初中数学竞赛专题选讲 一元二次方程的根(含答案)

合集下载

初中数学竞赛第1讲一元二次方程的解法(含解答)

初中数学竞赛第1讲一元二次方程的解法(含解答)

第1讲一元二次方程的解法一、引例瑞士的列昂纳德.欧拉(1707~1783),既是一位伟大的数学家,也是一位教子有方的父亲,他曾亲自编过许多数学趣题用以启发孩子们思考。

如下题:“父亲临终时立下遗嘱,要按下列方式分配遗产:老大分得100克朗和剩下的110;老二分得200克朗和剩下的110;老三分得300克朗和剩下的110;……;以此类推分给其他的孩子,最后发现,遗产全部分完后所有孩子分得的遗产相等;遗产总数、孩子人数和每个孩子分得的遗产各是多少?”这道题需要列方程求解。

解析设孩子数为x人,则最后一个孩子分得遗产为100x克朗,老大分得遗产[100+1 10 (100x2-100)]克朗,得方程100+110(100x2-100)=100x. 同学们,你会解此方程吗?整理方程得 x2-10x+9=0.(x-9)(x-1)=0,∴x1=9,x2=1(舍去).遗产总数是8100克朗;有9个孩子,每个孩子分得的遗产是900克朗。

点评:二、一元二次方程的解法运用因式分解法时,首先应将右边各项移到方程的左边,使方程右边为0;然后再将方程左边的式子分解因式,使原方程化为两个一元一次方程,常借助于提公因式法、公式法、十字相乘法等来分解因式。

例1用适当的方法解下列一元二次方程:(1)(2x-1)2-9=0; (2)x2+x-1=0;(3)x2-4x=1; (4)3x2-16x+5=0;(5)(3x+2)2=4(x-3)2; (6)(y-1)2=2y(1-y);(7)3a2x22=0(a≠0) (8)x2+2mx=(n+m)(n-m).解析 (1)两边开平方,得 2x-1=3或2x-1=-3,∴ x1=2,x2=-1;(2)已知:a=1,b=1,c=-1.∴ x1,x2;(3)整理原方程,得 x2-4x-1=0,∴ (x-2)2=5.∴ x12(4)原方程可化为(3x-1)(x-5)=0,∴ x1=13,x2=5;(5)两边开平方,得3x+2=2(x-3)或3x+2=-2(x-3),∴ x1=-8, x2=45.(6)原方程可化为(y-1)(3y-1)=0,∴ y1=1, y2=1 3 .(7)原方程可化为∴ x1=,x2(8)原方程可化为(x+n+m)(x+m-n)=0,∴ x1=-n-m, x2=n-m.点评此题主要考虑怎样选择一元二次方程的解法,使运算达到最简便。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

中考数学专项练习一元二次方程的根(含解析)

中考数学专项练习一元二次方程的根(含解析)

中考数学专项练习一元二次方程的根(含解析)【一】单项选择题1.假设方程x2-c=0的一个根为-3,那么方程的另一个根为〔〕A.3B.-3C.9D.-2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是〔〕A.5,B.11,C.11,﹣D.5,﹣3.1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,那么m的值是〔〕A.1B.-1C.0D.无法确定4.以下一元二次方程有两个相等实数根的是〔〕A.B.C.D.5.x=-1是关于x的方程2x2+ax-a2=0的一个根,那么a为〔〕A.1B.2C.3D.-2或16.关于x的方程x2+m2x﹣2=0的一个根是1,那么m的值是〔〕A.1B.2C.±1D.±27.假设方程x2-5x=0的一个根是a,那么a2-5a+2的值为〔〕A.-2B.0C.2D.48.一元二次方程的两根是,那么这个方程可以是()A.B.C.D.9.假设n〔〕是关于x的方程的根,那么m+n的值为A.1B.2C.-1D.-210.关于的方程的一个根为,那么的值为〔〕A.B.C.D.11.x=1是一元二次方程x2-2mx+1=0的一个解,那么m的值是〔〕A.1B.0C.0或1D.0或-112.假设x=2是关于一元二次方程﹣x2++a2=0的一个根,那么a的值是〔〕A.1或4B.1或﹣4C.﹣1或﹣4D.﹣1或413.关于x的一元二次方程〔m﹣1〕x2+6x+m2﹣1=0有一个根是0,那么m取值为〔〕A.1B.﹣1C.±1D.014.假设x=3是关于x的方程x2﹣bx﹣3a=0的一个根,那么a+b的值为〔〕A.3B.-3C.9D.-915.一元二次方程ax2+x+c=0,假设4a-2b+c=0,那么它的一个根是〔〕A.-2B.C.-4D.216.以下方程中解为x=0的是〔〕A.2x+3=2x+1 B.5x=3x C.+4=5 x D.x+1=017.假设c〔c≠0〕为关于x的一元二次方程x2+bx+c=0的根,那么c+ b的值为〔〕A.1B.﹣1C.2D.﹣218. =2是关于的方程的一个解,那么2a-1的值是〔〕A.3B.4C.5D.6【二】填空题19.x=1是方程x2+mx+3=0的一个实数根,那么m的值是________.20.假设a是关于方程x2﹣2019x+1=0的一个根,那么a+ =________.21.假设一元二次方程ax2﹣bx﹣2019=0有一根为x=﹣1,那么a+b=__ ______.22.一元二次方程x2+px﹣2=0的一个根为2,那么p的值________【三】计算题23.解方程x2+6x+1=0.24.解方程:2x2+3x﹣5=0.25.解方程组:.26.x=1是一元二次方程〔a﹣2〕x2+〔a2﹣3〕x﹣a+1=0的一个根,求a的值.27.关于x的一元二次方程x2﹣〔k+1〕x﹣6=0的一个根为2,求k的值及另一个根.28.解方程:x2﹣2〔x+4〕=0.【四】解答题29.一元二次方程〔m﹣1〕x2+7mx+m2+3m﹣4=0有一个根为零,求m 的值.30.关于x的方程x2﹣〔k+1〕x﹣6=0的一个根是2,求k的值和方程的另一根.31.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为〝友好方程〞.如果关于x的一元二次方程x2﹣4x+5m=mx+ 5与x2+x+m﹣1=0互为〝友好方程〞,求m的值.【五】综合题32.:x2+3x+1=0.求:〔1〕x+ ;〔2〕x2+ .33.关于x的一元二次方程x2+2〔k﹣1〕x+k2﹣1=0有两个不相等的实数根.〔1〕求实数k的取值范围;〔2〕0可能是方程的一个根吗?假设是,请求出它的另一个根;假设不是,请说明理由.34.如图,抛物线y=x2+x﹣2与x轴交于A,B两点,与y轴交于点C、〔1〕求点A,点B和点C的坐标;〔2〕在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;〔3〕假设点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【一】单项选择题1.假设方程x2-c=0的一个根为-3,那么方程的另一个根为〔〕A.3B.-3C.9D.-【考点】一元二次方程的解【解析】【分析】根据一元二次方程的解的定义,将x=-3代入方程x2-c=0,求得c的值;然后利用直接开平方法求得方程的另一根.【解答】∵方程x2-c=0的一个根为-3,∴x=-3满足方程x2-c=0,∴〔-3)2-c=0,解得,c=9;∴x2=9,∴x=±3,解得,x1=3,x2=-3;故方程的另一根是3;应选A、2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是〔〕A.5,B.11,C.11,﹣D.5,﹣【考点】一元二次方程的解【解析】【解答】解:把x=2代入方程4x2﹣kx+6=0,得4×22﹣2k+6 =0,解得k=11,再把k=11代入原方程,得4x2﹣11x+6=0,解得x=2或,那么k=11,另一个根是x=.应选B、【分析】根据一元二次方程的解的定义,把x=2代入方程得到k的值,再计算另外一个根,即可求解.3.1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,那么m的值是〔〕A.1B.-1C.0D.无法确定【考点】一元二次方程的解【解析】【分析】由题意把x=1代入方程(m-1)x2+x+1=0即可得到关于m的方程,解出即可。

初中数学竞赛:求根公式(附练习题及答案)

初中数学竞赛:求根公式(附练习题及答案)

初中数学竞赛:求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。

【例3】 解关于x 的方程02)1(2=+--a ax x a 。

思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。

【例4】设方程04122=---x x ,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。

思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。

注:一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。

中考数学专题训练一元二次方程的根(含解析)

中考数学专题训练一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C.D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A. 2005B. 2003C. ﹣2005 D. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C.D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F 与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。

初中数学-一元二次方程的整数根

初中数学-一元二次方程的整数根

一元二次方程的整数根阅读与思考解一元二次方程问题时,我们不但需熟练地解方程,准确判断根的个数、符号特征、存在范围,而且要能深入地探讨根的其他性质,这便是大量出现于各级数学竞赛中的一元二次方程的整数根问题。

这类问题因涵盖了整数的性质、一元二次方程的相关理论,融合了丰富的数学思想方法而备受命题者的青睐..解整系数(即系数为整数)一元二次方程的整数根问题的基本方法有:1.直接求解若根可用有理式表示,则求出根,结合整除性求解.2.利用判别式在二次方程有根的前提下,通过判别式确定字母或根的范围,运用枚举讨论、不等分析求解3.运用根与系数的关系由根与系数的关系得到待定字母表示的两根和、积式,从中消去待定字母,再通过因式分解和整数性质求解.4.巧选主元若运用相关方法直接求解困难,可选取字母为主元,结合整除知识求解.例题与求解【例1】 已知关于x 的方程032)1280()8)(4(2=+----x k x k k 的解都是整数,求整数k 的值. 解题思路:用因式分解法可得到根的表达式,因方程类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定k 的值才能全面而准确.【例2】 q p ,为质数且是方程0132=+-m x x 的根,那么q p p q +的值是( )A .22121 B .22123 C .22125 D .22127 解题思路:设法求出q p ,的值,由题设条件自然想到根与系数的关系【例3】 关于y x ,的方程29222=++y xy x 的整数解),(y x 的组数为( )A .2组B .3组C .4组D .无穷多组解题思路:把29222=++y xy x 看作关于x 的二次方程,由x 为整数得出关于x 的二次方程的根的判别式是完全平方数,从而确定y 的取值范围,进而求出x 的值.【例4】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.解题思路:因方程的类型未确定,故应分类讨论. 当0≠r 时,由根与系数的关系得到关于r 的两个不等式,消去r ,先求出两个整数根.【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.解题思路:设前后两个两位数分别为y x ,,99,10≤≥y x ,则y x y x +=+100)(2,即0)()50(222=-+-+y y x y x ,于是将问题转化为求一元二次方程有理根、整数根的问题.【例6】 试求出所有这样的正整数解a ,使得二次方程0)3(4)12(22=-+-+a x a ax 至少有一个整数根.解题思路:本题有两种解法. 由于a 的次数较低,可考虑“反客为主”,以a 为元,以x 为已知数整理成一个关于a 的一元一次方程来解答;或考虑因方程根为整数,故其判别式为平方式.能力训练A 级1.已知方程019992=+-a x x 有两个质数根,则._______=a2.已知一元二次方程012=+-+m mx x (m 是整数)有两个不相等的整数根,则._________=m3.若关于x 的一元二次方程0442=+-x mx 和0544422=--+-m m mx x 的根都是整数,则整数m 的值为__________4.若k 正整数,且一元二次方程0)1(2=+--k px x k 的两个根都是正整数,则)(k p pk k p k+的值等于______________.5.两个质数b a ,恰是x 的整系数方程0212=+-t x x 的两个根,则ba ab +等于( ) A .2213 B .2158 C .492402 D .38365 6.若062=-+mx x 的两个根都是整数,则m 可取值的个数是( )A .2个B .4个C .6个D .以上结论都不对7.方程019972=++px x 恰有两个整数根21,x x ,则)1)(1(21++x x p 的值是( ) A .1 B .1- C .21-D .21 8.若b a ,都是整数,方程020082=-+bx ax 的相异两根都是质数,则b a +3的值为() A .100 B .400 C .700 D .10009.求所有的实数k ,使得方程0)1()1(2=-+++k x k kx 的根都是整数.10.已知关于x 的方程23842=--n nx x 和022)3(22=+-+-n x n x ,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.11.若关于x 的方程0)2()3(22=-+-+a x a ax 至少有一个整数根,求整数a 的值.。

初中数学竞赛辅导讲义:第5讲-一元二次方程的整数整数解(含习题解答)

初中数学竞赛辅导讲义:第5讲-一元二次方程的整数整数解(含习题解答)

第五讲 一元二次方程的整数整数解在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:从求根入手,求出根的有理表达式,利用整除求解;从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=2k ),通过穷举,逼近求解;从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.注:一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关.【例题求解】【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数是的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.思路点拨 由于方程的类型未确定,所以应分类讨论.当0≠r 时,由根与系数关系得到关于r 的两个等式,消去r ,利用因式(数)分解先求出方程两整数根.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性.注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.学历训练1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= .5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根.(山西省竞赛题)6.已知方程015132)83(222=+-+--a a x a a ax (a ≠0)至少有一个整数根,求a 的值.7.求使关于x 的方程01)1(2=-+++k x k kx 的根都是整数的k 值.8.当n 为正整数时,关于x 的方程0763*******=-+-+-n n x nx x 的两根均为质数,试解此方程.9.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,试求满足条件的所有实数k 的值.10.试求所有这样的正整数a ,使得方程0)3(4)12(22=-+-+a x a ax 至少有一个整数解.11.已知p 为质数,使二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值.12.已知方程02=++c bx x 及02=++b cx x 分别各有两个整数根1x 、2x 及1x '、2x ',且1x 2x >0,1x '2x ' >0. (1)求证:1x <0,2x <0,1x '<0,2x '< 0; (2)求证:11+≤≤-b c b ;(3)求b 、c 所有可能的值.13.如果直角三角形的两条直角边都是整数,且是方程0122=+--m x mx 的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.参考答案。

九年级数学尖子生培优竞赛专题辅导第二讲 一元二次方程根的判别式(含答案)

九年级数学尖子生培优竞赛专题辅导第二讲 一元二次方程根的判别式(含答案)

第二讲 一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵道:“师傅给你一件随身法宝——“Δ”,出去闯荡一下吧!”“小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程经见识见识.”守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x 2+2xy +7y 2-10x -18y +19=0,并且问道:“你能说出实数x 、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y 看成已知数,把它整理成关于x 的一元二次方程2x 2+(2y -10)x +(7y 2-18y +19)=0.好哇!因为x 是实数,上面的方程必有实数根,所以Δ≥0,即(2y -10)2-4×2(7y 2-18y +19)≥0,可得(y -1)2≤0,一下子便得到了y =1,再将y =1代人原方程就可得x =2. 小精灵这里用的法宝“Δ”是什么呢?它就是一元二次方程根的判别式.一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根,反过来也成立.知识延伸】例1 已知关于x 的二次方程x ²+p 1x +q 1=0与x 2+p 2x +q 2=0,求证:当p 1p 2=2(q 1+q 2)时,这两个方程中至少有一个方程有实根.证明 设这两个方程的判别式为Δ1,Δ2,则Δ1+Δ2=2212p p +-4(q 1+q 2).∵p 1p 2=2(q 1+q 2),∴Δ1+Δ2=2212p p +-2p 1p 2=(p 1-p 2)2≥0.∴Δ1≥0与Δ2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明Δ1+Δ2≥0;本题还可用反证法来证明,即假设Δ1<0且Δ2<0,则Δ1+Δ2<0,但Δ1+Δ2=(p 1-p 2)2≥0,两者矛盾,从而导出原题结论成立.例2 求函数y =(4-x )+解析 设u =x ,则u >0且y =4+u . ∴(u +x )2=4(x 2+9),即3x 2-2ux +36-u 2=0. ∵x ∈R ,故以上方程有解.∴Δ=(2u )2-4×3×(36-u 2)≥0,即u ≥27. 又u >0,∴u4y x =-+ 的最小值为4+x .好题妙解】佳题新题品味例 已知实数1234,,,a a a a 满足22222124213423()2()0a a a a a a a a a +-+++= ,求证:2213=a a a ⋅ 解析 把已知等式看成关于a 4的方程。

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)设p为质数,且关于x的方程x²+px-1170p=0的一个根为正整数,求p的值;题目如上,很简洁,那么相对的,难度也会很不简单。

首先根据十字相乘法,将-1170p拆分因数,可得-、3、3、10、13、p,那么要求组合而成的两个因数之和还必须=p,那么我们可以看到除了10和p之外,其他三个数的个位都是3,首先可以排除1170×p这种形式,那么就可以确定不含p的一个因数的个位必定为3、9或7,同时p肯定要比1170小,所以我们可以分情况来讨论,先将负号放在一边,那么:①若其中一个因数为3×3=9,那么另一个则为130p,明显不行;②若其中一个因数为3×13=39,那么另一个则为30p,由于p至少得是2,所以无论p取哪个质数,39和30p的差值都不会是p,也不行;③若其中一个因数为3×10=30,那么另一个则为39p,同②也不行;④若其中一个因数为3×3×10=90,那么另一个则为13p,则需要p乘以13后个位数与p相同,那么p的个位数只能是5,而个位是5的质数只有5,当p=5时,也不行;⑤若其中一个因数为3×3×13=117时,那么另一个为10p,这个更没有合适的p;⑥若其中一个因数位10×13=130时,那么另一个为9p,当p=13时,9p=117,130与117的差值刚好为13=p,所以这个合适;所以最终就能得到p=13;这是一个一个情况罗列出来求解,那么能不能不这么麻烦呢?我们重新看一下1170拆分出来的3、3、10、13、p这五个因数,想要组成的两个因数差值等于p,那么也就是说不含p的那个因数里面含有p-1或者p+1这个因数,而其他部分的因数组成完全相同,那么这样一来,我们就可以将这四个已知的因数先分一下组,有两个因数3,那么假设这两个3分别在两个因数中,那么剩余的10、13、p这三个因数怎么也不可能凑出来差值等于p,为什么呢?因为有三个因数,怎么分呢?所以,剩余三个因数肯定是没法分的,那么也就是说两个3要在同一组当中,那么我们可以将两个3看做一个因数9,现在就变成了四个因数9、10、13、p,需要其中有两个因数相同,那么p肯定是9、10、13中的其中一个,那么别忘了,不相同的两个因数差值必须是1,才能凑出p这个差值,那么我们就可以先选出差值是1的两个因数9和10,也就是说,p就只能和剩下的那个13相等了,将p=13放进去,验证一个因数为130,另一个因数为117,130-117=13=p成立,所以p=13符合;老师用的方法和答案上提供的不同,题后答案如下:x²=p(1170-p),因为p是质数,所以x中肯定含有p这个因数,所以设x=np,那么(np)²=p(1170-p),所以n²p=1170-p,变形为n(n+1)p=9×10×13那么p=13;这个方法确实要简单些,不过却不容易想到将x替换为np,一般来说,谁能想到这个?老师提供的第二种方法也包含了部分这个方法中的一些设想,只不过路线不同罢了,所以同一道题方法有很多,有些只是我们还未发现而已,并不代表不存在。

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。

初中数学竞赛精品标准教程及练习45一元二次方程的根

初中数学竞赛精品标准教程及练习45一元二次方程的根

初中数学竞赛精品标准教程及练习45一元二次方程的根一、一元二次方程的定义及基本知识回顾一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数,且a≠0。

求解一元二次方程的根需要运用二次根公式:x=(-b±√(b²-4ac)) / (2a)。

其中,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程无实根,但有两个共轭复根。

二、一元二次方程的解法解一元二次方程主要有以下几种方法:1.因式分解法:当方程为(x-p)(x-q)=0时,利用“互为相反数”的性质,得出方程的解为x=p或x=q。

2.公式法:对于一般的一元二次方程ax²+bx+c=0,带入二次根公式,即可求解方程的根。

3.完全平方公式法:对于形如(x+p)²=q的方程,利用完全平方公式可解出方程。

三、一元二次方程的根与系数的关系对于一元二次方程ax²+bx+c=0,根与系数之间有一定的关系,如下所示:1. 判别式:Δ=b²-4ac判别式Δ可以用来判断一元二次方程的根的情况。

当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根,但有两个共轭复根。

2.根与系数的关系:设方程ax²+bx+c=0的根为x₁和x₂,则有以下关系成立:x₁+x₂=-b/ax₁x₂=c/a四、一元二次方程的应用题1.平方差公式的应用:已知两个数的和与差,求这两个数。

设这两个数为x和y,已知x+y=A,x-y=B,则由平方差公式可得x=(A+B)/2,y=(A-B)/22.求解图形问题:已知一元二次方程的解为一些图形的边长、面积或体积等,利用解二次方程可以求解出图形的相关信息。

3.求解时间问题:已知一些过程中的速度和时间,求解该过程的距离。

一元二次方程竞赛试题(含答案)

一元二次方程竞赛试题(含答案)

凤凰一中2012年秋季数学竞赛辅导资料一元二次方程一、 填空题1、已知:βα,为方程0242=++x x 的两个实根,则=++50143βα 22、已知:x 是一元二次方程0132=-+x x 的实数根,那么代数式)252(6332--+÷--x x xx x 的值为: 313、已知:关于x 的一元二次方程0162=++-k x x 的两个实数根是21,x x ,且,242221=+x x 则k 的值是: 54、设实数s,t 分别满足:,01999,01991922=++=++t t s s 且0≠st ,则t s st 14++的值是: -55、若,0132=+-a a 则1383223+++-a a a a 的值是: 26、已知:实数x,y,z 满足9,52-+==+y xy z y x ,则=++z y x 32 87、已知:,014642222=+-+-++z y x z y x 求=--2012)(z y x 08、已知:关于x 的方程0122=++px x 的两个实数根,一个小于1,另一个大于1,则实数p 的取值范围是: 1-<p二、 选择题:9、已知:三个关于x 的一元二次方程,02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( D ) A.0 B.1 C.2 D.310、已知实数x,y 满足:,3,3242424=+=-y y x x 则444y x+的值为( A ) A.7 B.2131+ C. 2137+ D. 511、已知:,21+=m ,21-=n 且8)763)(147(22=--+-n n a m m ,则a 的值等于( C )A.-5B.5C. -9D. 912、设,31,3122b b a a =+=+且b a ≠,则代数式2211b a +的值为( B ) A.4 B.7 C. 9 D. 1113、已知:m 是方程0120092=+-x x 的一个根,则代数式1112009200822+++-m m m 的值等于( D )A.2016B.2017C. 2018D. 201914、如果a,b 都是质数,且,013,01322=+-=+-m b b m a a 那么b a a b +的值为( C ) A.22123 B. 22123 或2 C. 22125 D. 22125 或215、已知:实数b a ≠,且满足,)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b ,则ba a ab b +的值为( B )A.23B. -23C. -2D. -1316、若1≠ab ,且有09200152=++a a 及0500192=++b b ,则b a 的值是( A ) A. 59 B. 95 C. 52001- D. 92001-三、解答题:17.已知:方程0120012003200222=-⨯-x x 的较大根是r,方程01200220012=+-x x 的较小根为s ,求s-t 的值。

初中培优竞赛含详细解析 第10讲 一元二次方程

初中培优竞赛含详细解析 第10讲 一元二次方程

1. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、根式方程、二元一次方程、选择题)方程x2+y2+22=x+y+2的整数解有 ( )A. 1组 B . 3组 C . 6组 D . 无穷多组分析:由题意知χ+y≧0,方程化简得xy+2x+y=0,x+2y+2=4. 因为χy≦0,所以上式就分成2×2,1×4,两种情况,对应的整数解有3组.答案:B技巧:将方程化简,在进行因式分解,最后根据整数解来进行情况讨论.易错点:容易将题中一些隐含性的条件忽视,从而造成错解.2.(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、等腰梯形计算、勾股定理、一元二次方程、选择题)如果某个等腰梯形的下底与对角线长都是10,梯形的上底与高相等,则上底的长是 ( ) A . 5 2 B .6 2 C .5 D .6+x)2+x2=100,整理得x2+4x−60=0.解得分析:设上底长为x,由勾股定理得(10−x2x1=6,x2=−10(舍去).答案:D .技巧:根据图形用勾股定理.易错点:注意方程两根的取舍.3. (2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、选择题)关于x的一元二次方程4x2+4mx+m2+m−10=0(m为正整数)有整数根时,m的值可以取 ( )A . 1个B . 2个C . 3个D . 4个分析:因为χ=−4m±16(10−m), 要使根为整数,则需对m=1,9,6,10.分别进行讨论.8.当m=1时,对应的χ为1、-2成立;当m=9时,对应的χ为4、由求根公式得χ=−m±10−m2-5成立;当=6时,对应的χ为-4、-2成立;当m=10时,对应的χ为-2.所以m的值有4个. 答案:D技巧:先用求根公式表示出根,再根据题目条件进行讨论.易错点:容易漏掉讨论情况.4.(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)二次多项式x2+2kx−3k2能被x-l整除,k=_______.分析:由题意知该二次多项式对应的关于χ的一元二次方程的根为1,将根代入得到关于k 的一元二次方程,求解即得.详解:方程x2+2kx−3k2=0的一根为1,所以有1+2k−3k2=0.解得:k=1;k=−13⋅技巧:像这种类型的题需要将多项式对应成方程来解.易错点:连续两次对应方程和解得时候要注意,容易出错.5. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)若关于x的一元二次方程x2+2kx+14−k=0有两个实根,则k的取值范_______分析:因为有两实根,所以只需保证Δ≥0.详解:由题意知Δ=4k2−4(14−k)=4k2+4k−1=(2k+1)2−2≥0.解得 |2k+1|≥2.由此得2k+1≥2或2k+1≤− 2.所以k≥2−12,k≤−2+12.技巧:利用根与系数的判别式来处理.易错点:在开根号、去绝对值时要注意.6. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)设x1,x2,x3,⋯,x2007为实数,且满足x1x2x3.⋯⋅x2007=x1−x2x3.⋯⋅x2007=x1x2−x3.⋯⋅x2007=⋯=x1x2x3.⋯⋅x2006−x2007=1,则x2000=_______.分析:易知x2000=1符合.因为x1x2x3.⋯.x2000−1x1x2x3.⋯⋅x2000=1,x1x2.x3⋯⋅x1999−1x1x2x3.⋯.x1999=1,解得x1x2x3....⋅x2000=1±52,x1x2′x3.⋯.x1999=1+52,所以x2000=1或x2000=−3±52⋅答案:1或−3±52⋅技巧:将每一个乘积看成一个整体,然后采用一元二次方程思想来解决.易错点:讨论时易遗漏某种情况.7.(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、解答题)设−a2−2a+1=0,b4−2b2−1=0且1−ab2≠0,求代数式(ab2+b2+1a)2006的值.分析:本题要先观察,发现a、b之间的次数差为2,而且所求为2006次方,所以本题不适合直接去解方程代入.观察发现,条件中的两个方程有相同之处.最后通过根与系数关系求解.详解:因为−a2−2a+1=0,所以(1a )2−2(1a)−1=0.又因为b4−2b2−1=0且1−ab2≠0,所以把1a ,b2看做是方程x2−2x−1=0的两根,由根与系数关系得1a+b2=2,1a⋅b2=−1.所以原式=[(1a+b2)+a1⋅b2]2006=[2+(−1)]2006=12006=1.技巧:通过观察,利用根与系数关系解题 .易错点:公式使用要注意根与系数关系的对应.8. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、应用题、解答题)某种产品按质量分为10个档次,生产最低档次的产品,每件获利润8元;每提高一个档次,每件产品利润增加2元.最低档次的产品每天可生产60件,提高一个档次将减少3件,如果使一天获利润858元,则应生产哪个档次的产品(最低档次为第1档次,档次依次随质量增加而提高)?分析:由题意知,如果设应生产第χ档次的产品,那么由每提升一个档次,减少3件所获的总利润来列方程.详解:设应生产第x档次的产品,由题意得[60−3(x−1)][8+2(x−1)]=858.整理得x2−18x+80=0.解得x1=8,x2=10.答:生产第8档次或第10档次的产品可获利润858元.技巧:找出售出的件数及此时对应的每件的利润.易错点:售出的件数与每件的利润不对应.9. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、应用题、解答题)大数学家欧拉在《代数论》里有一个关于农妇卖鸡蛋的题目:两个农妇一共带了100个鸡蛋上市,两人所带蛋数不同,但卖得的钱数一样,于是,第一个农妇对第二个农妇说:“如果你的鸡蛋换给我,我可以卖得15个铜板.”第二农妇答道:“但是你的鸡蛋换给我,我只能卖203个铜板,”试问两个农妇各有多少鸡蛋?分析:由两个农妇的话,可求她们卖每个鸡蛋的单价,再根据卖的钱数一样来列方程.详解:设第一个农妇有x个鸡蛋,则第二个农妇有100 -x个鸡蛋,根据题意可列方程15x 100−x =20(100−x)3x,即x2+160x−8000=0,所以x=40或x=−200(舍去).答:第一个农妇有40个鸡蛋.第二个农妇有60个鸡蛋. 技巧:找等量列方程.易错点:计算要细致,避免出错.。

初中数学竞赛——根与系数的关系(一)

初中数学竞赛——根与系数的关系(一)

第10讲 根与系数的关系(一)知识总结归纳一元二次方程的根与系数的关系(韦达定理)对于一元二次方程20(0)ax bx c a ++=≠,当0∆≥时,它的两个根12,x x 满足:12b x x a +=-,12cx x a⋅=典型例题一. 基础练习【例1】 已知αβ、是方程20ax bx c ++=的两根,不解方程求下列代数式的值.(1)22αβ+; (2)βααβ+; (3)(1)(1)αβ--; (4)αβ-.【例2】 已知方程2310x x --=的两根为1x 、2x ,求:(1)2212x x +; (2)3312x x +; (3)5512x x +.【例3】 已知m n 、是方程210x ++=的值.【例4】 已知1x 、2x 是方程2214160x x +-=的两个实数根,求2112x x x x +的值.【例5】 设1x 、2x 是方程222(1)20x k x k -+++=的两个不同的实根,且12(1)(1)8x x ++=,求k 的值.【例6】 已知关于x 的一元二次方程2210x mx m -+-=的两个实数根的平方和为23,求m 的值.【例7】 已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实根;(2)若12x x 、是原方程的两根,且12x x -=,求出此方程的两根.二. 综合提高【例8】 m ,n 为25240x x +-=的两个实根,求11m n-的值.【例9】 设1x 、2x 是方程22242320x mx m m -++-=的两个实根,当m 为何值时,2212x x +有最小值,并求出这个最小值.【例10】 已知1x 、2x 为方程220x x m --=的两个根,且1220x x +=,求m 的值.【例11】 已知1x 、2x 是关于x 的一元二次方程22(31)210x a x a +-+-=的两个实数根,使得1212(3)(3)80x x x x --=-成立,求实数a 的所有可能值.【例12】 设1x 、2x 是方程2530x x +-=的两个实根,且21222(63)4x x x a +-+=,求a 的值.【例13】 若关于x 的一元二次方程222310x x m -+-=的两个实数根为1x 、2x ,且12124x x x x +->,求实数m 的取值范围.【例14】 关于x 的一元二次方程22(3)0x m x m ---=.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为1x 、2x ,且122x x =-,求m 的值及方程的根.【例15】 已知1x 、2x 是一元二次方程2(6)20a x ax a -++=的两个实数根.(1)是否存在实数a ,使得11224x x x x -+=+成立?若存在,求出a 的值; (2)求使12(1)(1)x x ++为负整数的整数a 的值.【例16】 设a 、b 是二次方程20x x m -+=的两根,试求代数式333332233()6()a b a b ab a b a b +++++的值.思维飞跃【例17】 已知方程20x ax b +-=的根是a 和c ,方程20x cx d ++=的根是b 和d .其中a 、b 、c 、d 的为不同实数,求a 、b 、c 、d 的值.【例18】 设一元二次方程(1)(2)x x m --=(0m >)的两个实根分别为α、β,且αβ<,求α、β的值.【例19】 如果方程2(1)(2)0x x x m --+=的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是多少?【例20】m 为何值时,方程2(2)(5)0x m x m +-+-=的两实根都大于2?【例21】 设一元二次方程2260x kx k ++-=分别满足下列条件,试求实数k 的取值范围:(1)两根均大于1;(2)一根大于1,另一个根小于1; (3)两根均大于1且小于4.作业1. 已知方程22330x x --=的两根为1x 、2x ,求:(1)2212x x +; (2)3312x x +; (3)5512x x +.2. 关于x 的一元二次方程2210x mx m -+-=的两个实数根是1x 、2x ,且22127x x +=,求212()x x -的值.3. 若1x 、2x 是方程2430x x +-=的两个根,且21222(53)2x x x a +-+=,求a 的值.4. 已知方程22320x px p +--=的两个不相等的实数根1x 、2x 满足232311224()x x x x +=-+,试求p 所有可能的值.5. 已知关于x 的一元二次方程2610x x k -++=的两个实根是1x 、2x ,且221224x x +=,求k 的值.6. 如果关于x 的一元二次方程240x x a ++=的两个不相等的实数根1x 、2x 满足12122250x x x x ---=,求a的值.7.设方程()()0--+=的两根.x c x d xx a x b x---=的两个根为c、d,求方程()()08.已知方程2++=一根大于1,另一根小于1,求m的取值范围.x x m2350。

中考数学专题练习一元二次方程的根(含解析)

中考数学专题练习一元二次方程的根(含解析)

2019中考数学专题练习-一元二次方程的根(含解析)一、单选题1.若方程x2-c=0的一个根为-3,则方程的另一个根为()A. 3B. -3C. 9D. -2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是()A. 5,B. 11,C. 11,﹣D.5,﹣3.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A. 1B. -1C. 0D. 无法确定4.下列一元二次方程有两个相等实数根的是()A.B.C.D.5.已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a为()A. 1B. 2C. 3D. -2或16.已知关于x的方程x2+m2x﹣2=0的一个根是1,则m的值是()A. 1B. 2C. ±1D. ±27.若方程x2-5x=0的一个根是a,则a2-5a+2的值为()A. -2B. 0C. 2D. 48.已知一元二次方程的两根是,则这个方程可以是( )A.B.C.D.9.若n()是关于x的方程的根,则m+n的值为A. 1B. 2C. -1D. -210.关于的方程的一个根为,则的值为()A.B.C.D.11.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A. 1B. 0C. 0或1D. 0或-112.若x=2是关于一元二次方程﹣x2++a2=0的一个根,则a的值是()A. 1或4B. 1或﹣4C. ﹣1或﹣4D. ﹣1或413.关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0有一个根是0,则m取值为()A. 1B. ﹣1C. ±1D. 014.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为()A. 3B. -3C. 9D. -915.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 216.下列方程中解为x=0的是()A. 2x+3=2x+1B. 5x=3xC.+4=5x D. x+1=017.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A. 1B. ﹣1C. 2D. ﹣218.已知=2是关于的方程的一个解,则2a-1的值是()A. 3B. 4C. 5D. 6二、填空题19.已知x=1是方程x2+mx+3=0的一个实数根,则m的值是________.20.若a是关于方程x2﹣2019x+1=0的一个根,则a+ =________.21.若一元二次方程ax2﹣bx﹣2019=0有一根为x=﹣1,则a+b=________.22.一元二次方程x2+px﹣2=0的一个根为2,则p的值________三、计算题23.解方程x2+6x+1=0.24.解方程:2x2+3x﹣5=0.25.解方程组:.26.已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.27.已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根为2,求k的值及另一个根.28.解方程:x2﹣2(x+4)=0.四、解答题29.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.30.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.31.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2﹣4x+5m=mx+5与x2+x+m﹣1=0互为“友好方程”,求m的值.五、综合题32.已知:x2+3x+1=0.求:(1)x+ ;(2)x2+ .33.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.34.如图,抛物线y=x2+x﹣2与x轴交于A,B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.答案解析部分一、单选题1.若方程x2-c=0的一个根为-3,则方程的另一个根为()A. 3B. -3C. 9D. -【答案】A【考点】一元二次方程的解【解析】【分析】根据一元二次方程的解的定义,将x=-3代入方程x2-c=0,求得c的值;然后利用直接开平方法求得方程的另一根.【解答】∵方程x2-c=0的一个根为-3,∴x=-3满足方程x2-c=0,∴(-3)2-c=0,解得,c=9;∴x2=9,∴x=±3,解得,x1=3,x2=-3;故方程的另一根是3;故选A.2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是()A. 5,B. 11,C. 11,﹣D.5,﹣【答案】B【考点】一元二次方程的解【解析】【解答】解:把x=2代入方程4x2﹣kx+6=0,得4×22﹣2k+6=0,解得k=11,再把k=11代入原方程,得4x2﹣11x+6=0,解得x=2或,那么k=11,另一个根是x=.故选B.【分析】根据一元二次方程的解的定义,把x=2代入方程得到k的值,再计算另外一个根,即可求解.3.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A. 1B. -1C. 0D. 无法确定【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=1代入方程(m-1)x2+x+1=0即可得到关于m的方程,解出即可。

初中数学竞赛:一元二次方程

初中数学竞赛:一元二次方程

初中数学竞赛:一元二次方程一元二次方程是中学代数的重要内容之一,是进一步学习其他方程、不等式、函数等的基础,其内容非常丰富,本讲主要介绍一元二次方程的基本解法.方程ax2+bx+c=0(a≠0)称为一元二次方程.一元二次方程的基本解法有开平方法、配方法、公式法和国式分解法.对于方程ax2+bx+c=0(a≠0),△=b2-4ac称为该方程的根的判别式.当△>0时,方程有两个不相等的实数根,即当△=0时,方程有两个相等的实数根,即当△<0时,方程无实数根.分析可以使用公式法直接求解,下面介绍的是采用因式分解法求解.因为所以例2 解关于x的方程:x2-(p2+q2)x+pq(p+q)(p-q)=0.解用十字相乘法分解因式得[x-p(p-q)][x-q(p+q)]=0,所以x1=p(p-q),x2=q(p+q).例3 已知方程(2000x)2-2001×1999x-1=0的较大根为a,方程x2+1998x-1999=0的较小根为β,求α-β的值.解由方程(2000x)2-2001×1999x-1=0得(20002x+1)(x-1)=0,(x+1999)(x-1)=0,故x1=-1999,x2=1,所以β=-1999.所以α-β=1-(-1999)=2000.例4 解方程:(3x-1)(x-1)=(4x+1)(x-1).分析本题容易犯的错误是约去方程两边的(x-1),将方程变为3x-1=4x+1,所以x=-2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.本题正确的解法如下.解 (3x-1)(x-1)-(4x+1)(x-1)=0,(x-1)[(3x-1)-(4x+1)]=0,(x-1)(x+2)=0,所以 x1=1,x2=-2.例5 解方程:x2-3|x|-4=0.分析本题含有绝对值符号,因此求解方程时,要考虑到绝对值的意义.解法1 显然x≠0.当x>0时,x2-3x-4=0,所以x1=4,x2=-1(舍去).当x<0时,x2+3x-4=0,所以x3=-4,x4=1(舍去).所以原方程的根为x1=4,x2=-4.解法2 由于x2=|x|2,所以|x|2-3|x|-4=0,所以 (|x|-4)(|x|+1)=0,所以|x|=4,|x|=-1(舍去).所以 x1=4,x2=-4.例6 已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,求另一个根,并确定a的值.解由方程根的定义知,当x=2时方程成立,所以3×22-(2a-5)×2-3a-1=0,故a=3.原方程为3x2-x-10=0,即(x-2)(3x+5)=0,例7 解关于x的方程:ax2+c=0(a≠0).分析含有字母系数的方程,一般需要对字母的取值范围进行讨论.当c=0时,x1=x2=0;当ac>0(即a,c同号时),方程无实数根.例8 解关于x的方程:(m-1)x2+(2m-1)x+m-3=0.分析讨论m,由于二次项系数含有m,所以首先要分m-1=0与m-1≠0两种情况(不能认为方程一定是一元二次方程);当m-1≠0时,再分△>0,△=0,△<0三种情况讨论.解分类讨论.(1)当m=1时,原方程变为一元一次方程x-2=0,所以x=2.(2)当m≠1时,原方程为一元二次方程.△=(2m-1)2-4(m-1)(m-3)=12m-11.例9 解关于x的方程:a2(x2-x+1)-a(x2-1)=(a2-1)x.解整理方程得(a2-a)x2-(2a2-1)x+(a2+a)=0.(1)当a2-a≠0,即a≠0,1时,原方程为一元二次方程,因式分解后为[ax-(a+1)][(a-1)x-a]=0,(2)当a2-a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2.例10 求k的值,使得两个一元二次方程x2+kx-1=0,x2+x+(k-2)=0有相同的根,并求两个方程的根.解不妨设a是这两个方程相同的根,由方程根的定义有a2+ka-1=0,①a2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即 (k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.例11 若k为正整数,且关于x的方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根,求k的值.解原方程变形、因式分解为(k+1)(k-1)x2-6(3k-1)x+72=0,[(k+1)x-12][(k-1)x-6]=0,即4,7.所以k=2,3使得x1,x2同时为正整数,但当k=3时,x1=x2=3,与题目不符,所以,只有k=2为所求.例12 关于x的一元二次方程x2-5x=m2-1有实根a和β,且|α|+|β|≤6,确定m 的取值范围.解不妨设方程的根α≥β,由求根公式得|α|+|β|=α+β=5<6,符合要求,所以m2≤1.例13 设a,b,c为△ABC的三边,且二次三项式x2+2ax+b2与x2+2cx-b2有一次公因式,证明:△ABC一定是直角三角形.证因为题目中的两个二次三项式有一次公因式,所以二次方程x2+2ax+b2=0与x2+2cx-b2=0必有公共根,设公共根为x0,则两式相加得若x0=0,代入①式得b=0,这与b为△ABC的边不符,所以公共根x0=-(a+c).把x0=-(a +c)代入①式得(a+c)2-2a(a+c)+bg2=0,整理得a2=b2+c2所以△ABC为直角三角形.例14 有若干个大小相同的球,可将它们摆成正方形或正三角形,摆成正三角形时比摆成正方形时每边多两个球,求球的个数.解设小球摆成正三角形时,每边有x个球,则摆成正方形时每边有(x-2)个球.此时正三角形共有球此时正方形共有(x-2)2个球,所以即 x2-9x+8=0,x1=1,x2=8.因为x-2≥1,所以x1=1不符合题意,舍去.所以x=8,此时共有球(x-2)2=36个.练习1.解方程:(2)20x2+253x+800=0;(3)x2+|2x-1|-4=0.2.解下列关于x的方程:(1)abx2-(a4+b4)x+a3b3=0;(2)(2x2-3x-2)a2+(1-x2)b2=ab(1+x2).3.若对任何实数a,关于x的方程x2-2ax-a+2b=0都有实数根,求实数b的取值范围.4.若方程x2+ax+b=0和x2+bx+a=0有一个公共根,求(a+b)2000的值.5.若a,b,c为△ABC的三边,且关于x的方程4x2+4(a2+b2+c2)x+3(a2b2+b2c2+c2a2)=0有两个相等的实数根,试证△ABC是等边三角形.。

初中竞赛数学根与系数的关系及其应用(含答案)

初中竞赛数学根与系数的关系及其应用(含答案)

一元二次方程(三) 根与系数的关系及其应用1.如果)0(02≠=++a c bx ax 的两根为21,x x ,则________,21=+x x .___________21=⋅x x2.如果02=++q px x 的两根为21,x x ,那么________,21=+x x.___________21=⋅x x3.对于一元二次方程02=++n mx x ,如果两根互为相反数,那么m = _____________,如果两根互为倒数,那么n = ___________。

4.以两数21,x x 为根的一元二次方程(二次项系数为1)是______________。

5.若两数和为3,积为-4,则这两个数分别为_____________。

6.1313-和+的根为方程是______________。

7.不解方程,求下列方程两根之和与两根之积:(1),7142x x =+ .____________,__________2121=⋅=+x x x x(2),0132=-x .____________,__________2121=⋅=+x x x x(3),062=-x x .____________,__________2121=⋅=+x x x x(4),0)1(22=-+-m x m x .____________,__________2121=⋅=+x x x x8.设一元二次方程)0(02≠=++a c bx ax 的两根为21,x x ,若0,021>>x x ,则___________;若0,021<<x x ,则______________;若021<x x ,则___________;若021>x x ,则___________;9.设一元二次方程)0(02≠=++a c bx ax 的两根为21,x x ,则|21x x -|=_____________。

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。

当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。

2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。

解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1.一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aacb b 242-±-. (b 2-4ac ≥0)2.根的判别式①实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.②有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3.设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么①ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);②x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0);③韦达定理:x 1+x 2= a b -, x 1x 2=ac(a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1. 二、例题例1.已知:a,b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得a -c=b+1≥45, 4c ≤4a -5 ④②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2.已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a=12-+b b 或b=12-+a a .两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-.解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0. 当x 0=1时,由方程①得 a=1, ∴a -1=0,∴方程①不是二次方程. ∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根 差相等. 求:m+n 的值. 解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42-依题意,得n m 42-=m n 42-. 两边平方得:m 2-4n=n 2-4m. ∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根. 证明:设方程有一个有理数根nm(m, n 是互质的整数). 那么a(n m )2+b(nm)+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论, ∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0. 综上所述不论m, n 取什么整数,方程a(n m )2+b(nm)+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得k abcdb a dc ==++. ∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根. △ =[-(a+b )k ]2-4abk =(a 2+2ab+b 2)k 2-4abk =k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0. 解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12. 由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解. ②根据韦达定理∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解. 三、练习1.写出下列方程的整数解:①5x 2-3x=0的一个整数根是___.②3x 2+(2-3)x -2=0的一个整数根是___.③x2+(5+1)x+5=0的一个整数根是___.2.方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3.已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4.若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0.那么yx11=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5.如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6.若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7.如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8.当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值. 12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m 的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43(C )43<m ≤1 (D )43≤m ≤118. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 525. 9q=2p 26. 一正一负7. D8. a=1,b=-9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a :13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。

相关文档
最新文档