2018中科大数学分析试题

合集下载

【2018最新】中科大笔试试题-范文word版 (8页)

【2018最新】中科大笔试试题-范文word版 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==中科大笔试试题篇一:中科大软院数据库考试题一、给定关系 R(A,B) 和 S(B,C) ,将下面的关系代数表达式转换为相应的SQL语句:π (attribute-list) [ ? (condition) [ R ? S ] ]二、Megatron 747 磁盘具有以下特性: 1)有8个盘面和8192个柱面2)盘面直径为3.5英寸,内圈直径为1.5英寸 3)每磁道平均有256个扇区,每个扇区512字节 4)每个磁道10%被用于间隙 5)磁盘转速为 7200 RPM6)磁头启动到停止需要1ms,每移动500个柱面另加1ms回答下列有关Megatron 747的问题(要求写出式子并且计算出结果,精确到小数点后两位): 1)磁盘容量是多少GB?2)如果一个块是8KB,那么一个块的传输时间是多少ms? 3)平均寻道时间是多少ms? 4)平均旋转等待时间是多少ms?三、下面是一个数据库系统开始运行后的undo/redo日志记录,该数据库系统支持simple checkpoint设日志修改记录的格式为 <Tid, Variable, New value, Old value>,(1)、(2)、(3)为三种故障情形下磁盘日志内容,请分别给出这三种情况下数据库系统的恢复过程以及数据元素A, B, C, D, E, F和G在执行了恢复过程后的值。

四、查询处理器在回答涉及R(A, B)和S(B, C)的查询“Select * From R, S Where R.B=S.B and R.B=10”时,生成了下面的逻辑查询计划:?R.B?10?R???S.B?10?S?,已知有关参数为:? R和S的元组都是定长的,在磁盘块中连续存放? T(R) = 60000,V(R, B) = 12,B(R) = 6000,T(S) =30000, V(S, B) = 5,B(S) = 1000 我们假设: 1)此查询计划中的连接实现时采用散列连接算法(非“混合散列连接”)2)中间结果不写回磁盘3)散列的桶存储在磁盘上4)最终结果存放在内存中5)有足够的内存可以执行散列连接算法请估计此查询计划的I/O代价。

中科大历年考研数学真题

中科大历年考研数学真题

直线 l1, l2 平行,且 π 与 l1 的距离是 91, 求 π 的方程。
3. 设 A : U → V 为数域 F 上的线性空间 U 到 V 上线性映射. 证明:
dim KerA + dim Im A = dim U
2 −1 1 4. 设 A = 2 2 −1 , 求方阵 P , 使得 P −1AP 为 A 的 Jordan 标准形。
··· ···
(α1, αn)
(α2, αn) ...
,
其中 (αi, αj) 是 V 的内积.
(αn, α1) (αn, α2) · · · (αn, αn)
求证:G 正定的充分必要条件是 α1, · · · , αn 线性无关。
5. 设 A 是无限维线性空间 V 的线性变换,B 是 A 在 ImA 上的限制变换. 求证:
.
a2x1 + x2 + x3 = 1
5.
使线性方程组
x1 + ax2 + x3 = a x1 + x2 + x3 =a2
有解的实数 a 的取值范围是
.
6.
已知实方阵 A 的伴随矩阵 A∗
2.
以曲线
y = x2 z=2
为准线,原点为顶点的锥面方程为
.
3. 以 xOy 平面上的权限 f (x, y) = 0 绕 x 轴旋转所得的旋转面的方程是
.如
果曲线方程是 x2 − y2 − 1 = 0, 由此得到的曲面类型是
.
4. 设 α1, α2α3α4 是线性空间 V 中 4 个线性无关的向量,
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对

线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷一一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(5)设矩阵210120001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则||=B __________.解:||=B 19.显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得36=+AB B A (36)-=A E B A 上式取行列式03030||3003=-B故 1||9=B . 方法二:因||3=A ,则*31||||9-==A A将**2=+ABA BA E 移项得 *(2)-=A E BA E 两端取行列式得1||91⋅⋅=B ,故1||9=B .二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A )010100.101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.解:(D )正确. 由题意12=AE B ,其中12010100001⎛⎫⎪= ⎪ ⎪⎝⎭E 为第一种类型初等矩阵,23(1)=BE C ,其中23100(1)011001⎛⎫ ⎪= ⎪ ⎪⎝⎭E 为第三种类型初等矩阵.于是有 1223(1)==AE E C AQ则 1223010100011(1)100011100001001001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭Q E E与所给答案比较,选(D ).(12)设,A B 为满足=AB 0的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关. (D )A 的行向量组线性相关,B 的列向量组线性相关. 解:(A )正确.设A 为m n ⨯矩阵,B 为n p ⨯矩阵,因为 =AB 0故 ()()r r n +≤A B ,其中(),()r r A B 分别表示矩阵,A B 的秩.又因为,A B 皆是非零矩阵,故()0,()0r r >>A B ,所以()r n <A ,()r n <B .因此A 的列秩数,B 的行秩数小于n ,这说明A 的列向量组线性相关,B 的行向量组线性相关,故选(A ).取101000⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB , 由B 的列向量组线性无关知(B )、(D )错误.取101010-⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB ,由A 的行向量组线性无关知(C )错误.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2)()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有11111111222220000aa a a a n n n n a na a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B L L L L L L L L L L. 当0a =时,()1r n =<A ,故方程组有非零解,其同解方程组为120n x x x +++=L , 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数. 当0a ≠时,对矩阵B 作初等行变换,有(1)1111000221002100.001001n n a a n n +⎛⎫++⎛⎫ ⎪⎪⎪-⎪-→→⎪ ⎪⎪ ⎪ ⎪ ⎪-⎪⎝⎭-⎝⎭B L L L L L L L L LL可知(1)2n n a +=-时,()1r n n =-<A ,故方程组也有非零解,其同解方程组为 1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. 解法2 方程组的系数行列式为111112222(1)||.2n aa n n a a nnn n a-+++⎛⎫==+ ⎪⎝⎭+A L L L LL当||0=A ,即0a =或(1)2n n a +=-时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有1111111122220000,0000n n n n ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A L L L L L L L L L L 故方程组的同解方程组为120,n x x x +++=L 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数.当(1)2n n a +=-时,对系数矩阵A 作初等行变换,有 11111111222220000aa a a an n n n a na a ++⎛⎫⎛⎫⎪⎪+-⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A L L LLL L L L L L . 1111000021002100.00101a n n +⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L LL L L L L L L 故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. (21)(本题满分9分)设矩阵12314315a -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解:A 的特征多项式为1232201431431515a aλλλλλλλ-----=-------11010(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根,则有22161830a -++=,解得2a =-.当2a =-时,A 的特征值为2,2,6,矩阵1232123123-⎛⎫⎪-=- ⎪ ⎪--⎝⎭E A 的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得23 a=-.当23a=-时,A的特征值为2,4,4,矩阵32341032113⎛⎫⎪-⎪-= ⎪⎪--⎪⎝⎭E A的秩为2,故4λ=对应的线性我关的特征向量只有一个,从而A不可相似对角化.线性代数期末试卷二一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中的横线上.) (6)同数学(一)一、(5).二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项目前的字母填在题后的括号内.) (13)同数学(一)二、(11). (14)同数学(一)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有111111112222200.33333004444400aa a a a a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B 当0a =时,()14r =<A ,故方程组有非零解,其同解方程组为 12340x x x x +++=.由此得基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当0a ≠时,11111000021002100,3010301040014001a a ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 可知10a =-时,()34r =<A ,故方程组也有非零解,其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为 T(1,2,3,4)=η,于是所求方程组的通解为 k =x η,其中k 为任意常数. 解法2 方程组的系数行列式311112222||(10)33334444aa a a a a++==+++A .当||0=A ,即0a =或10a =-时,方程组有零解. 当0a =时,对系数矩阵A 作初等行变换,有11111111222200003333000044450000⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A , 故方程组的同解方程组为12340.x x x x +++= 其基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当10a =-时,对A 作初等行变换,有911191112822201000337330010*******0010--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭A91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为T(1,2,3,4)=η,于是所求方程组的通解为x k =η,其中k 为任意常数. (23)(本题满分9分) 同数学(一)三、(21).线性代数期末试卷三一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(4)二次型222123122331(,,)()()()f x x x x x x x x x =++-++的秩为_________.解:秩为 2 .222123122331(,,)()()()f x x x x x x x x x =++-++ 222123121323222222x x x x x x x x x =++++-于是二次型f 的表示矩阵为211121112⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A易求得()2r =A ,故二次型f 的秩为2.二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (12)设n 阶矩阵A 与B 等价,则必有 (A )当||(0)a a =≠A 时,||a =B . (B )当||(0)a a =≠A 时,||a =-B . (C )当||0≠A 时,||0=B . (D )当||0=A 时,||0=B . 解:(D )正确.因为n 阶矩阵A 与B 等价,故存在n 阶可逆矩阵,P Q 使 =PAP B故 ||||||||=B P A Q当||0=A 时,自然有||0=B ,故(D )正确.当||0≠A 时,由||,||P Q 皆不为零,故||0≠B ,所以(C )错误.当||0a =≠A 时,||||||a =B P Q ,仅由A 与B 等价,无法推出||||1=±P Q ,故(A )、(B )不正确.当,A B 相似时,(A )才正确.(13)设n 阶矩阵A 的伴随矩阵*≠A 0,若1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,则对应的齐次线性方程组=Ax 0的基础解系.(A )不存在. (B )仅含一个非零解向量. (C )含有两个线性无关的解向量. (D )含有三个线性无关的解向量. 解:(B )正确.因*=A 0,故*A 中至少有一个非零元素. 由于*A 中元素恰为A 的1n -阶代数余子式所组成,故A 至少有一个1n -阶子式非零,这表明()1r n ≥-A .现断言()r n ≠A ,否则A 可逆,则线性方程组=Ax b 有惟一解,这与12,ξξ是非齐次线性方程组=Ax b 不同的解矛盾.由此必有()1r n =-A ,所以齐次线性方程组=Ax 0的解空间维数为(1)1n n --=,即=Ax 0的基础解仅含一个非零解向量. 可见(B )正确,(A )错误.尽管从1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,可以得出=Ax 0有三个不同的非零解,如121314,,,---ξξξξξξ但是它们是成比例的线性相关解,也就是说=Ax 0不会有两个,更不会有三个线性无关的解向量,即(C )、(D )不正确.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题分13分)设T T T 123(1,2,0),(1,2,3),(1,2,2)a a b a b ==+-=---+ααα,T(1,3,3)=-β. 试讨论当,a b为何值时,(I )β不能由123,,ααα线性表示;(II )β可由123,,ααα惟一地线性表示,并求出表示式;(III )β可由123,,ααα线性表示,但表示式不惟一,并求出表示式. 解:设有数123,,k k k ,使得112233k k k ++=αααβ. (*) 记123(,,)=A ααα. 对矩阵()Aβ施以初等行变换,有1111()22230323a b a a b -⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭A β111101000a b a b -⎛⎫ ⎪→- ⎪ ⎪-⎝⎭.(I )当0,a b =为任意常数时,有1111()0010001b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A β.可知()()r r ≠A A β. 故方程组(*)无解,β不能由123,,ααα线性表示.(II )当0a ≠,且a b ≠时()()3r r ==A A β,故方程组(*)有惟一解 123111,,0,k k k a a=-== 则β可由123,,ααα惟一地线性表示,其表示式为1211(1)a a=-+βαα.(III )当0a b =≠时,对()A β施以初等行变换,有110011()011.0000a a ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭A β. 可知()()2r r ==A A β,故方程组(*)有无穷多解,其全部解为123111,(),k k c k c a a=-=+=,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为12311(1)()c c a a=-+++βααα. (21)(本题满分13分)111b b bb b b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A L L M M M L. (I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1-P AP 为对角矩阵. 解:(I )1º当0b ≠时,11||1b b b b bbλλλλ-------=---E A L LM M ML1[1(1)][(1)]n n b b λλ-=-----.故A 的特征值为121(1),1n n b b λλλ=+-===-L .对于11(1)/n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭ξξL L M M M L , 解得T1(1,1,,1)=ξL ,所以全部特征向量为T1(1,1,,1)k k =ξL (k 为任意非零常数).对于21n b λλ===-L ,解齐次线性方程组[(1)]0b --=E A x ,由111000(1)000b b b b b b b b b b ---⎛⎫⎛⎫⎪ ⎪---⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭E A L L LL M M M M M M L L, 解得基础解系T2(1,1,0,,0)=-ξL ,T3(1,0,1,,0)=-ξL ,… …T(1,0,0,,1)n =-ξL .故全部特征向量为2233n n k k k +++ξξξL (2,,n k k L 是不全为零的常数). 2º当0b =时,特征值11n λλ===L ,任意非零列向量均为特征向量. (II )1º当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n =P ξξξL ,则 1diag{1(1),1,,1}.n b b b -=+---P AP L 2º当0b =时,=A E ,对任意可逆矩阵P ,均有 1-=P AP E .注:T1(1,1,,1)=ξL 也可由求解齐次线性方程组1()λ-=E A x 0得出.线性代数期末试卷四一、填空题(本题共6小题,每小4分,满分24分. 把答案填在题中横线上.)(4)设1010100,001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A B P AP ,其中P 为三阶可逆矩阵,则200422-=B A _________. 解:300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 由010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 得2100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,故4=A E ,其中E 是3阶单位阵,所以2004=A E .由1-=B P AP 得200412004-==B P A P E于是 20042210020030022010020030001002001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭BA E A . (5)设33()ij a ⨯=A 是实正交矩阵,且T 111,(1,0,0)a b ==,则线性方程组=Ax b 的解是__________.解:T (1,0,0).在方程=Ax b 两端左乘TAT T =A Ax A b 则 2131T 122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭x A b将 12131a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭x 代回=Ax b 有2131122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由此得22121311a a ++=因A 为实矩阵,故12130a a ==,因此=Ax b 的解为100⎛⎫ ⎪= ⎪ ⎪⎝⎭x .二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(12)同数学(三)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(20)(本题满分13分)设线性方程组1234123412340,220,3(2)(4)41,x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩已知T(1,1,1,1)--是该方程组的一个解. 试求(I )方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II )该方程组满足23x x =的全部解.解:将T (1,11,1)--代入方程组,得λμ=. 对方程组的增广矩阵施以初等变换,得 1102112032441λλλλ⎛⎫ ⎪= ⎪ ⎪++⎝⎭A 102101311.002(21)2121λλλλλλ---⎛⎫ ⎪→ ⎪ ⎪---⎝⎭(I )当12λ≠时,有 1001011010.221100122⎛⎫ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪⎝⎭A 因()()34r r ==<A A ,故方程组有无穷多解,全部解为T T 11(0,,,0)(2,1,1,2)22k =-+--ξ, 其中k 为任意常数.当12λ=时,有 11101220131100000⎛⎫-- ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭A .因()()24r r ==<A A ,故方程组有无穷多解,全部解为T T T 121(,1,0,0)(1,3,1,0)(1,2,0,2)2k k =-+-+--ξ, 其中12,k k 为任意常数.(II )当12λ≠时,由于23x x =,即 1122k k -+=-. 解得12k =,方程组的解为T T T 111(0,,,0)(2,1,1,2)(1,0,0,1)222=-+--=-ξ. 当12λ=时,由于23x x =,即 121132k k k --=. 解得121142k k =-,故全部解为 T T 2111311(,,,0)(,,,2)444222k =-+---ξ, 其中2k 为任意常数.[注]:在题(II )中,12λ=时,解得21122k k =-时,全部解也可以表示为 T T 1(1,0,0,1)(3,1,1,4)k =-+-ξ,其中1k 为任意常数.(21)(本题满分13分)设三阶实对称矩阵A 的秩为122,6λλ==是A 的二重特征值. 若T T T 123(1,1,0),(2,1,1),(1,2,3)===--ααα都是A 的属于特征值6的特征向量. (I )求A 的另一特征值和对应的特征向量;(II )求矩阵A .解:(I )因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个. 由题设可得123,,ααα的一个极大无关组为12,αα,故12,αα为A 的属于特征值6的线性无关的特征向量.由()2r =A 可知,||0=A ,所以A 的另一特征值30λ=. 设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T T120,0==αααα,即 121230,20.x x x x x +=⎧⎨++=⎩ 解得此方程组的基础解系为T (1,1,1)=-α,即A 的属于特征值30λ=的特征向量为T (1,1,1)c c =-α,(c 为不为零的任意常数).(II )令矩阵123(,,)=P ααα,则1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭A P P .又1011112333111333-⎛⎫ ⎪- ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭P , 故422242.224⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A。

40、中国科学技术大学2019-2020学年第一学期数学分析(B1)期中考试(9页 文字版)

40、中国科学技术大学2019-2020学年第一学期数学分析(B1)期中考试(9页 文字版)

3.
设 f (x) 在 x0 处二阶可导,
且 f (x0)
0,

lim
x x0
f
(x
)
1
f
(x0
)
(x
x
1 0 )f
(x
0
)
.
解(1) 由带 Peano 余项的 Taylor 定理,
f (x)
f (x0)
f (x0)(x
x0)
f (x0)(x 2
x0)2
o((x
x0)2) (x
4.
设由参数方程 yx
arctan t ln(1 t2) 确定 y 是 x 的函数,
求 dy , d2y dx dx 2
.
解 由题意得,
dx 1 , dy 2t dt 1 t2 dt 1 t2

dy dy dt 2t (1 t2) 2t dx dt dx 1 t2
d2y dx 2
②若 {Sn } 有界, 则 {Sn } 收敛, 记为 Sn S (n ) . 则
综上,
lim
n
an
nlim(Sn
Sn1)
S
S
0.
lim
an
0.
n a1 a2 an
错解 直接用夹逼定理, 写出诸如 inf an 0 的式子, 这显然是错误的( inf an 0 ).
2. 若 lim x 2 3x 2 ax b 0 , 求a,b 的值. x
3.
设 f (x) 在 x0 处二阶可导,
且 f (x0)
0,

lim
x x0
f
(x
)
1
f
(x0

中科大数学分析(B1) 期中考试

中科大数学分析(B1) 期中考试

f (x)
f (0) = 0, f (x) > 0, (x > 0).
1
2
{a2n}
:
:
( x = y,
15 ) f (x)
[0, 1]
0 f (x) 1.
|f (x) − f (y)| < |x − y|.
x, y ∈ [0, 1],
x0 ∈ (0, 1]
f (x0)
=
. 1−x0 x0
g(x) = 1−xf (x)−x. g(x) [0, 1]
h2(x) = 0, (x 0). f (x)
g (x) = 0, x ∈ (−∞, +∞). 2
g(x) (......... 10 )
2
2
1. lim ln2(n 1) ln2 n ; n
3.
x
lim
1 2
x x
x
;
2. lim 3 n2(3 n 1 3 n) ;
n
4.
x
lim
x
1
1 x
x
e .
三、(本题 16 分, 每小题 4 分) 计算下面的导数:
1.
ln
tan
x 2
;
2.
arcsin
1 1
x x
2 2
;
3. ( 1 x 2 ) ;
4. (xex )(n) .
四、(本题 15 分)
设 a1
1, an1
1 1 ,n an
1, 2, .
求证:
数列 {an } 收敛,
并求其极限.
五、(本题 15 分) 求证: sin x x x 3 , (x 0) . 6
六、(本题 15 分) 设 f (x) 在区间[0,1] 上连续且 0 f (x) 1 . 若对一切 x,y [0,1], x y , 有

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵

a21
a1a2 + 1 · · · a1an + 1

A
=

a2a1 + 1
a22
···
a2an + 1


,
···
··· ··· ···


ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.

中国科学院数学研究院数学分析试题及答案

中国科学院数学研究院数学分析试题及答案

中国科学院数学与系统科学研究院20XX 年硕士研究生招生初试试题参考解答数学分析1、求a,b 使下列函数在x=0处可导:2,1,ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=,得到b=1;又由(0),(0)0f a f +-==,得到a=0.即得。

2、 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 证明: 用反证法。

由0n a >知,1n ∞=∑n 1级数a ,111n ∞=+∑na 均为正项级数。

假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+n a ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a , 从而由正项级数的比较判别法知级数1n ∞=∑n1a 收敛,矛盾,从而得证。

3、 1(1).nx dx ≥-⎰m设m,n 0为整数,求积分x 的值解:1(1),nx dx -⎰m 设I(m,n)=x 则由分部积分法有11111n101I(m,n)=(1-x)(1)|(1)(1)0111m m m n n x x x d x n x dx m m m +++-=----+++⎰⎰(1,1)1nI m n m =+-+, 从而1(,)(1,1)(2,2)112n n n I m n I m n I m n m m m -=+-=+-+++11(,0)12n n I m n m m m n -==++++!1!!()!1(1)!!n m n m n m n m n m ==+++++,即得解。

4 、0().a aa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e 证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有 ()()()11a aat t t aa af t e f t dx dt dt e e -----=-=++⎰⎰⎰xf(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰, 得证。

中国科学技术大学2018年数学分析考研试题及解答

中国科学技术大学2018年数学分析考研试题及解答

证明: ak = o(k2), k → +∞.
2. 设 Φ(x) 为周期为 1 的黎曼函数.
(1) 求 Φ(x) 的连续点和间断点的类型.
(2) 计算积分
1 0
Φ(x)
dx.
3. 已知 Ω 为 R3 中的有界域, ⃗n 为单位向量. 求证: 存在以 ⃗n 为法向量的平面平分 Ω 的体积.
4. 已知 f (x) 为周期等于 2π 的奇函数, 当 x ∈ (0, π) 时, f (x) = −1. 试利用 f 的 Fourier 级数计算
t
2−t
=2
(f ′(x − t))2 + (g′(x + t))2 dx.
t
dF (t) dt = −2
(f ′(2 − 2t))2 + (g′(x))2
−2
(f ′(0))2 + (g′(2t))2
2−t
+2
−2f ′(x − t)f ′′(x − t) + 2g′(x + t)g′′(x + t) dx
7. 已知 Dt = {(x, y) ∈ R2 : (x − t)2 + (y − t)2 ⩽ 1, y ⩾ t} , f (t) = Dt x2 + y2 dx dy, 计算 f ′(0). 8. 已知 u(x) ∈ C[0, 1], u(x) ∈ C2(0, 1), u′′(x) ⩾ 0, 令 v(x) = u(x) + εx2, ε > 0.
t
= −4 (g′(2t))2 − 4 (f ′(2 − 2t))2 ⩽ 0.
计算上述积分时会用到
f ′(x)f ′′(x) dx =
f ′(x) df ′(x)

41、中科院2018数学分析试题-1页 文字版

41、中科院2018数学分析试题-1页 文字版

中国科学院大学
2018年招收攻读硕士学位研究生入学统一考试试题
科目名称:数学分析
考生须知:
1.本试卷满分为150分,全部考试时间总计180分钟;
2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效.
一、(15分)计算极限lim x →∞(sin 1x +cos 1x
)x .二、(15分)计算极限lim x →0(4+e 1x 2+e 4x
+sin x x )三、(15分)判断(并证明)函数f (x,y )=√xy 在点(0,0)处的可微性.四、(15分)求三个实常数a,b,c ,使得下式成立lim x →01tan x −ax ∫x b s 2√1−s 2ds =c.五、(15分)计算不定积分∫1sin 6x +cos 6x
dx.六、(15分)设函数f (x )在[−1,1]上二次连续可微,f (0)=0,证明:
∫1−1f (x )dx ≤M 3,其中M =max x ∈[−1,1] f ′′(x ) 七、(15分)求曲线y =12
x 2上的点,使得曲线在该点处的法线被曲线所截得的线段长度最短.八、(15分)设x >0,证明√
1+x −√x =12√x +θ其中θ=θ(x )>0,并且lim x →0θ(x )=14
.九、(15分)设u n (x )=(−1)n (n 2−n +1
)x (n ≥0),求函数f (x )=∞∑n =0u n (x )的绝对收敛,条件收敛以及发
散的区域.
十、(15分)证明
15<∫10xe x √x 2−x +25dx <2√1133.考试科目:数学分析整理人:匣与桔
QQ :1433918251第1页共1页。

中山大学考研数学分析2018年真题及答案

中山大学考研数学分析2018年真题及答案

中山大学2018年数学分析真题题目一、解答下面各题(每小题9分,共54分) 1. 求极限:lim x→0(1+tan x )2018x。

2. 若已知函数f(x)的二阶导数存在,f ′(x)≠0且存在x =f −1(y),求(f −1)′′(y)。

3. 求极限:lim n→∞(1n +1n+1+ (1)2n)。

4. 设f (x,y )=xy 2z 3,函数z (x,y )满足 x 2+y 2+z 2=3xyz ,求ðfðx |(1,1,1)。

5. 计算∬(√x +√y)dxdy √x+√y≤1。

6. 计算∮x 2yzdx +(x 2+y 2)dy +(x +y +z)dz C,其中L 为曲面x 2+y 2+z 2=5与曲面z =1+x 2+y 2的交线,从z 轴正向看过去时顺时针方向。

二、(10分)判断级数∑n√n+(−1)n∞的收敛性。

三、(10分)求f (x,y,z )=xyz 在约束条件x 2+y 2+z 2=1与x +y +z =0下的极值。

四、(10分)证明:∑1n 2+1∞n=1<12+π4。

五、(10分)设f (x )在(−∞,+∞)上连续,且lim x→−∞f(x)与lim x→+∞f(x)存在,证明f (x )在(−∞,+∞)上一致连续。

六、(20分)f (x )在(x 0−1,x 0+1)上连续,在(x 0−1,x 0)∪(x 0,x 0+1)上可导,且lim x→x 0f ′(x)=a 。

证明:f ′(x 0)存在,且f ′(x 0)=a 。

七、(10分)求级数∑(1+12+···+1n )x n 的收敛域。

八、(10分)求f (x )=e x +e −x +2cos x 的极值。

九、(10分)判断f (x )=xsinx 14在[0,+∞)上的一致连续性。

十、(10分)讨论∑x n nlnn ∞n=2在[0,1)上的一致收敛性。

中国科学技术大学考试试卷集(四)

中国科学技术大学考试试卷集(四)
ቤተ መጻሕፍቲ ባይዱ
equation has at least one complex solution.
7
中科大2018年秋季学期 微分流形期中考试
Problem 1 (20 points, 4 points each) Let M be a smooth manifold. Write down the definitions of the following conceptions. (1) What does a smooth function if W M ! R mean? (2) What does a smooth map if W M ! M mean? (3) When we say N is a smooth submanifold of M , what do we mean? (4) When we say X is a smooth vector field on M , what do we mean? (5) A smooth k-dimensional distribution V on M is... (6) A smooth action of a Lie group G on M W G ! Diff.M / is... Problem 2 (20 points, 2 points each) TRUE or FALSE. ( ) If a smooth manifold M is connected, it must be path-connected; ( ) If . ; U; V / is a smooth chart on a smooth manifold M , then W U ! V is a diffeomorphism; ( ) If N is a smooth submanifold of M and S is a smooth submanifold of N , then S is a smooth submanifold of M ; ( ) The set of critical values of any smooth map is of measure zero; ( ) If M1; M2 are smooth submanifold of M , then so is N1 \ M2; ( ) S 2 S 2 cannot be embedded into R5; ( ) Any smooth vector field on RP n is complete; ( ) If f W M ! N is a submersion, then Vp WD ker.dfp/ defines an involutive distribution on M ; ( ) Each smooth manifold admits at most one Lie group structure; ( ) If a Lie group G acts on M smoothly, then any orbit G m is an immersed submanifold of M ; ( ) Let X; Y 2 1.TM / be complete vector fields on M . If the Lie derivative of X along Y is zero, then the Lie derivative of Y along X is also zero.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 设 Φ(x) 为周期为 1 的黎曼函数. (1) 求 Φ(x) 的连续点和间断点的类型; ∫ 1 Φ(x)dx. (2) 计算积分
0
→ → 3. 已知 Ω 为 R3 中的有界域,− n 为单位向量, 求证: 存在以 − n 为法向量的平面平分 Ω 的体积. 4. 已知 f (x) 为周期等于 2π 的奇函数, 当 x ∈ (0, π ) 时,f (x) = −1. 试利用 f 的 F ourier 级数计算
考试科目:数学分析
第1页
共 ?? 页
(2) 当 △u = 0, ∀(x, y ) ∈ B, 证明: (3) 证明:u(0) = 1 2πr ∫
∂Br
d( 1 dr 2πr

∂Br
) u(x, y )dS = 0, ∀r ∈ (0, 1)
u(x, y )dS. ∫
2−t (
10. 已知 u(x, t) 具有二阶连读偏导, 且满足 utt (x, t) = uxx (x, t), 记 F (t) =
t
) 2 u2 t (x, t) + ux (x, t) dx,
dF (t) ≤ 0. 证明: dt
考试科目(x) ∈ C [0, 1], u(x) ∈ C 2 (0, 1), u′′ (x) ≥ 0, 令 v (x) = u(x) + εx2 , ε > 0. (1) 证明:v (x) 为 (0, 1) 上的严格凸函数; (2) 证明:u(x) 的最大值于端点处取得. } { ∂ 2 u ∂u2 9. 已知 Br = (x, y ) ∈ R2 x2 + y 2 ≤ r2 , B = B1 , u(x, y ) ∈ C (B ) ∩ C 2 (B ), △u = + 2 ∂x2 ∂y (1) 当 △u ≥ 0.∀(x, y ) ∈ B, 证明:u(x, y ) 在 B 上的最大值于边界 ∂B 上达到;
∞ ∑
1 ( )2 n=1 2n − 1
( ) 5. 设 φ(x) 为有势场 F (x, y, z ) = x2 − y, y 2 − x, −z 2 下的势函数, 求三重积分 ∫∫∫ φ(x, y, z )dxdydz,

其中Ω为x2 + y 2 + z 2 ≤ 1
6. 已知 f ∈ C 2 [0, 1], f (0) = f (1) = 0, 且 f (x) 在 x0 处取得最小值 −1, (1) 求 f (x) 在 x = x0 处的 Lagrange 余项的 T aylor 展开式; ( ) (2) 证明: 存在 ξ ∈ (0, 1) 使得 f ′′ ξ = 8 } { 7. 已知 Dt = (x, y ) ∈ R2 (x − t)2 + (y − t)2 ≤ 1, y ≥ t , f (t) = ∫ ∫ √ x2 + y 2 dxdy, 计算 f ′ (0)
中国科学技术大学
2018 年硕士学位研究生入学考试试题 数学分析
§ ¤
所有试题答案写在答题纸上,答案写在试卷上无效 ¥ ¦ □需使用计算器 1. (1) 求极限 lim x
x→−∞ arctan x+ π 2

不使用计算器
;
∞ ∑ sin(ak x) k=1
(2) 已知 ak 为正数数列, 且
k2
( ) ≤ tan x .x ∈ (−1, 1) 证明: ak = o k 2 , k → +∞.
相关文档
最新文档