统 (10)5.2 乘客出行分析与优化 (10)5.2.1 出行数据采集 (10)5.2.2 出行需求分析 (10)5.2.3 出行路径优化 (10)5.2.4 运营调整与优化 (10)5.3 乘客服务与投诉处理 (10)5.3.1 乘客服务 (10)5.3.2 投诉处理 (11)第6章运营调度管理系统 (11)6.1 运营计划与调度策略 (11)6.1.1 运营计划制定 (11)6.1.2 调度策略优化 (11)6.2 运营数据统计分析 (11)6.2.1 数据采集与处理 (11)6.2.2 数据统计分析 (12)6.3 应急调度与处置 (12)6.3.1 应急预案制定 (12)6.3.2 应急调度实施 (12)6.3.3 应急处置评估 (12)第7章车站设施监控系统 (12)7.1 车站设备监控 (12)7.1.1 设备监控概述 (12)7.1.2 监控内容 (12)7.1.3 监控手段 (13)7.2 车站安全防范 (13)7.2.1 安全防范概述 (13)7.2.2 防范措施 (13)7.2.3 安全防范管理 (13)7.3 车站环境与能源管理 (13)7.3.1 环境与能源管理概述 (13)7.3.2 环境监测与管理 (13)7.3.3 能源管理 (13)7.3.4 智能化能源控制系统 (14)第8章维修保障系统 (14)8.1 维修计划与任务管理 (14)8.1.1 维修计划制定 (14)8.1.3 维修进度监控 (14)8.2 维修资源调度与监控 (14)8.2.1 维修资源配置 (14)8.2.2 维修资源调度 (14)8.2.3 维修资源监控 (15)8.3 故障预测与健康管理等 (15)8.3.1 故障预测 (15)8.3.2 健康管理 (15)8.3.3 预防性维护 (15)8.3.4 故障分析与处理 (15)8.3.5 知识库建设 (15)第9章数据分析与决策支持系统 (15)9.1 数据采集与处理 (15)9.1.1 数据采集 (15)9.1.2 数据处理 (16)9.2 运营指标分析 (16)9.2.1 客流分析 (16)9.2.2 运营效率分析 (16)9.2.3 安全分析 (16)9.2.4 服务质量分析 (16)9.3 决策支持与优化建议 (16)9.3.1 运营管理决策支持 (16)9.3.2 设备维护决策支持 (17)9.3.3 资源配置决策支持 (17)第10章系统实施与运行保障 (17)10.1 系统实施策略与步骤 (17)10.1.1 实施策略 (17)10.1.2 实施步骤 (17)10.2 系统运行维护与优化 (18)10.2.1 系统运行维护 (18)10.2.2 系统优化 (18)10.3 系统安全与风险管理 (18)10.3.1 系统安全 (18)10.3.2 风险管理 (18)第1章项目背景与需求分析1.1 轨道交通行业现状分析1.1.1 轨道交通发展概述我国经济的快速发展和城市化进程的推进,轨道交通作为城市公共交通的重要组成部分,得到了长足的发展。

轨道交通智能化全自动运行系统建设方案(一)

轨道交通智能化全自动运行系统建设方案(一)

轨道交通智能化全自动运行系统建设方案一、实施背景随着中国城市化进程的加速和城市交通压力的增大,轨道交通作为城市公共交通的重要组成部分,其运行效率和安全性受到了越来越多的关注。

近年来,我国轨道交通建设进入了一个高峰期,各大城市都在积极规划和建设轨道交通网络。

然而,传统的轨道交通运营模式存在着管理效率低下、安全隐患大等问题,无法满足现代城市交通的需求。

因此,从产业结构改革的角度出发,开展轨道交通智能化全自动运行系统的研究和建设,成为当前城市轨道交通发展的迫切需求。

二、工作原理轨道交通智能化全自动运行系统是基于自动化、信息化、智能化技术,实现轨道交通列车全自动化运行、安全可靠、高效节能的一种全新运营模式。

该系统主要由列车自动驾驶系统、综合监控系统、通信控制系统、安全防范系统等组成。

1.列车自动驾驶系统:利用先进的定位、导航和控制系统,实现列车的自动化驾驶。

该系统能够根据设定的运行图和车站信息,自动控制列车的启动、加速、减速和停车,同时对列车各项设备进行实时监控和故障诊断。

2.综合监控系统:对轨道交通的供电、通风、照明、给排水等各项设施进行实时监控和调节,确保车站和列车正常运行。

3.通信控制系统:利用无线通信和网络技术,实现列车与控制中心、车站之间的信息交互和指令传输,确保运营安全和通信畅通。

4.安全防范系统:采用视频监控、人脸识别等技术,对车站和列车进行全方位的安全监控和防范,确保乘客和设备的安全。

三、实施计划步骤1.需求分析和规划:对城市轨道交通的需求进行详细分析,制定智能化全自动运行系统的建设规划,明确建设目标、实施范围和实施步骤。

2.技术研究和开发:开展自动化、信息化、智能化等关键技术的研发,为系统的构建提供技术支持。

3.系统集成和测试:将各个子系统进行集成,进行全面的测试和调试,确保系统的稳定性和可靠性。

4.现场安装和调试:在轨道交通现场进行设备的安装和调试,确保系统的正常运行和安全可靠。

5.培训和人员配备:对操作和维护人员进行专业培训,确保他们能够熟练掌握和使用该系统。

地铁无障碍智慧出行系统设计方案

地铁无障碍智慧出行系统设计方案

地铁无障碍智慧出行系统设计方案地铁无障碍智慧出行系统是为了提供便利和安全的地铁出行体验,让视觉、听觉、行动、认知等方面存在障碍的人士能够顺利使用地铁系统而设计的系统。

以下是一个设计方案:一、系统概述地铁无障碍智慧出行系统基于无线通信技术、物联网技术和人工智能技术,由硬件设备和软件系统组成。

硬件设备包括出入口无障碍设施、导览系统、紧急求助设备等;软件系统包括App、服务器端等。

二、主要功能1. 出入口无障碍设施:地铁出入口将设置无障碍设施,例如无障碍通道、轮椅上下坡道、语音导览设备等,以便视觉、行动障碍的人士顺利进入和离开地铁站。

2. 导览系统:地铁站内将设置语音导览系统,通过语音引导,告知乘客当前站点、乘车信息、出入口位置等,便于行动和认知存在障碍的人士准确获得信息。

3. 紧急求助设备:各个车厢和地铁站内将设置紧急求助按钮,乘客在遇到紧急情况或需要帮助时,可通过按下按钮向工作人员发送报警信息,以便工作人员及时响应。

4. App系统:设计一款无障碍智慧出行App,乘客可以通过App查询地铁运行信息、站点设施、导航服务等,并设置个性化的服务,例如提前安排工作人员协助乘车、预约无障碍通道等。

5. 数据分析:通过对乘客使用系统的数据进行分析,了解乘客需求和痛点,并对系统进行优化,提升出行体验。

三、系统流程1. 用户注册:用户下载App,并填写个人信息进行注册。

2. 站点查询:用户打开App,通过地图或搜索站点名字查询相关信息,例如站点设施、出入口位置、票价等。

3. 路线规划:用户输入起始站和目的站,App自动规划最快、最近、或最少换乘的路线,同时提供无障碍路线的选项。

4. 预约服务:用户可以根据需要预约工作人员协助乘车或预约使用无障碍设施,App将向工作人员发送预约信息。

5. 导航服务:用户进入地铁站后,App会根据用户当前位置提供导航服务,指引用户到达离他们目的地最近的出入口,并提供语音导览信息。

6. 紧急求助:用户在遇到紧急情况或需要帮助时,通过App或车厢内的紧急求助按钮发送报警信息,地铁工作人员会及时响应并提供帮助。

交通运输行业城市轨道交通智能化方案

交通运输行业城市轨道交通智能化方案

交通运输行业城市轨道交通智能化方案第1章城市轨道交通智能化概述 (3)1.1 轨道交通发展背景 (3)1.2 智能化轨道交通的意义 (3)1.3 国内外智能化轨道交通发展现状 (3)第2章智能化轨道交通系统架构 (4)2.1 系统总体架构 (4)2.2 系统模块划分 (4)2.3 系统集成与互联互通 (5)第3章列车自动驾驶技术 (5)3.1 列车自动驾驶系统概述 (5)3.2 列车自动驾驶关键技术 (5)3.2.1 列车控制策略 (5)3.2.2 传感器技术 (6)3.2.3 数据通信技术 (6)3.2.4 软件系统 (6)3.3 列车自动驾驶安全防护措施 (6)3.3.1 多重冗余设计 (6)3.3.2 安全监控与紧急控制 (6)3.3.3 人机交互界面 (6)3.3.4 安全防护等级 (6)第4章车载信息系统 (7)4.1 车载信息系统的功能与架构 (7)4.2 车载信息传输技术 (7)4.3 车载信息处理与分析 (7)第5章线路基础设施智能化 (8)5.1 线路基础设施智能化概述 (8)5.2 智能化线路监测技术 (8)5.2.1 线路几何参数监测技术 (8)5.2.2 结构健康监测技术 (8)5.2.3 隐患排查与预警技术 (8)5.3 线路基础设施维护与管理 (8)5.3.1 维护策略优化 (8)5.3.2 智能化管理平台 (8)5.3.3 信息化维护队伍建设 (8)5.3.4 规章制度与标准体系 (9)第6章车站智能化 (9)6.1 车站智能化概述 (9)6.2 车站信息发布系统 (9)6.2.1 系统构成 (9)6.2.2 信息发布内容 (9)6.3 车站乘客服务系统 (9)6.3.2 乘客导乘系统 (9)6.3.3 无障碍设施 (9)6.4 车站安全管理与应急处理 (10)6.4.1 视频监控系统 (10)6.4.2 安全检查系统 (10)6.4.3 紧急疏散系统 (10)6.4.4 应急处理系统 (10)第7章乘客信息服务智能化 (10)7.1 乘客信息服务概述 (10)7.2 乘客信息采集与处理 (10)7.2.1 乘客信息采集 (10)7.2.2 乘客信息处理 (11)7.3 个性化乘客信息推送 (11)7.4 乘客出行决策支持 (11)第8章运营管理与优化 (12)8.1 运营管理概述 (12)8.2 智能化调度指挥系统 (12)8.2.1 调度指挥系统简介 (12)8.2.2 智能化调度指挥系统组成 (12)8.2.3 智能化调度指挥系统优势 (12)8.3 运营数据分析与应用 (13)8.3.1 数据分析概述 (13)8.3.2 数据分析应用 (13)8.4 运营优化策略与实施 (13)8.4.1 运营优化策略 (13)8.4.2 运营优化实施 (13)第9章能源管理与节能技术 (14)9.1 能源管理概述 (14)9.2 能源监测与预测 (14)9.3 节能技术与措施 (14)9.4 能源管理系统集成 (14)第10章智能化轨道交通保障体系 (14)10.1 安全保障体系 (14)10.1.1 风险评估与管理 (14)10.1.2 安全监控系统 (14)10.1.3 紧急应对 (15)10.2 信息安全与隐私保护 (15)10.2.1 信息安全策略 (15)10.2.2 隐私保护措施 (15)10.2.3 信息安全风险评估与应对 (15)10.3 技术标准与规范 (15)10.3.1 技术标准体系 (15)10.3.2 技术规范与要求 (15)10.4 智能化轨道交通人才培养与培训 (15)10.4.1 人才培养体系 (15)10.4.2 培训体系与课程设置 (15)10.4.3 人才评价与激励 (16)第1章城市轨道交通智能化概述1.1 轨道交通发展背景城市化进程的加快,人口密度不断增加,城市交通需求持续增长,给城市交通系统带来巨大压力。

智慧交通的具体方案

智慧交通的具体方案
二、现状分析
1.交通拥堵问题严重,影响市民出行效率。
2.公共交通系统服务水平不高,乘客满意度较低。
3.道路资源利用率低,交通污染问题突出。
4.交通管理手段单一,智能化程度不高。
三、方案设计
1.智能公共交通系统
-优化线路布局:根据大数据分析,合理规划公交线路,提高线网密度,减少市民出行时间。
-智能调度:采用先进的车载设备,实现公交车实时定位、调度和管理,提高运营效率。
-推进公交专用道建设,保障公共交通优先权。
2.服务提升
-引入智能公交车辆,提供实时信息查询、无线充电等便捷服务。
-实施公交服务质量评价体系,持续提升服务水平。
(三)交通基础设施建设
1.停车系统
-发展智能停车设施,如立体停车库、地下停车场,提高停车效率。
-建立停车信息管理系统,实现停车位实时信息查询与预订。
智慧交通的具体方案
第1篇
智慧交通的具体方案
一、背景与目标
随着我国经济的快速发展和城市化进程的推进,城市交通问题日益突出。为缓解交通拥堵、提高道路利用率、降低能耗和污染,本项目旨在构建一套智慧交通系统。通过高新技术应用,实现交通运行的高效、安全、绿色,提升城市交通管理水平,为市民提供便捷、舒适的出行体验。
2.非机动车与行人设施
-规划建设非机动车道和行人专用设施,保障安全与便捷。
-推广绿色出行方式,鼓励使用非机动车和步行。
(四)交通环境改善
1.污染监测与治理
-布局交通污染监测网络,实时监控空气质量。
-采取车辆尾气净化、绿色能源车辆推广等措施,减少排放。
2.交通组织与宣传
-举办交通安全与环保宣传活动,提升市民交通意识。
3.智能停车系统
-立体停车库建设:在市中心、交通枢纽等地建设立体停车库,提高停车位利用率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合架构控制系统方案:

控制中心系统方案
系统说明: 1、整个系统采用混合式架构; 2、中心配置高清数字矩阵+标清视频网络矩阵,支 持混合信号输入:HDMI/DVI/VGA/SDI/AV/IP等 不同接口的视频信号可同时接入,输出大屏进行 拼接、漫游、叠加、透明度调整等功能操作;
高清数字矩阵

控制中心系统方案:

级联架构控制系统方案:

SDI典型架构控制系统方案:

轨道交通SDI典型架构:

级联架构控制系统方案:


应用解决方案:
针对以上应用需求,地铁视频监控系统可以划 分成两套子系统:运营视频监控系统,公安视频 监控系统,二者仅共享视频源,系统其余部分相 对独立。 换乘站解决方案 控制中心系统方案

换乘站解决方案:
系统特点: 1、前端采用混合视频 信号输入, 2、HD-SDI信号可以通 过高清编码器进行集中 存储, 3、高清数字矩阵可以 通过级联方式实现输入 /出的扩展,

产品介绍:


就根据以上项目需求,整个系统需要具备如下基本 功能: ①实时监看 ②云台控制 ③图像选择调用 ④录像存储、摄像范围控制 ⑤优先级设置、智能分析和远程系统管理控制,且 能够被综合监控系统所集成等。

⑥ 通过选择不同类型的前端产品和合理的工程布局 ,完成车站的视频采集,做到全方位覆盖; ⑦ 房内的核心设备为控制管理服务器、矩阵、网关 、流媒体服务器、存储设备、编解码器、电视墙 等; ⑧ 设Байду номын сангаас主要分布在车站、换乘站、停车场控制室。

功能需求:
对轨道运营部门来说需要实现控制中心的人员调度、给各 车站值班员、列车司机等提供有关列车运行状况、能达到防 灾救灾、旅客疏导、客流量控制的效果;
视频监控系统作为地铁交通维护和保证运输安全的重要手段;
获取工作人员上岗情况等方面的视觉信息;
通过视频监控能够及时查看并记录事故和灾害发生现场 发生的情况; 对公共安全部门来说,可以通过他为各类乘客纠纷、意 外伤亡事件等提供客观依据。
浙江红苹果电子有限公司
混合解决方案 轨道交通智能解决方案
西安办事处主任 周光军 E-mail:815507580@
索引:
作为城市公共交通系统的一个重要组成部分,目 前城市轨道交通有地铁、轻轨、市郊铁路,以及 悬浮列车等多种类型,被号称为“城市交通的主 动脉”。就当前国内城市轨道交通的建设情况来 看,地铁交通在其中占据了绝对的份额。因此, 此方案着手重点介绍地铁交通安防视频监控系统 的解决方案。 目前,我国各大城市的地铁交通车站、车辆段、 停车场等都安装了视频监控系统,实现了对车站 、车辆段、停车场情况的24小时安防监控发挥了 重要作用
3、中心配置中心管理服务器、流媒体服务器等对全 局进行管理、多用户访问及存储等要求;

控制中心系统方案
5、二级换乘中心AV视频通过本地DVR编码成数字信 号,经专网送达一级指挥中心汇聚交换机,再接入 高清数字矩阵解码板,达到视频切换输出; 6、一级指挥中心通过应用服务器通过VGA信号直接 进入高清数字矩阵的VGA输入板,达到VGA与高清 视频输出切换; 7、本地AV视频直接输入模块化网络矩阵,输出至高 清数字矩阵的标清输入板,达到视频输出切换; 8、高清数字矩阵客户端设置二级中心切换轮循解码 。
相关文档
最新文档