不等式的典型例题解析
不等式解法15种典型例题
![不等式解法15种典型例题](https://img.taocdn.com/s3/m/684256801b37f111f18583d049649b6648d70936.png)
不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。
例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。
对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。
下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。
然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。
∴原不等式解集为{x|-5<x<0}∪{x|x>3}。
2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。
典型例题二解分式不等式时,要注意它的等价变形。
当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。
1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。
2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。
解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。
例7解不等式2ax-a2>1-x(a>0)。
分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。
解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。
不等式解法15种典型例题
![不等式解法15种典型例题](https://img.taocdn.com/s3/m/1339ada05ef7ba0d4a733bfc.png)
不等式解法15种典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f ) 可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--<x x x x 或或 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ① 0)()(0)()(<⋅⇔<x g x f x g x f ; ② ⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于0223223≤+--⇔+≤-x x x x x x 0)2)(2(650)2)(2()2()2(32≤+-++-⇔≤+---+⇔x x x x x x x x x⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(x x x x x x x x x x 用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
经典(超越)不等式(解析版)
![经典(超越)不等式(解析版)](https://img.taocdn.com/s3/m/8cc931fb88eb172ded630b1c59eef8c75ebf9571.png)
经典(超越)不等式一、结论(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0且x ≠1)上述两个经典不等式的原型是来自于泰勒级数:e x=1+x +x 22!+⋯+x n n !+e θx(n +1)!x n +1;ln (1+x )=x -x 22+x 33-⋯+(-1)n x n +1n +1+o (x n +1);截取片段:e x ≥x +1(x ∈R )ln (1+x )≤x (x >-1),当且仅当x =0时,等号成立;进而:ln x ≤x -1(x >0)当且仅当x =1时,等号成立二、典型例题1(2023·陕西咸阳·校考模拟预测)已知a =25,b =e -35,c =ln5-ln4,则()A.a >b >cB.a >c >bC.b >a >cD.b >c >a【答案】C【详解】f (x )=e x -1-xf (x )=e x -1,则x ∈0,+∞ ,f (x )>0,x ∈-∞,0 ,f (x )<0,故函数f (x )在-∞,0 单调递减,0,+∞ 单调递增,则f (x )≥f (0)=0则e x -1-x ≥0,即e x ≥1+x 由e x ≥1+x ,∴e -35>25,故b >a 同理可证ln (1+x )≤x又∵ln (1+x )≤x ,∴ln5-ln4=ln 1+14 <14,则b >a >c 故选:C .【反思】对于指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立,该不等式是可以变形使用的:e x≥x +1(x ∈R )-x 替换xe -x≥-x +1,即1ex ≥1-x 当x <1 e x ≤11-x当x >1e x ≥11-x注意使用时x 的取值范围;同样的还可以如下处理:e x ≥x +1(x ∈R )两边同时取对数:x ≥ln (x +1)(x >-1),同样可以变形使用:x ≥ln (x +1)(x >-1)"x -1"替换"x "x -1≥ln x (x >0)左右两边同乘以“-1”1-x ≤-ln x (x >0);1-x ≤-ln x (x >0)⇔1-x ≤ln 1x(x >0)用“1x ”替换“x ”1-1x ≤ln x ⇔x -1x≤ln x 注意使用时x 的取值范围.另外,选择填空题中,涉及到超越不等式可以直接使用,但是注意,解答题中一定要先证后用.2(2023·全国·高三专题练习)已知函数f (x )=e x -x -1.(1)证明:f (x )≥0;(2)证明:1+121+122⋯1+12n<e .【答案】(1)证明见解析(2)证明见解析【详解】(1)f x =e x -1,令f x >0,得x >0;令f x <0,得x <0,所以f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所f x 的最小值为f 0 =0,所以f (x )≥0.(2)由(1)知,当x ∈(0,+∞)时,f (x )>f (0)=0,即e x -x -1>0,即e x >x +1,即x >ln x +1 ,令x =12n ,得ln 1+12n<12n ,所以ln 1+121+122 ⋅⋅⋅1+12n=ln 1+12 +ln 1+122 +⋯+ln 1+12n<12+122+⋯+12n =121-12n 1-12=1-12n <1,故1+121+122⋅⋅⋅1+12n<e .【反思】注意在解答题中e x ≥1+x ,x ≥1+ln x (x >0)等超越不等式,及其变形式,不能直接使用,需要证明后才可以使用,才可以进一步变形得到有利于解题的不等式.三、针对训练举一反三一、单选题1.(2023春·浙江·高三校联考开学考试)设a =12022,b =tan 12022⋅e 12022,c =sin 12023⋅e 12023,则()A.c <b <aB.c <a <bC.a <c <bD.a <b <c【答案】B【详解】设f x =e x -x +1 ,则f x =e x -1,在(0,+∞)时,f (x )>0,在(-∞,0)时,f (x )<0,所以f (x )min =f (0)=0,即e x -x +1 ≥0,所以e x ≥x +1对任意x ∈R 均成立.取x =12022,有e12022>12022+1=20232022,所以12023e 12022>12022.再取x =-12023,可得e -12023>1-12023=20222023,两边取倒数,即e 12023<20232022,所以12023e 12023<12022,又当x ∈0,π2时,设F (x )=x -sin x ,G (x )=tan x -x ,则F(x )=1-cos x >0,G(x )=sin x cos x -1=1-cos 2x cos 2x =sin 2x cos 2x >0,即F (x )和G (x )在0,π2 均递增,所以F (x )>F (0)=0,G (x )>G (0)=0,即x ∈0,π2时,sin x <x <tan x ,所以sin12023⋅e 12023<12023e 12023<12022<12023e 12022<tan 12023⋅e 12022,由tan x 在x ∈0,π2 单调递增,可得tan 12023⋅e 12022<tan 12022⋅e 12022,即c <a <b .故选:B2.(2023秋·江苏苏州·高三常熟中学校考期末)a =e 0.2,b =log 78,c =log 67,则()A.a >b >cB.b >a >cC.a >c >bD.c >a >b【答案】C 【详解】令f (x )=ln (x +1)ln x(x >0)则f (x )=x ln x -(x +1)ln (x +1)x (x +1)ln 2x,显然f (x )<0即f (x )单调递减,所以ln7ln6>ln8ln7,即log 67>log 78,c >b .令g (x )=e x -x -1(x ≥0)则g (x )=e x -1≥0,即g (x )在[0,+∞)上单调递增所以g (x )≥g (0)=0,即e x ≥x +1,所以e 0.2>0.2+1=65令h (x )=x 6-ln xln6则h (x )=16-1x ln6当h (x )>0时,x >6ln6,即h (x )在6ln6,+∞ 上单调递增又h (6)=0,所以当x >6时,h (x )>h (6)=0所以h (7)>h (6)=0,即76-ln7ln6>0即log 67<76,又76<65,所以log 67<76<65<e 0.2,即c <a .综上:a >c >b .故选:C.3.(2023·云南曲靖·统考一模)已知a=e-2,b=1-ln2,c=e e-e2,则()A.c>b>aB.a>b>cC.a>c>bD.c>a>b【答案】D【详解】令f(x)=x-1-ln x,x>0,则f(e)=e-1-ln e=e-2=a,f(2)=2-1-ln2=1-ln2=b,∵f (x)=1-1x =x-1x,∴当x>1时,f (x)>0,f(x)单调递增,∴f(e)>f(2),即a>b,令g(x)=e x-x,则g (x)=e x-1,∴当x>0时,g (x)>0,g(x)单调递增,∴g(e)>g(2),即e e-e>e2-2,所以e e-e2>e-2,即c>a.综上,c>a>b.故选:D.4.(2023·全国·高三专题练习)已知a=e sin1-1,b=sin1,c=cos1,则()A.a<c<bB.a<b<cC.c<b<aD.c<a<b【答案】C【详解】解:当x∈π4,5π4,sin x>cos x,又1∈π4,5π4,所以sin1>cos1,故b>c记f x =e x-x-1,所以f x =e x-1,令f x <0,得x<0,令f x >0,得x>0,所以f x 在-∞,0单调递减,在0,+∞单调递增.所以f x ≥f0 =0,即e x-x-1≥0,当x=0时取等号.所以a=e sin1-1>sin1-1+1=sin1=b,所以c<b<a.故选:C.5.(2023·全国·高三专题练习)已知a>b+1>1则下列不等式一定成立的是()A.b-a>b B.a+1a>b+1bC.b+1a-1<e bln aD.a+ln b<b+ln a【答案】C【详解】取a=10,b=8,则b-a<b,故A选项错误;取a=3,b=13,a+1a=b+1b,则B选项错误;取a=3,b=1,则a+ln b=3,b+ln a=1+ln3<1+ln e2=3,即a+ln b>b+ln a,故D选项错误;关于C选项,先证明一个不等式:e x≥x+1,令y=e x-x-1,y =e x-1,于是x>0时y >0,y递增;x<0时y <0,y递减;所以x=0时,y有极小值,也是最小值e0-0-1=0,于是y=e x-x-1≥0,当且仅当x=0取得等号,由e x≥x+1,当x>-1时,同时取对数可得,x≥ln(x+1),再用x-1替换x,得到x-1≥ln x,当且仅当x=1取得等号,由于a>b+1>1,得到e b>b+1,ln a<a-1,∴a-1ln a>1>b+1e b,即b+1a-1<e bln a,C选项正确.故选:C.6.(2023·全国·高三专题练习)已知实数a,b,c满足ac=b2,且a+b+c=ln a+b,则()A.c<a<bB.c<b<aC.a<c<bD.b<c<a【答案】A【详解】设f x =ln x-x+1,则f x =1x-1=1-xx,当x∈0,1时,f x >0,f x 单调递增,当x∈1,+∞时,f x <0,f x 单调递减,∴f x ≤f1 =0,即ln x≤x-1,所以ln a+b≤a+b-1,所以a+b+c≤a+b-1,即c≤-1,又ac=b2>0,所以a<0,由a+b>0,所以b>-a>0,所以b2>a2,即ac>a2,所以c<a,所以c<a<b.故选:A.7.(2023·全国·高三专题练习)若正实数a,b满足ln a+ln b2≥2a+b22-2,则()A.a+2b=2+14B.a-2b=12-22 C.a>b2 D.b2-4a<0【答案】B到各不等式取等号的条件,解得a,b的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:x-1≥ln x恒成立,且当且仅当x=1时取等号.设f x =x-1-ln x,则f x =1-1 x ,在(0,1)上,f x <0,f x 单调递减;在(1,+∞)上,f x >0,f x 单调递增.故f x min=f1 =1-1-0=0,∴f x =x-1≥ln x恒成立,且当且仅当x=1时取等号.由2a+b22-2≥22a×b22-2=2ab2-1≥2ln ab2=ln a+ln b2,由已知ln a+ln b2≤2a+b22-2,∴ln a+ln b2=2a+b22-2,且2a=b22ab2=1,解得a=12b=2 ,经检验只有B正确,故选:B.8.(2023·四川南充·四川省南充高级中学校考模拟预测)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.二、填空题9.(2022春·广东佛山·高二佛山市顺德区容山中学校考期中)已知对任意x,都有xe2x-ax-x≥1+ln x,则实数a的取值范围是.【答案】(-∞,1]【详解】根据题意可知,x>0,由x⋅e2x-ax-x≥1+ln x,可得a≤e2x-ln x+1x-1x>0恒成立,令f x =e2x-ln x+1x-1,则a≤f x min,现证明e x≥x+1恒成立,设g x =e x-x-1,g x =e x-1,当g x =0时,解得:x=0,当x<0时,g x <0,g x 单调递减,当x>0时,g x <0,g x 单调递增,故x=0时,函数g x 取得最小值,g0 =0,所以g x ≥g0 =0,即e x-x-1≥0⇔e x≥x+1恒成立,f x =e2x-ln x+1x -1=x⋅e2x-ln x-1x-1,=e ln x+2x-ln x-1x -1≥ln x+2x+1-ln x-1x-1=1,所以f x min=1,即a≤1.所以实数a的取值范围是-∞,1.故答案为:-∞,1三、解答题10.(2023·全国·高三专题练习)已知函数f x =e x-a.(1)若函数f(x)的图象与直线y=x-1相切,求a的值;(2)若a≤2,证明f(x)>ln x.【答案】(1)a=2(2)证明见解析(1)解:f(x)=ex-a,∴f′(x)=ex,令f′(x)=1,得x=0,而当x=0时,y=-1,即f(0)=-1,所以f0 =e0-a=-1,解得a=2.(2)证明 ∵a≤2,∴f(x)=ex-a≥ex-2,令φ(x)=ex-x-1,则φ′(x)=ex-1,令φ′(x)=0⇒x=0,∴当x∈(0,+∞)时,φ′(x)>0;当x∈(-∞,0)时,φ′(x)<0,∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(x)min=φ(0)=0,即φ(x)≥0,即ex≥x+1,∴ex-2≥x-1,当且仅当x=0时等号成立,令h(x)=ln x-x+1,则h′x =1x-1=1-xx,令h′(x)=0⇒x=1,∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=0,即h x ≤h1 =0,即ln x≤x-1,∴ln x≤x-1,当且仅当x=1时等号成立,∴ex-2≥x-1≥ln x,两等号不能同时成立,∴ex-2>ln x,即证f(x)>ln x.。
高三数学不等式的证明·典型例题
![高三数学不等式的证明·典型例题](https://img.taocdn.com/s3/m/91823231a8114431b90dd8bf.png)
不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*)∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1 ∴|x|2≥b.。
专题07 经典超越不等式
![专题07 经典超越不等式](https://img.taocdn.com/s3/m/0c12592478563c1ec5da50e2524de518964bd389.png)
专题07 经典超越不等式一、结论(1)对数形式:1ln (0)x x x ≥+>,当且仅当1x =时,等号成立. (2)指数形式:1()xe x x R ≥+∈,当且仅当0x =时,等号成立.进一步可得到一组不等式链:11ln xe x x x >+>>+(0x >且1x ≠) 上述两个经典不等式的原型是来自于泰勒级数:2112!!(1)!n xxn x x e e x x n n θ+=++++++;2311ln(1)(1)()231n n n x x x x x o x n +++=−+−+−++; 截取片段:1()x e x x R ≥+∈ln(1)(1)x x x +≤>−,当且仅当0x =时,等号成立; 进而:ln 1(0)x x x ≤−>当且仅当1x =时,等号成立二、典型例题1.(2022·江苏苏州·高三期末)已知11a b >+> 则下列不等式一定成立的是( ) A .b a b ->B .11a b a b+>+ C .1e 1ln bb a a+<− D .ln ln a b b a +<+【答案】C 【解析】取10,8a b ==,则b a b -<,故A 选项错误;取3a =,13b =,11a b a b+=+,则B 选项错误;取3a =,1b =,则ln 3a b +=,2ln 1ln31ln 3b a e +=+<+=,即ln ln a b b a +>+, 故D 选项错误;关于C 选项,先证明一个不等式:e 1x x ≥+,令e1xy x =−−,e 1x y '=−,于是0x >时0y '>,y 递增;0x <时0y '<,y 递减; 所以0x =时,y 有极小值,也是最小值0e 010−−=, 于是e 10x y x =−−≥,当且仅当0x =取得等号,由e 1x x ≥+,当1x >−时,同时取对数可得,ln(1)x x ≥+, 再用1x −替换x ,得到1ln x x −≥,当且仅当1x =取得等号,由于11a b >+>,得到e 1bb >+,ln 1a a <−,111ln e b a b a -+\>>,即1e 1ln bb a a+<−, C 选项正确. 故选:C.【反思】对于指数形式:1()xe x x R ≥+∈,当且仅当0x =时,等号成立,该不等式是可以变形使用的:111111()1,111x xx x x xx x x e x e x x R e x x e e x <−−>⎧⎯⎯⎯→≤⎪⎪−≥+∈⎯⎯⎯→≥−+≥−⎨⎪⎯⎯⎯→≥⎪−⎩当替换当即注意使用时x 的取值范围;同样的还可以如下处理:1()x e x x R ≥+∈两边同时取对数:ln(1)(1)x x x ≥+>−,同样可以变形使用:"1"""ln(1)(1)1ln (0)1ln (0)x x x x x x x x x x x −≥+>−⎯⎯⎯⎯⎯→−≥>⎯⎯⎯⎯⎯⎯⎯→−≤−>替换左右两边同乘以“-1?;11111ln (0)1ln (0)1ln ln x xx x x x x x x x x x x−−≤−>⇔−≤>⎯⎯⎯⎯⎯⎯→−≤⇔≤用“”替换“”注意使用时x 的取值范围.2.(2021·安徽·高三阶段练习(文))已知函数()()1xf x e ax a R =−−∈.(1)若对0x ∀>,都有()0f x >,求实数a 的取值范围;(2)若a 、0b >,且1a b +=,求证:对任意0x ≥,都有:()()11xe ax bx ≥++.【答案】(1)1a ≤(2)证明见解析 【解析】(1)由0x >时:()10xf x e ax =−−>又:()xf x e a '=−,①若1a ≤时,由0x >,故e 1x >,所以对任意0x >,都有:()0xf x e a '=−>此时函数()g x 在()0,∞+上单调递增,故对任意0x >,都有:()()100xf x e ax f =−−>=满足条件.②若1a >时,由0x >,故:()0ln xf x e a x a '=−=⇒=故可得:故函数f x 在0,ln a 上单调递减,在ln ,a +∞上单调递增,故:()()ln 00f a f <=不满足条件0x ∀>,都有()0f x >, 综上,实数a 的取值范围为1a ≤.(2)由(1)可知,当1a =时,对任意0x ≥,都有:()10xf x e x =−−≥,故对任意0x ≥,都有:1x e x ≥+,又a 、0b >,故对任意0x ≥,都有:10ax e ax ≥+>,10bx e bx ≥+>又1a b +=,故:()()()11a b xax bx ax bxx e e ee e ax bx ++⋅===≥++故对任意0x ≥,都有:()()11xe ax bx ≥++.【反思】注意在解答题中1x e x ≥+不能直接使用,需要证明后才可以使用,才可以进一步变形得到有利于解题的不等式.三、针对训练 举一反三一、单选题1.(2022·广东韶关·一模)已知sin11e ,sin1,cos1a b c −===,则( ) A .a c b << B .a b c << C .c b a <<D .c a b <<2.(2022·山西运城·(理))已知命题p :0x ∃>,ln 1x x >−;命题q :R x ∀∈,||e 1x ≥则下列命题中为真命题的是( ) A .p q ⌝∧B .p q ∧C .p q ∧⌝D .()p q ⌝∨3.(2021·广东肇庆·)下列不等式中,不恒成立的是( ) A .23()x e x x R +≥+∈ B .()21ln 11()()x x x +>+>−C .()1ln )2(2x x x +≤+>−D .1si )n 8(xe x x R ≥+∈4.(2021·安徽·东至县第二中学(理))下列不等式正确的个数有( )个. ①1x e x ≥+;②1ln x x −≥;③1(1),()x x x x x e +>+> A .0B .1C .2D .35.(2020·黑龙江哈尔滨·(理))下列四个命题中的假命题为( ) A .x R ∀∈,1x e x ≥+ B .x R ∀∈,1x e x −≥−+ C .00x ∃>,00ln 1x x >−D .00x ∃>,001ln1x x >− 6.(2019·湖北·(文))下列不等式中正确的是①sin ,(0,)x x x <∈+∞;②1,x e x x R ≥+∈;③ln ,(0)x x x <∈+∞,. A .①③ B .①②③ C .② D .①②7.(2020·全国·(理))已知命题p :0x ∀>,1x e x >+,命题q :(0,)x ∃∈+∞,ln x x ≥,则下列命题正确的是 A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝8.(2021·安徽·毛坦厂中学高三阶段练习(理))设ln1.01a =, 1.0130b e=,1101c =,(其中自然对数的底数 2.71828e =)则( )A .a b c <<B .a c b <<C .c b a <<D .c a b <<9.(2022·全国·高三专题练习)若正实数a ,b 满足22ln ln 222+≥+−ba b a ,则( )A .124+=a b B .122−=−a b C .2a b > D .240b a −<二、填空题10.(2020·广东·高三阶段练习)已知函数()ln f x x =的反函数为()g x ,若实数m 、n 满足()()2f m g n m n −≥−−,则m n += ____.11.(2020·北京·中关村中学)已知函数()1x f x e ax =−−,()ln 1g x x ax =−−,其中01a <<,e 为自然对数的底数,若0(0,)x ∃∈+∞,使()()000f x g x >,则实数a 的取值范围是___________. 三、解答题12.(2022·浙江·高三专题练习)证明以下不等式: (1)1x e x ≥+; (2)ln 1≤−x x ; (3)1ln(1)x e x −>+.13.(2022·全国·高三专题练习)已知()()()1ln 1f x x x =++. (1)求函数()f x 的单调区间; (2)设函数()()221g x x f x x =−+,若关于x 的方程()g x a =有解,求实数a 的最小值; (3)证明不等式:()()*111ln 1123n n N n+<++++∈.。
第14讲 基本不等式 (解析版)
![第14讲 基本不等式 (解析版)](https://img.taocdn.com/s3/m/f0ba8c49284ac850ac024260.png)
【高中新知识预习篇】第14讲 基本不等式解析版一、基本知识及其典型例题知识点一 基本不等式1.基本不等式的概念:当a ,b > 0,ab ≤a +b2,当且仅当a =b 时,等号成立. 2.基本不等式的意义:一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数. 两个正数的算术平均数不小于它们的几何平均数,即ab ≤ a +b2. 3.基本不等式的常见推论 :(1) (重要不等式) ∀a ,b ∀R ,有a 2+b 2 ≥ 2ab ,当且仅当a =b 时,等号成立.(2) ab ≤ 2)2(b a +≤ a 2+b 22 (R b a ∈、);(3) b a +ab≥ 2 (a ,b 同号);(4)a 2+b 2+c 2 ≥ ab +bc +ca (R c b a ∈、、). 4.利用基本不等式证明不等式(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2) 注意事项:∀多次使用基本不等式时,要注意等号能否成立;∀累加法是不等式证明中的一种常用方法,证明不等式时注意使用;∀对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例1】证明不等式: a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【证明】∀化简得:2)2(b a ab +≤.0)(,0224,422222222≥-≥+-++≤++≤b a b ab a b ab a ab b ab a ab 即,即即.时取等号当且仅)2(0)(2b a b a ab b a =+≤∴≥-当恒成立,恒成立, ∀)(22,2422)2(22222222222b a b ab a b a b ab a b a b a +≤+++≤+++≤+即化简得:.0)(,02222≥-≥+-b a b ab a 即即.2)2(222时等式成立恒成立,当且仅当同理,b a b a b a =+≤+综上, a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【变式1】已知x ,y 都是正数. 求证:(1)y x +xy ≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3;(3)已知a ,b ,c 为任意的实数,求证:a 2+b 2+c 2≥ab +bc +ca . 【证明】 (1)∀x ,y 都是正数,∀x y > 0,yx > 0,∀y x +xy≥ 2y x ·x y = 2, 即 y x +xy≥ 2, 当且仅当x =y 时,等号成立.(2)∀x ,y 都是正数,∀x +y ≥ 2xy > 0, x 2+y 2 ≥ 2x 2y 2 > 0,x 3+y 3 ≥ 2x 3y 3 > 0.∀(x +y )(x 2+y 2)(x 3+y 3) ≥ 2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即 (x +y )(x 2+y 2)(x 3+y 3) ≥ 8x 3y 3,当且仅当x =y 时,等号成立. (3)∀a 2+b 2≥2ab ;b 2+c 2≥2bc ;c 2+a 2≥2ca , ∀2(a 2+b 2+c 2)≥2(ab +bc +ca ), 即a 2+b 2+c 2≥ab +bc +ca , 当且仅当a =b =c 时,等号成立..1.a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式.“当且仅当…时,取等号”这句话的含义是:当a =b 时,a +b2=ab ;当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.【例2】(多选题)设a >0,b >0,下列不等式中恒成立的有( ) A.a 2+1>a B.4)1)(1(≥++bb a a C.4)11)((≥++ba b a D.a 2+9>6a .【解析】由于a 2+1-a =2)21(-a +34>0,故A 恒成立;由于a +1a ≥2,b +1b≥2,∀4)1)(1(≥++bb a a ,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故4)11)((≥++ba b a ,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立. 综上,恒成立的是ABC.【变式2】下列各式中,对任何实数x 都成立的一个式子是( ). A.x y +≥B .21x x +>2C .2111x ≤+ D .12x x+≥ 【答案】C【分析】取特殊值可得a,b,D 不恒成立,由211x +≥可得C 对应的不等式2111x ≤+恒成立,得解. 【解析】对于A ,当0x <时,根式无意义,故A 不恒成立; 对于B ,当1x =时,212x x +=,故B 不恒成立; 对于C ,211x +≥,所以2111x ≤+成立,故C 成立; 对于D ,当0x <时,12x x+<,故D 恒不成立, 即对任何实数x 都成立的一个式子是2111x ≤+ 【例3】已知,,若,证明:。
解不等式例题50道
![解不等式例题50道](https://img.taocdn.com/s3/m/d9a6157d492fb4daa58da0116c175f0e7dd1190b.png)
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
初一不等式经典例题
![初一不等式经典例题](https://img.taocdn.com/s3/m/c341496a1eb91a37f1115c0c.png)
初中不等式经典例题例1 解方程组(1)⎪⎩⎪⎨⎧=-+==(2) 5434(1)432z y x z y x (2)⎪⎩⎪⎨⎧=++=++=++(3) 201633(2)143163(1) 103316z y x z y x z y x 分析:第一个方程组的(1)式是一个连比式,对于连比式常用连比设k 法来解决。
第二个方程组的各式系数较大,直接用代入消元或加减消元比较繁,观察这个方程组的特点,将三式相加可得x+y+z ,然后再用三式去分别减可得x 、y 、z 的值。
解:(1)设k z k y k x k zy x 4,3,2432======,则,代入(2)得k=5∴x=10,y=15,z=20 ∴原方程组的解为⎪⎩⎪⎨⎧===201510z y x(2) (1)+(2)+(3)得22 (x+y+z)=44,所以x+y+z=2 所以3 (x+y+z)=6 (4)(1)-(4)得13x=4,则x=134 (2)-(4)得13y=8,则y=138 (3)-(4)得13z=14,则z=1314 所以原方程组的解为⎪⎪⎪⎩⎪⎪⎪⎨⎧===1314138134z y x评注:解方程组时,应对方程组的整体结构进行分析,从整体上把握解题方向。
例2 已知关于x ,y 的二元一次方程 (a-1) x+(a+2) y+5-2a=0,当a 每取一个值时就有一个方程,而这些方程有一个公共解。
你能求出这个公共解,并证明对任何a 值它都能使方程成立吗?分析1:将已知方程按a 整理得(x+y-2)a=x-2y-5,要使这些方程有一个公共解,说明这个解与a 的取值无关,所以只须a 的系数x+y-2=0即可。
解法1:将方程按a 整理得:(x+y-2)a=x-2y-5,∵这个关于a 的方程有无穷多个解,所以有由于x 、y 的值与a 的取值无关,所以对于任何的a 值,方程组有公共解⎩⎨⎧-==13y x分析2:分别取a=1和-2得方程3y+3=0和-3x+9=0,因a 取不同的值,所得方程有一个公共解,所以这个公共解就是方程组⎩⎨⎧=+-=+093033x y 的解。
不等式证明19个典型例题
![不等式证明19个典型例题](https://img.taocdn.com/s3/m/b7e412f2866fb84ae55c8d72.png)
不等式证明19个典型例题典型例题一例1 假设10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时,因为 11,110>+<-<x x所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号.解法2 作差比拟法.因为 )1(log )1(log x x a a +--ax a x lg )1lg(lg )1lg(+--= [])1lg()1lg(lg 1x x a+--= [])1lg()1lg(lg 1x x a+---= 0)1lg(lg 12>--=x a ,所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能到达同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab b a b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a ba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>ab b a ,∴.a b b a b a b a >.说明:此题考察不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小. 典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假设使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高二数学 不等式的证明典型例题分析
![高二数学 不等式的证明典型例题分析](https://img.taocdn.com/s3/m/1f53208ad5d8d15abe23482fb4daa58da0111c0d.png)
不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*) ∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1∴|x|2≥b.。
不等式证明的基本方法 经典例题透析
![不等式证明的基本方法 经典例题透析](https://img.taocdn.com/s3/m/caeaa7c60c22590102029dea.png)
经典例题透析类型一:比较法证明不等式1、用作差比较法证明下列不等式:(1);(2)(a,b均为正数,且a≠b)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式分解。
证明:(1)当且仅当a=b=c时等号成立,(当且仅当a=b=c取等号).(2)∵a>0, b>0, a≠b,∴a+b>0, (a-b)2>0,∴,∴.总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。
举一反三:【变式1】证明下列不等式:(1)a2+b2+2≥2(a+b)(2)a2+b2+c2+3≥2(a+b+c)(3)a2+b2≥ab+a+b-1【答案】(1)(a2+b2+2)-2(a+b)=(a2-2a+1)+(b2-2b+1)=(a-1)2+(b-1)2≥0∴a2+b2+2≥2(a+b)(2)证法同(1)(3)2(a2+b2)-2(ab+a+b-1)=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)=( a-b)2+(a-1)2+(b-1)2≥0 ∴2(a2+b2)≥2(ab+a+b-1),即a2+b2≥ab+a+b-1【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)2【答案】ax2+by2-(ax+by)2=ax2+by2-a2x2-b2y2-2abxy=a(1-a)x2+b(1-b)y2-2abxy=abx2+aby2-2abxy=ab(x-y)2≥0∴ax2+by2≥(ax+by)22、用作商比较法证明下列不等式:(1)(a,b均为正实数,且a≠b)(2)(a,b,c∈,且a,b,c互不相等)证明:(1)∵a3+b3>0, a2b+ab2>0.∴,∵a, b为不等正数,∴,∴∴(2)证明:不妨设a>b>c,则∴所以,总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形判定商式大于1或等于1或小于1结论。
七年级含参不等式典型例题
![七年级含参不等式典型例题](https://img.taocdn.com/s3/m/2d5fb8baa1116c175f0e7cd184254b35eefd1aed.png)
七年级含参不等式典型例题七年级数学课程中,含参不等式是一个重要的知识点。
通过学习含参不等式的典型例题,学生可以掌握解决这类问题的方法和技巧。
下面是一些常见的七年级含参不等式典型例题及其解答。
例题1:求解不等式2x + 3 < 5的解集。
解答:将不等式转化为等价的形式,即2x < 2。
再将不等式两边除以2,得到x < 1。
因此,不等式2x + 3 < 5的解集为x < 1。
例题2:求解不等式3(x + 2) > 4x - 1。
解答:首先,将不等式进行展开化简,得到3x + 6 > 4x - 1。
然后,将不等式两边减去3x,得到6 > x - 1。
再将不等式两边加上1,得到7 > x。
因此,不等式3(x + 2) > 4x - 1的解集为x < 7。
以上两个例题展示了如何解决含参不等式的基本步骤。
在解决含参不等式时,学生需要注意以下几点:1. 首先,根据不等式的形式,决定采用何种方法进行求解。
有时可以直接进行展开化简,有时需要将不等式转化为等价形式。
2. 在进行计算时,需要注意保持不等式的等价性。
即,对不等式两边进行变换时,需要保证变换不影响不等式的解集。
3. 解决含参不等式时,常常需要使用代数运算的性质,如分配律、合并同类项等。
学生需要熟练掌握这些性质,并灵活运用。
综上所述,七年级数学中的含参不等式是一个重要而有趣的知识点。
通过学习和解决典型例题,学生可以提高解决含参不等式问题的能力,同时也能够培养他们的逻辑思维和数学推理能力。
希望同学们在学习过程中能够善于总结经验,不断提高自己的数学水平。
基本不等式典型例题
![基本不等式典型例题](https://img.taocdn.com/s3/m/6c320a8d81eb6294dd88d0d233d4b14e85243e2f.png)
基本不等式典型例题一、利用基本不等式求最值1. 例1:已知x > 0,求y = x+(1)/(x)的最小值。
- 解析:对于基本不等式a + b≥slant2√(ab)(a,b>0,当且仅当a = b时等号成立)。
- 在y=x+(1)/(x)中,a = x,b=(1)/(x),因为x>0,所以(1)/(x)>0。
- 根据基本不等式y=x+(1)/(x)≥slant2√(x×frac{1){x}} = 2。
- 当且仅当x=(1)/(x)(x > 0),即x = 1时等号成立。
所以y的最小值为2。
2. 例2:已知x <0,求y=x+(1)/(x)的最大值。
- 解析:因为x<0,则-x>0。
- 此时y=x+(1)/(x)=-<=ft[(-x)+(1)/(-x)]。
- 对于-x和(1)/(-x),根据基本不等式a + b≥slant2√(ab)(a,b>0),这里a=-x,b = (1)/(-x),则(-x)+(1)/(-x)≥slant2√((-x)×frac{1){-x}}=2。
- 所以y =-<=ft[(-x)+(1)/(-x)]≤slant - 2,当且仅当-x=(1)/(-x),即x=-1时等号成立。
所以y的最大值为-2。
二、基本不等式在实际问题中的应用1. 例3:用篱笆围一个面积为100m^2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短?最短的篱笆是多少?- 解析:设矩形菜园的长为x m,宽为y m,则xy = 100。
- 篱笆的周长C=2(x + y)。
- 根据基本不等式x + y≥slant2√(xy),因为xy = 100,所以x +y≥slant2√(100)=20。
- 则C = 2(x + y)≥slant40。
- 当且仅当x=y时等号成立,由xy = 100且x=y,可得x=y = 10。
不等式经典例题
![不等式经典例题](https://img.taocdn.com/s3/m/687b9270443610661ed9ad51f01dc281e53a56e6.png)
不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。
- 得到2x-5x > - 1 - 3。
2. 合并同类项- 计算得-3x>-4。
3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。
- 所以x <(4)/(3)。
二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。
- 合并同类项得-x>-4。
- 两边同时除以-1,不等式变号,解得x < 4。
2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。
- 合并同类项(3)/(2)x≥1。
- 两边同时乘以(2)/(3),解得x≥(2)/(3)。
3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。
三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。
2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。
- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。
- 所以不等式的解集为x < 1或x>2。
一元一次不等式经典例题
![一元一次不等式经典例题](https://img.taocdn.com/s3/m/7b593bc9690203d8ce2f0066f5335a8102d266af.png)
1. 解不等式:2x - 5 ≤3x + 7
解法:将x的系数移到一边,常数移到另一边,得到-x ≤12,再将不等式两边乘以-1,即可得到x ≥-12,所以解集为[-12, +∞)。
2. 解不等式:3x + 5 > 2x - 3
解法:将x的系数移到一边,常数移到另一边,得到x > -8,所以解集为(-8, +∞)。
3. 解不等式:4x - 7 ≤5x + 3
解法:将x的系数移到一边,常数移到另一边,得到-x ≤10,再将不等式两边乘以-1,即可得到x ≥-10,所以解集为[-10, +∞)。
4. 解不等式:2x + 3 > 5x - 1
解法:将x的系数移到一边,常数移到另一边,得到-3x > -4,再将不等式两边乘以-1并改变不等号的方向,即可得到x < 4/3,所以解集为(-∞, 4/3)。
5. 解不等式:-2x + 5 ≤3x - 7
解法:将x的系数移到一边,常数移到另一边,得到-5x ≤-12,再将不等式两边乘以-1并改变不等号的方向,即可得到x ≥12/5,所以解集为[12/5, +∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的典型例题解析
【例1】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0.
【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况.
解:(1)原不等式可化为
x(2x+5)(x-3)>0
顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分.
(2)原不等式等价于
(x+4)(x+5)2(x-2)3>0
∴原不等式解集为{x|x<-5或-5<x<-4或x>2}.
【说明】用“区间法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可参照(2)的解法转化为不含重根的不等式,也可直接用“区间法”,但注意“奇穿偶不穿”.其法如图(5-2).
【例2】解下列不等式:
变形
解:(1)原不等式等价于
用“区间法”
∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞).
用“区间法”
【例3】解下列不等式:
【分析】无理不等式的基本解法是转化为有理不等式(组)后再求解,但要注意变换的等价性.
解:(1)原不等式等价于
(2)原不等式等价于
∴原不等式解集为{x|x≥5}.
(3)原不等式等价于
【说明】解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.此外,有的还有其他解法,如上例(3).
原不等式化为
t2-2t-3<0(t≥0)解得0≤t<3
【说明】有些题目若用数形结合的方法将更简便.
【例4】解下列不等式:
解:(1)原不等式等价于
令2x=t(t>0),则原不等式可化为
(2)原不等式等价于
∴原不等式解集为(-1,2〕∪〔3,6).
【说明】解对数不等式需注意各真数必为正数.在利用对数性质
价性,否则会出现增解或漏解.
【例5】解不等式|x2-4|<x+2.
【分析】解此题关键是去绝对值符号,而去绝对值符号主要利用
解:原不等式等价于-(x+2)<x2-4<x+2.
故原不等式解集为(1,3).
这是解含绝对值不等式常用方法.
【例6】解下列不等式:
换底公式先化为同底对数.不等式(2)中先解绝对值不等式,再解无理不等式.解:(1)原不等式等价于
log2(2x-1)〔-log2(2x-1)〕>-2
令log2(2x-1)=t,则上述不等式变为t(-1-t)>-2
即 t2+t-2<0.
解之,得 -2<t<1,从而-2<log2(2x-1)<1.
【例7】解不等式log2x2-1(3x2+2x-1)<1.
【分析】题目中未知数出现在底数部分,就必须对底数大于零还是位于零与1之间进行讨论.
解:原不等式等价于
【说明】当时数底数含有字母或未知数时,应对其进行分类讨论.
【例8】解关于x不等式a2x+1<ax+2+ax-2,其中a>0且a≠1.
【分析】题目通过变形可看作是关于ax的二次不等式.对于底数a分a>1或0<a <1两种情况讨论.
解:原不等式等价于
(a x)2-(a2+a-2)a x+1<0
(*)
当a>1时,a2>a-2,于是(*)式得
a-2<a x<a2,即-2<x<2.
当0<a<1时,a-2>a2,于是(*)式得
a2<a x<a-2,即-2<x<2.
综上所述,原不等式解集为(-2,2).
【说明】本题在化成关于ax的二次不等式后,解题关键是利用a2·a-2=1进行因式分解.
【例9】设a>0;a≠1解关于x的不等式x log a x<a3x2.
【分析】这是指数与对数的混合型不等式,可采用“取对数法”.在两边取对数的时候用到对数函数的单调性,因此必须对a进行讨论后再取对数.
解:当a>1时,原不等式两边取对数,得
当0<a<1时,原不等式等价于
①(1)当a>1时,①式等价于
②
(2)当0<a<1时,②等价于
③。