无刷直流电机运行原理与基本控制方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
无刷直流电机的换流模式
T1
t T1
t
T4
t T4
t
T3
t T3
t
T6
t T6
t
T5
t T5
t
T2
t T2
t
0 60 120 180 240 300 360 420
0 60 120 180 240 300 360 420
(1) pwm-on型调制方式 (2)on-pwm型调制方式
a
14
无刷直流电机的换流模式
T2
D4
D6
D2
O
T1、T2同时导通
O
T1、T2同时关断
a
24
双侧调制上桥臂换向过程分析
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
O
T2、T3同时导通
O
T2、T3同时关断
a
25
不同调制方式的转矩脉动对比分析
功率管开通,转矩脉动相同; 功率管关断,单侧调制转矩脉动大于双侧调制转矩脉动; 单侧调制存在相见续流现象,换相时间长; 双侧调制引入直流母线电压到续流回路,产生反电压,换相
HALL状态 101 100 110 010 011 001
导通功率管 T 4 T 4
T6
T6
T2
T2
a
32
无刷直流电机的制动控制
T1
T3
T5
T1
T3
T5
D1
D3
D5
D1
D3
D5
Ud
Ud
T4
T6
T2
D4
D6
D2
T4
T6
T2
D4
D6
D2
O
T4开通时电流流向
O
T4关断时的电流流向
a
33
无刷直流电机的制动控制
a
2
几个术语解释
T3
T5
T1
D1
D3
D5
Ud
Cd A
B
C
T4
T6
T2
D4
D6
D2
ia
ib
ic
ea
eb
ec
o
a
3
+
位置传 感器
-
无刷直流电机的组成
B ’
C
V1
V2
AC ’ B
A ’
V3
无刷直 流电机
无刷直流电机组成部分: 电机本体、位置传感器、 电子开关线路;
电机本体在结构上与永磁 同步电动机相似;
时间短; 单侧调制较双侧调制损耗小。
a
26
无刷直流电机的相电流分析
a
27
无刷直流电机的相电流分析
a
28
无刷直流电机的相电流分析
a
29
无刷直流电机的相电流分析
a
30
无刷直流电机的制动控制
Ld
iL
D1 iD
iQ
Rc
Ud
Q
D
Lc U O RO
ton
toff
T
Cd
升压斩波器原理
Ld d1d2
RO T
主要内容
一、几个术语解释(极对数、相数、电角度、电角频率、
相电压、线电压、反电动势)
二、无刷直流电机的运行原理
(运行原理、数学模型)
三、无刷直流电机的基本控制方法
(各参数相互关系、换流过程与换流模式)
四、车用无刷直流电机及其控制系统
(基本控制、弱磁控制)
a
1
几个术语解释
• 极对数(2 p):电机转子中N-S极的对数,2,3,4,…… • 相数(m):电机绕组个数,3,6,12,……
Halla Hallb
Hallc 101 100 110 010 011 001 101
PWM a
t
PWM b
t
PWM c
t
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
无刷直流电机的电
ea
t 流和感应电动势具有以
下特点:
eb
t
(1)感应电动势为
ec
t 三相对称的梯形波,其
波顶宽为 120
a
39
无刷直流电机的控制系统
电流闭环控制结构
位置
I ref
PID 调节器
同步/PWM 控制
三相 逆变器
I phase
1
T3
T5
T
1
T3
T5
D1
D3
D5
D1
D3
D5
Ud
Ud
T4
T6
T2
D4
D6
D2
T4
T6
T2
D4
D6
பைடு நூலகம்D2
O
T3、T4关断时电流流向
O
T4、T5导通时的电流流向
a
36
无刷直流电机的制动控制
T1
T3
T5
T1
T3
T5
D1
D3
D5
D1
D3
D5
Ud
Ud
T4
T6
T2
D4
D6
D2
T4
T6
T2
T1
t T1
t
T4
t T4
t
T3
t T3
t
T6
t T6
t
T5
t T5
t
T2
t T2
t
0 60 120 180 240 300 360 420
0 60 120 180 240 300 360 420
(3)H_on-L_pwm型调制方式 (4)H_pwm-L_on型调制方式
a
15
无刷直流电机的换流模式
101 100 110 010 011 001
导通功率管 T 6 T 1 T1T 2
T2T3
T 3T 4
T4T5 T5T6
a
21
单侧调制下桥臂换向过程分析
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
O
T1、T2同时导通
O
T1关断、T2导通
R
LM
eB
eA
(1)不计磁路饱和;
uB
(2)电机涡流损耗和磁滞损耗;
R
LM
eC
uC
(3)忽略定子电流的电枢反应;
(4)定子绕组采用Y形接法。
无刷直流电机的等效电路
uA R0 0iA LM 0 0iA eA uB 0R0 iB p 0 LM 0 iB eB uC 0 0R iC 0 0 LM iC eC
电子开 关线路
电子开关线路由功率逻辑 开关单元和位置传感器信 号处理单元两部分组成;
电子开关线路导通次序是 与转子转角同步的,起机 械换向器的换向作用。
a
4
120度导通时转子位置与电流换相关系
A'
A'
C
BC
BC
r
B' A
s a) A'
C r
r
C'
B'
C'
B'
A s
b)
A'
BC r
BC
B'
C'
B'
a
7
无刷直流电机的数学模型
u A NR00 iA L M 0 0iA eA u ON u B N 0R0 iB p 0 L M 0 iB eB u O N u C N 00R iC 0 0 L M iC e C u O N
u O N e A N e B N e C 3 N e A e B e C
a
22
单侧调制上桥臂换向过程分析
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
O
T2、T3同时导通
O
T3关断、T2导通
a
23
双侧调制下桥臂换向过程分析
T1
T3
T5
D1
D3
D5
Ud
T4
T6
T2
D4
D6
D2
T1
T3
T5
D1
D3
D5
Ud
T4
T6
400(A)
转矩脉动仿真结果
调制方式
上桥 下桥
pwm-on
20%
20%
on-pwm
30%
30%
-200(A) H_pwm-L_on 18.5% 37.5%
(5)L_on-H_pwm型调制方式
H_on-L_pwm
H_pwmL_pwm
33.8% 15.4% 42.4% 42.4%
a
19
无刷直流电机的换流模式
• 电角度( e)/机械角度():e p e edt
• 电角频率( e)/机械角频率():e p • 电角频率与电机转速(n):n60e p
• 极(2p)槽(Z)配合:Z/2p • 相电压:电机相绕组对电机中性点电压 • 线电压:电机两相绕组之间电压 • 反电动势:电机到拖时某一转速下对应电机线电压峰值
400(A)
-200(A)
-200(A)
(1)pwm-on型调制方式 (2)on-pwm型调制方式
a
17
无刷直流电机的换流模式
(N)
400(A) (N)
400(A)
-200(A)
-200(A)
(3)H_on-L_pwm型调制方式 (4)H_pwm-L_on型调制方式
a
18
无刷直流电机的换流模式
(N)
C'
B'
A d) 60o
A
120o
e)
A'
B r
C' A 60o c) A'
B
r
C'
A
120o
f)
a) 0度(换相前) b) 0度(换相后) c) 60度(换相前) d) 60度(换相后) e) 120度(换相前) f) 120度(换相后)
a
5
HALL状态与PWM、三相反电势和三相 相电流的对应关系
a
10
无刷直流电机的相电流分析
a
11
无刷直流电机的换相电流
iA
Is
Udc2Es 3LM
t
iB
2(Udc Es)t 3LM
iC
Is
Udc4Es 3LM
t
i
iA
iB
Is
0
t
' f
tf
t
Is
iC
i
Is
iA
iB
0
Is
i
Is
iA
0
Is
a
tf
t
iC
iB
t
" f
tf
t
iC
12
无刷直流电机的反电动势
a
(4)采用H_on-L_pwm方式时,下桥换相转矩脉动和非换向相电流脉动小且与 pwm-on方式时的转矩脉动和电流脉动相等,上桥换相转矩脉动和非换向相电流脉动 大且与on-pwm方式时的转矩脉动和电流脉动相等。
(5)采用H_pwm-L_pwm方式时,换相转矩脉动最大且非换向相电流脉动也最大。
a
20
无刷直流电机的电路模型
(1)采用pwm-on方式时,下桥换相和上桥换相的换相转矩脉动相等,且最小;非 换向相电流脉动也是最小的;
(2)采用on-pwm方式时,下桥和上桥换相转矩脉动相等且比pwm-on方式大,非换 向相电流脉动也比pwm-on方式时大。
(3)采用H_pwm-L_on方式时,下桥换相转矩脉动和非换向相电流脉动大且与onpwm方式时的转矩脉动和电流脉动相等,上桥换相转矩脉动和非换向相电流脉动小 且与pwm-on方式时的转矩脉动和电流脉动相等。
T1
t T1
t
T4
t T4
t
T3
t T3
t
T6
t T6
t
T5
t T5
t
T2
t T2
t
0 60 120 180 240 300 360 420
0 60 120 180 240 300 360 420
(5)L_pwm-H_pwm型调制方式 (6)on-on型调制方式
a
16
无刷直流电机的仿真结果
(N)
400(A) (N)
KM 2NBglr 称为转矩系数
a
9
无刷直流电机的电路模型
T3
T5
T1
D1
D3
D5
Ud
Cd A
B
C
T4
T6
T2
D4
D6
D2
ia
ib
ic
ea
eb
ec
o
逆变器—永磁无刷电机系统示意图
U d 为直流电源(V); C d 为中间直流回路支撑
(滤波)电容(F); T1 ~ T6为6个功率开关管; D1 ~ D6为6个续流二极管; 采用120º的两两导通方式 ,对 T1 分~ T别6 在各自120º导 通时间内根据不同的调制 方式进行PWM调制。
2
UO1 Ld2d2ROTLd
Ud
2
UO 1 Ud 1 d
a
31
无刷直流电机的制动控制
Halla
ea
t
Hallb
eb
t
Hallc
ec
t
101 100 110 010 011 001 101
PWM a
t
ia
t
PWM b
t
ib
t
PWM c
t
ic
t
T4 T4 T6 T6 T2 T2 T4
0 60 120 180 240 300 360 420
Tempn eAiAeBiBeCiC r
TemTLp1nJddrtfrr
a
8
无刷直流电机的数学模型
在任何时刻,定子上只有两相同时导通,且导通相的定子 电流幅值保持不变:
T em pneA iAeB iBeC iCpn2E I
r
r
ENBglrr
T em 2 N B glrI K M I
t
ia
t
PWM b
t
ib
t
PWM c
t
ic
t
T4 T4 T6 T6 T2 T2 T4
0 60 120 180 240 300 360 420
HALL状态 101 100 110 010 011 001
导通功率管
T 3T 4
T4T5 T5T6
T 6T1 T1T2
T2T3
a
35
无刷直流电机的制动控制
T
Halla
ea
t
Hallb
eb
t
Hallc
ec
t
101 100 110 010 011 001 101
PWM a
t
ia
t
PWM b
t
ib
t
PWM c
t
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
ic
t
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
HALL状态
D4
D6
D2
O
O
T4、T5关断时电流流向(iB>0)T4、T5关断时的电流流向(iB=0)
a
37
无刷直流电机的制动控制
T1
T3
T5
T1
T3
T5
D1
D3
D5
D1
D3
D5
Ud
Ud
T4
T6
T2
D4
D6
D2
T4
T6
T2
D4
D6
D2
O
O
T3、T4关断时电流流向 T4、T5导通时的电流流向
a
38
无刷直流电机的制动相电流分析
T1
T3
T5
T1
T3
T5
D1
D3
D5
D1
D3
D5
Ud
Ud
T4
T6
T2
D4
D6
D2
T4
T6
T2
D4
D6
D2
O
T6开通时电流流向
O
T6关断时的电流流向
a
34
无刷直流电机的制动控制
Halla
ea
t
Hallb
eb
t
Hallc
ec
t
101 100 110 010 011 001 101
PWM a
ia
t
(2)电流为三相对
ib
t 称的方波;
ic
t
(3)梯形波反电势
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
与方波电流在相位上严 格同步。
a
6
无刷直流电机的数学模型
采用理想化的直流无刷电机用状态方 程表示的数学模型,电流为理想的方波, uA
R
LM
反电势为理想的梯形波,并作如下假设: