水箱液位控制课程设计-自动化
水箱液位自动控制系统设计
第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
基于PLC水箱液位控制系统毕业设计
基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。
该系统常用于水处理、供水系统、工业生产等领域。
本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。
PLC作为控制器,能够实现对水位的监测、控制和保护。
首先,本设计将使用传感器来监测水箱的液位。
液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。
传感器将通过模拟信号将液位信息传输给PLC。
PLC将读取并处理传感器的信号,得到水箱的液位信息。
其次,PLC将根据液位信息来控制水泵的运行。
当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。
当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。
通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。
此外,本系统还将具备一定的保护功能。
当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。
同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。
为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。
程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。
同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。
最后,本设计将进行系统的仿真和调试。
通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。
在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。
通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。
同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。
PLC水箱液位控制设计
PLC水箱液位控制设计水箱液位控制是工程和工业应用中的一个重要任务,受到工业生产和生活的影响。
PLC(可编程逻辑控制器)被广泛应用于自动化控制系统中。
在这里,我们将讨论PLC在水箱液位控制中的设计和应用。
一、设计要求1.自动控制水箱液位:根据需要自动控制水箱液位,以保持水箱液位在合适的范围内。
2.液位传感器:使用能够准确测量液位的传感器,例如超声波、浮子或电容传感器等。
3.控制阀门:根据液位传感器的信号,控制阀门的开关来调节进出水的流量。
4.安全保护:设置安全保护机制,如最高和最低液位报警,以防止水箱溢出或干涸。
二、系统设计1.硬件设计:选择适当的液位传感器、PLC和执行器,如电磁阀,来实现水箱液位的控制。
2.软件设计:编写PLC的控制程序,包括液位传感器读取、液位控制算法和输出控制信号给执行器的逻辑。
3.输入输出设计:将传感器连接到PLC的输入模块,并将执行器连接到PLC的输出模块。
4.安全保护设计:为了确保系统的安全性,设计液位报警机制,当液位低于最低限制或高于最高限制时,触发报警信号。
三、工作原理1.初始状态:水箱液位低于最低限制,控制系统开始工作。
2.传感器读取:PLC读取液位传感器的信号,并将其转换为数字量进行处理。
3.液位控制算法:根据传感器信号,PLC计算水箱液位的偏差,并决定相应的动作,如开启或关闭阀门。
4.输出控制信号:根据液位控制算法的结果,PLC将控制信号发送到执行器(电阀)以调节进出水量。
5.液位报警:如果液位低于最低限制或高于最高限制,PLC将触发报警信号以提醒操作员。
四、实施细节1.选择合适的液位传感器:液位传感器的选择取决于应用场景和预算。
超声波传感器具有高精度和无接触的特点,但价格较高。
浮子和电容传感器价格较低,但精度较低。
2.选择适当的PLC:根据应用要求选择适当的PLC。
考虑到通信接口、输入输出数量和处理速度等因素。
3.选择适当的执行器:根据流量要求选择适当的执行器,例如电磁阀。
水箱液位控制课程设计-自动化
课程设计报告设计题目:水箱液位控制系统班级:自动化0901班学号:20092400姓名:刘弟文指导教师:王姝梁岩设计时间:2012年5月7日至5月25日摘要水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。
本次课程设计通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。
首先通过测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。
然后,通过参数试凑法对PID参数的调试,实现了单容水箱液位(上)的单回路控制系统和双容水箱液位的单回路控制系统控制器的设计。
最后通过MATLAB仿真实验,加深了对双容水箱滞后过程已经串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。
关键词:水箱液位控制器 PID参数整定串级控制前馈控制目录1 引言 (3)2 课程设计任务及要求 (3)2.1 实验系统熟悉及过程建模 (3)2.2 实现单容水箱(上)液位的单回路控制系统设计 (3)2.3 实现双容水箱液位(上下水箱串联)的单回路控制系统设计 (4)2.4 实现水箱(上)液位与进水流量的串级控制系统设计 (4)2.5 实现副回路进水流量的前馈控制 (5)3 实验系统熟悉及过程建模 (5)3.1 系统结构 (5)3.2 过程建模 (6)3.2.1 进水流量和主管道流量模型 (6)3.2.2 进水流量和上水箱液位模型 (8)3.2.3 副回路流量与上水箱液位数学模型 (9)3.2.4 双容水箱串联进水流量与下水箱液位模型 (11)4 单容水箱液位的单回路控制系统设计 (12)4.1 结构原理 (12)4.2 单容水箱控制器PID参数整定 (13)4.2.1 单容水箱比例系数Kp的整定 (14)4.2.2 单容水箱积分时间参数整定 (14)4.2.3 单容水箱微分时间参数整定 (15)4.3 单容水箱旁路阶跃干扰响应曲线 (15)4.4 单容水箱副回路进水阶跃干扰响应曲线 (16)4.5 干扰频繁剧烈变化的解决办法 (17)5 双容水箱液位的单回路控制系统设计 (17)5.1 双容水箱单回路控制系统原理 (17)5.2 双容水箱控制器PID参数整定仿真实验 (19)5.2.1 比例参数的整定 (19)5.2.2 积分常数参数的整定 (20)5.2.3 微分常数参数的整定 (20)5.3 双容水箱抗干扰能力检验 (21)5.4 双容水箱提高控制质量方法 (21)6 实现上水箱液位与进水流量的串级级控制系统设计 (22)6.1 串级副回路参数整定 (24)6.2 串级主回路参数整定 (25)6.2.1 串级主回路比例参数整定 (26)6.2.2 串级主回路积分参数整定 (26)6.2.3 串级主回路微分参数整定 (27)6.2.4 串级控制系统给定负阶跃响应曲线 (27)6.3 副回路进水流量剧烈变化解决办法 (27)7 副回路进水流量的前馈控制 (28)7.1 副回路进水流量和水箱上液位前馈-反馈复合控制系统 (28)7.2 前馈控制器模型的确立 (28)7.3前馈-反馈复合控制系统PID参数整定 (29)7.4 前馈-反馈复合控制系统不加前馈控制器 (29)8 收获体会和建议 (30)1 引言通过本次课程设计,加深了对自控控制系统理论知识的理解,了解了一些工业生产过程中控制系统设计的过程,结合了所学的理论知识和实际工业应用过程,提高了动手能力。
水箱液位控制系统设计设计
水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。
该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。
二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。
传感器将液位转化为电信号,并传输给控制器。
2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。
控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。
此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。
3.执行器:执行器根据控制器的控制信号,完成相应的动作。
例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。
4.电源:为整个系统提供电能。
三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。
一般情况下,液位控制范围应在50%至85%之间。
2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。
浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。
3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。
在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。
-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。
-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。
-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。
4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。
5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。
自动水位控制器课程设计
自动水位控制器课程设计一、课程目标知识目标:1. 让学生理解自动水位控制器的基本工作原理,掌握水位控制系统的组成及功能。
2. 使学生了解并掌握液位传感器、控制电路和执行元件的相关知识。
3. 帮助学生掌握水位控制器的安装、调试和故障排查方法。
技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力,能独立完成水位控制系统的搭建和调试。
2. 提高学生的动手操作能力,学会使用相关工具和仪器进行水位控制器的安装与维护。
3. 培养学生的团队协作能力,能在小组合作中发挥各自专长,共同完成项目任务。
情感态度价值观目标:1. 培养学生对自动控制系统感兴趣,激发他们探究未知领域的热情。
2. 培养学生严谨、负责的学习态度,养成良好的操作习惯。
3. 增强学生的环保意识,让他们认识到自动水位控制器在节能减排方面的作用。
本课程针对高年级学生,结合学科特点,注重理论与实践相结合,旨在提高学生的实际操作能力和创新思维。
课程目标明确,分解为具体的学习成果,便于教师进行教学设计和评估。
通过本课程的学习,学生将能够掌握自动水位控制器的基本原理,具备实际应用能力,并在实践中培养团队协作、环保等价值观。
二、教学内容1. 自动水位控制器原理及结构:介绍自动水位控制器的工作原理、系统组成及其功能,对应教材第三章第一节。
2. 液位传感器及其应用:讲解液位传感器的种类、原理及在自动水位控制系统中的应用,对应教材第三章第二节。
3. 控制电路设计:分析水位控制器的控制电路设计原理,介绍常见的控制电路及其特点,对应教材第三章第三节。
4. 执行元件及其选用:介绍执行元件的种类、性能和选用原则,分析在自动水位控制系统中的应用,对应教材第三章第四节。
5. 水位控制器安装与调试:详细讲解水位控制器的安装步骤、调试方法及注意事项,对应教材第三章第五节。
6. 故障排查与维护:分析自动水位控制系统中可能出现的故障及其原因,教授故障排查方法和维护技巧,对应教材第三章第六节。
水箱水位控制系统课程设计_绍兴文理学院
电子技术课程设计(自动化12级)水箱水位控制器设计学生姓名学号院系工学院电气与信息工程系专业自动化指导教师填写日期 2014-07-10目录0. 摘要 (i)1. 设计任务与要求 (1)2. 总体方案设计 (1)2.1 设计思路 (1)2.2 方案分析比较 (2)3. 硬件电路各环节设计 (2)3.1 直流稳压电源 (2)3.2 水位检测装置设计 (3)3.3 水位显示装置设计 (3)3.4 水位控制装置设计 (4)3.5 水位报警装置设计 (4)4. 整体电路仿真及实物制作 (6)5. 总结与体会 (6)6. 参考文献 (7)7. 致谢 (7)8. 附件 (7)水箱水位控制器设计摘要本设计为纯数字控制电路,实现了对水箱水位的智能控制。
该装置由电源装置、水位检测装置、水位控制装置、水位显示装置和报警装置五个模块组成。
通过对水箱水位的检测,实现对水位的智能控制和人机交互。
关键词:水箱水位智能控制人机交互1.设计任务与要求下图1为水位控制原理图。
在水箱内的不同高度安装3根金属棒,以感知水位变化情况,能用数码管显示水箱的液位,液位分1,2,3,4档,当检测到水位低于1档时,发出缺水报警,并通过继电器打开电磁阀向水箱供水,当水位超过1档时,停止缺水报警,但继续供水,直到水位达到3档为止,关闭电磁阀。
当水位超过3档时,发出越线报警。
0接+5V电源,1,2,3各通过一个电阻与地相连。
图1 水位控制原理图具体要求如下:1.根据技术要求进行总体方案设计。
2.画出电路原理图(或仿真电路图),要求设计5V直流稳压电源;3.元器件及参数选择;4.电路仿真与调试;5.制作实物电路;6.编写设计报告,写出设计过程,附上有关资料、图纸及心得体会。
2.总体方案设计2.1设计思路在水箱中设置四个水位档,分别在不同高度的位置安装四根金属棒,用来感应水位的变化情况,然后经过信号放大,由编码器进行编码,产生二进制信号。
译码器对信号进行译码,即可在数码管上显示水位情况。
水箱液位自动控制系统设计
第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
plc水箱水位控制课程设计
plc水箱水位控制课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和工作过程。
2. 学生能掌握水箱水位控制系统的组成、功能及相互关系。
3. 学生能了解并运用水位传感器进行水位信号的采集和处理。
技能目标:1. 学生能运用PLC编程软件进行水箱水位控制程序的编写和调试。
2. 学生能通过实际操作,完成水箱水位控制系统的搭建和故障排查。
3. 学生能运用相关工具和仪器进行水位控制系统的性能测试和优化。
情感态度价值观目标:1. 培养学生热爱科学,积极探索PLC技术在工程领域的应用。
2. 培养学生团队协作意识,学会与他人共同解决问题,提高沟通与交流能力。
3. 增强学生的环保意识,了解水位控制技术在节能减排方面的重要性。
分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能独立完成水箱水位控制系统的设计方案。
2. 学生能运用所学知识,编写并调试PLC程序,实现水位控制功能。
3. 学生能通过实验报告、口头汇报等形式,展示水箱水位控制系统的搭建过程及成果。
4. 学生在课程结束后,能对PLC技术在水处理、化工等领域的应用进行初步分析,并提出自己的见解。
二、教学内容本课程教学内容主要包括以下几部分:1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,使学生了解PLC的基础知识。
关联教材章节:第一章PLC概述。
2. 水箱水位控制系统组成:讲解水箱水位控制系统的各个组成部分,包括水位传感器、执行器、PLC等,并分析它们之间的相互关系。
关联教材章节:第二章PLC控制系统设计。
3. PLC编程软件的使用:教授PLC编程软件的基本操作,包括程序编写、调试和下载等,使学生掌握PLC编程的基本技能。
关联教材章节:第三章PLC编程技术。
4. 水位控制程序编写与调试:指导学生编写水位控制程序,并进行调试,实现水箱水位的自动控制。
关联教材章节:第四章PLC应用实例。
单容水箱液位控制系统设计
单容水箱液位控制系统设计一、引言单容水箱液位控制系统是一种常见的工业自动化控制系统。
它主要用于监测和控制水箱的液位,确保水箱中的液位保持在特定的范围内。
本文将介绍单容水箱液位控制系统的设计原理、硬件电路设计、软件设计以及系统测试和实施。
二、设计原理1.传感器模块传感器模块用于监测水箱中的液位。
一种常用的传感器是浮球传感器,它随着液位的变化而移动,从而输出不同的电信号。
传感器模块将传感器输出的信号转换为数字信号,并传送给控制器模块进行处理。
2.控制器模块控制器模块是整个系统的核心,它接收传感器模块传来的信号,并根据预设的液位范围进行判断和控制。
控制器模块通常使用单片机或者嵌入式系统来实现。
它可以通过开关控制执行器模块的工作状态,以调节水箱的液位。
3.执行器模块执行器模块用于控制水箱的进水和排水。
在液位过低时,执行器模块打开水泵,使水箱进水;在液位过高时,执行器模块关闭水泵,使水箱排水。
执行器模块可以采用继电器、驱动电机等元件来实现。
三、硬件电路设计1.传感器模块传感器模块将传感器的信号转换为数字信号。
可以使用模拟到数字转换器(ADC)将传感器输出的模拟电压转换为数字信号,然后通过串口等方式传送给控制器模块。
2.控制器模块控制器模块可以使用单片机或者嵌入式系统来实现。
它需要包括输入接口、控制逻辑和输出接口。
输入接口负责接收传感器模块传来的信号,控制逻辑通过判断液位范围来控制执行器模块的工作状态,输出接口负责向执行器模块发送控制信号。
3.执行器模块执行器模块根据控制器模块的信号控制水箱的进水和排水。
可以使用继电器或驱动电机等元件来实现。
进水时,可以通过开启水泵或开启电磁阀等方式;排水时,可以通过关闭水泵或关闭电磁阀等方式。
四、软件设计软件设计主要包括控制器模块的程序设计。
程序需要实时监测传感器模块的信号,并根据预设的液位范围进行判断和控制。
可以使用状态机或者PID控制算法来实现。
1.状态机状态机通过定义不同的状态和状态转移条件来实现控制逻辑。
前馈反馈水箱液位控制系统课程设计
前馈反馈水箱液位控制系统课程设计馈反馈水箱液位控制系统是一种常见的自动化控制系统,广泛应用于工业生产中。
本文将重点介绍该系统的工作原理、硬件组成和控制方法。
一、工作原理馈反馈水箱液位控制系统的工作原理基于反馈控制理论,其目的是通过测量水箱液位并将其与设定值进行比较,从而控制水泵的运行,使水箱液位始终保持在预定范围内。
具体来说,系统通过传感器对水箱液位进行实时监测,并将监测结果传送给控制器。
控制器将监测到的液位信号与设定值进行比较,如果液位过低,则控制器会启动水泵,将水从水源中抽取到水箱中,直到液位达到设定值。
如果液位过高,则控制器会停止水泵,直到液位降至设定值以下。
二、硬件组成馈反馈水箱液位控制系统由传感器、控制器、水泵等组成。
其中,传感器负责测量水箱液位,控制器负责对液位进行监测和控制,水泵负责将水从水源中抽取到水箱中。
传感器通常采用浮球式液位传感器或压力式液位传感器。
浮球式液位传感器通过浮球的上下运动来实现液位的监测,而压力式液位传感器则是通过传感器底部的压力传感器来实现液位监测。
控制器通常采用PLC或单片机等控制器,可根据实际需求选择。
水泵则根据实际需求选择不同类型的水泵,例如离心泵、自吸式泵等。
三、控制方法馈反馈水箱液位控制系统的控制方法基于PID控制算法,其中P代表比例控制、I代表积分控制、D代表微分控制。
PID控制算法的主要目的是使系统的输出值与设定值之间的误差最小化,从而实现系统的稳定性和精度。
具体来说,系统将液位信号与设定值进行比较,并根据误差大小计算出控制量。
比例控制是根据误差大小直接计算控制量,积分控制是根据误差的积分值计算控制量,微分控制是根据误差的微分值计算控制量。
三种控制方式结合起来,形成了PID控制算法。
在实际应用中,PID控制算法需要进行参数调整,以保证系统的稳定性和控制精度。
通常采用试错法或自整定控制器等方法进行参数调整。
馈反馈水箱液位控制系统是一种常见的自动化控制系统,通过传感器对水箱液位进行实时监测,并将监测结果传送给控制器,从而控制水泵的运行,使水箱液位始终保持在预定范围内。
自动控制原理水箱水位课_程_设_计
自动控制原理课程设计多容水箱水位控制系统设计一、设计目的1.、初步掌握控制系统数学分析、设计、校验的基本方法,学会用数学模型解决实际问题。
2、应用MATLAB∕Simulink进行控制系统分析、设计、仿真及调试。
二、设计要求1. 根据控制理论知识进行人工设计校正装置,初步设计出校正装置传递函数形式及参数;2、进行动态仿真,在计算机上对人工设计系统进行仿真调试,使其满足技术要求;3、确定校正装置的电路形式及电路参数。
三、设计思想在设计、分析控制系统时,最常用的方法是频率法。
应用频率法设计对系统进行校正,其目的是改变频率特性的形状,使校正后的系统频率特性具有合适的低调、中频和高频特性及足够的稳定裕量,从而满足系统所要求的性能指标。
频率法设计校正装置主要通过对数频率特性(Bode图)来进行。
开环对数频率特性的低频段决定系统的稳态误差,根据稳态性能指标确定低频段的斜率和高度。
为附近的斜率为保证系统具有足够的稳定裕量,开环对数频率特性在剪切频率c-20dB/dec,而且具有足够的中频宽度。
为抑制高频干扰的影响,高频段应尽可能迅速衰减。
四、设计题目多容水箱水位控制系统设计设单位反馈的多容水箱水位控制系统,其系统开环传递函数为)4)(1()(0++=s s s K s G o,用 频 率 设 计 法 设 计 滞 后——超 前 校 正 装 置,使校正后的系统满足如下性能指标:单位斜坡信号作用下速度误差系数110-=s K v ;校正后相位裕量o 40≥γ,即时域性能指标:超调量%30%≤M ,调整时间s t s 6≤,峰值时间s t p 2≤。
五、设计过程解:因为题目中要求110-=s K v ,则根据)()(lim 0s H s sG K s v →=且在I 型系统中0K K v =,所以求得400=K 。
则传递函数变形为: )125.0)(1(4)(0++=s s s K s G o根据400=K 做未校正时系统的Bode 图为:图1、未校正前的Bode 图从Bode 图中得 s rad w c /87.21=则相角裕量为: ︒-=--︒-︒=1525.0arctan arctan 90180110c c w w γ这说明系统的相角裕量远小于要求值,系统的动态响应会有严重的震荡。
自控课程设计-液位控制系统
自控课程设计-液位控制系统1. 介绍液位控制系统是一种自动化控制系统,用于监测和控制液体的容器中的液位高度。
该系统包括液位传感器、控制器和执行器等基本部件,可以应用于诸多场合,如水处理、油田、化工等。
本文设计一套液位控制系统,并简述其原理、流程和实现方法。
2. 原理液位控制系统根据水位传感器的反馈信号,调整容器里的水泵或阀门的开关状态,以实现液位的控制。
通常,控制系统需要有两个目标水位,高水位和低水位,当水位超过高水位时,系统会自动关闭出水口;当水位小于低水位时,系统会自动开启水泵或阀门,将水源输送到容器中。
3. 流程液位控制系统主要有以下流程:(1)线性传感器检测液位传感器的信号,并将其转换成电信号。
(2)控制器通过比较检测到的电信号与预设的目标水位的大小,计算出控制执行器的操作信号。
(3)执行器接收来自控制器的操作信号,并将其转换为实际的控制信号,例如启动电机或控制阀门的打开和关闭。
(4)线性传感器检测水位的变化,并将其反馈给控制器以更新系统状态。
4. 实现方法液位控制系统的具体实现方法包括以下步骤:(1)搭建实验平台为了验证液位控制系统的可行性,需要先搭建一套实验平台。
实验平台包括一个容器(例如水箱)、一个水泵和一个阀门。
(2)安装液位传感器将液位传感器安装在容器中,连接线性传感器与控制器。
(3)预设目标水位根据实验平台的需求,设定高水位和低水位的位置。
(4)编写程序利用 Arduino IDE 编写程序,实现液位传感器与控制器的数据通信,以及控制执行器输出操作信号的任务,来完成对液位控制的控制。
(5)测试和调试经过程序的上传和调试,对实验平台进行测试,验证液位控制系统的可行性和优劣。
5. 结论液位控制系统是一种自动化控制系统,可以在水处理、化工等多种领域中得到广泛应用。
本文介绍了液位控制系统的原理、流程和实现方法,并且在实验平台上进行了验证和测试。
该系统具有简单、实用和可靠的特点,是实现液位自动控制的有力手段。
课程设计-单容水箱液位控制-MCGS
综合实验报告综合实验名称自动控制系统综合实验题目单容水箱液位定值控制系统指导教师设计起止日期2013年1月7日~1月18日系别自动化学院控制工程系专业自动化学生姓名班级学号自控成绩目录目录 (2)正文 (3)设计内容 (4)应用MCGS组态软件 (4)构建实时数据库 (8)设备窗口 (11)策略及脚本 (15)综合测试 (20)实验结果 (21)总结 (23)参考文献 (23)正文第一部分一、课题单容水箱液位定值控制系统二、设计目的课程设计旨在使学生在深入消化课堂教学内容的基础上,综合应用所学课程的基本原理与方法,解决实际设计与应用问题,提高学生分析问题与解决问题的能力,并在设计工作中,学会查阅资料、系统设计、调试与分析、撰写报告等,达到综合能力培养的目的。
1.根据自动控制系统的设计要求,学会方案比较和论证,初步掌握工程设计的基本方法;2.掌握各种变送器以及自动化仪表的工作原理和调校;3.掌握自动控制系统集成技术;4.掌握控制系统的通信技术,学会PCI数据采集卡或远程数据采集模块的应用;5.应用MCGS软件,学会控制算法的设计和调试;6.熟悉MCGS组态软件,学会监控界面、通信驱动程序等的设计;7.提高总结归纳、撰写设计报告的能力,应当规范、有条理、充分、清楚地论述设计内容和调试成果。
三、课设设备TH PCAT-2型现场总线控制系统实验装置(常规仪表侧),双容水箱;AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,PCL通讯线一根)四、课设所需软件MCGS组态软件五、设计内容课设原理说明单容水箱液位定值控制系统如下:图2—1 上水箱单容液位定值控制系统(a)结构图(b)方框图本实验系统结构图和方框图如图所示。
被控量为左上水箱(也可采用右上水箱或者下水箱)的液位高度,实验要求它的液位稳定在给定值。
将压力传感器LT1检测到的左上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。
水箱液位控制课程设计
引言根据课程设计要求,本组成员在2012年5月14日至20日期间,在冶金馆四楼的工业流程自动化实验室进行了为期一周的课程设计实验。
本次课程设计,我们组选择的基本题目是单容水箱液位控制系统的设计,提高部分为单容水箱的串级控制系统的设计及双容水箱解耦控制系统的设计。
经过整整一周的实验后,我们组在完成了本次课程设计的基本题目,即单容水箱液位控制系统的设计后,继续完成了串级控制系统,并取得了不错的控制效果。
本文详细记录了一周内的实验内容、结论。
同时,由于设计经验及知识储备的不足,我们在实验中遇到了很多意料之外的问题,最后通过认真分析、查阅资料及咨询老师学长,也都有了相应的解决方案。
对此,本文也做了相应的总结。
全文一共分为介绍部分的序章及实验部分的四章总结部分一章。
其中,序章主要介绍了此次课程设计实验系统,第一章介绍了检测仪表的标定与调试及执行器的特性测试;第二章介绍了二号水箱被控对象模型的建立;第三章主要介绍了单容水箱单回路控制系统的设计;第四章主要介绍了单容水箱串级控制系统的设计。
其中,第三章是基本的实验要求内容,第四章的串级控制是提高部分内容。
最后,本文总结了本次课程设计的体会与收获。
本次课程设计过程,得到了王良勇、潘全科老师及吕阁学长的耐心指导和帮助,在此一并深表感谢!本组所有成员2012年5月16日目录一、序章1.1 系统描述本实验使用多功能过程控制科研教学装置,它主要包括上位机监控软件平台和实验系统硬件平台两部分,液位的给定由上位机监控软件给出,通过以太网络传输到硬件平台的实验控制器中,实际液位信号经过液位传感器进行测量反馈,控制器根据给定高度和实际高度的误差产生控制信号,对水泵进行控制。
1.2 硬件平台单容水箱液位系统硬件平台即多功能过程控制实验平台,如图所示:多功能过程控制平台具有嵌入式专用控制器,手控盒,四个温度传感器,三个流量传感器,两个液位传感器,一个压力传感器,两个过程水箱,两个水泵,一个比例阀门,一个加热水箱,一个蓄水箱和加热器以及散热器和搅拌器等。
水箱液位控制系统毕业设计
毕业设计题目:水箱液位控制系统设计系别:电气工程系专业:电气自动化班级:学生姓名:指导老师:目录任务书 (2)摘要 (3)1 绪论 (4)1.1 过程控制的定义 (4)1.2 过程控制的目的 (4)1.3 过程控制的特点 (5)1.4 过程控制的发展与趋势 (5)2 水箱液位控制系统的原理 (6)2.1 人工控制与自动控制 (6)2.2 水箱液位控制系统的原理框图 (7)2.3 水箱液位控制系统的数学模型 (8)3 水箱液位控制系统的组成 (11)3.1 被控制变量的选择 (11)3.2 执行器的选择 (11)3.3 PID 控制器的选择 (15)3.4 液位变送器的选择 (17)4 PID 控制规律 (18)4.1 比例控制 (18)4.2 积分控制 (21)4.3 微分控制 (21)4.4 比例积分控制 (21)4.5 比例积分微分控制 (22)5 应用实例 (22)5.1 液位控制在厕所中的应用 (22)5.2 液位控制在汽车上的应用 (23)总结 (24)致谢 (25)参考文献 (25)毕业设计(论文)任务书摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。
PID 控制(比例、积分和微分控制)是目前采用最多的控制方法。
本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID 算法、传感器和调节阀等一系列的知识。
作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID 算法,调节阀为电动调节阀。
选用合适的器件设备、控制方案和算法,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。
过程控制课程设计—三容水箱液位控制系统的设计
过程控制课程设计—三容水箱液位控制系统的设计过程控制系统课程设计报告三容水箱液位控制系统的设计指导教师:***学生:专业:自动化班级:设计日期: 2013.9.23—2013.10.11目录1 问题描述 -------------------------------------------- 52 建立模型 -------------------------------------------- 72.1被控量的选择 ------------------------------ 72.2操控量的选择 ------------------------------ 72.3模型的选择 --------------------------------- 82.3.1单容水箱数学模型 --------------- 82.3.2双容水箱的数学模型 ----------- 102.3.3三容水箱的数学模型 ----------- 113 算法描述 ------------------------------------------- 123.1算法选择 ----------------------------------- 123.2控制器设计 -------------------------------- 133.2.2单回路反馈调节 ----------------- 143.2.3 PID调节器 ---------------------- 153.2.3.1 PID调节器参数初值 ---- 153.2.3.2 PI调节器------------------- 163.2.3.3 PID调节器 ---------------- 183.2.4 串级反馈调节 ------------------- 204 参考文献 ------------------------------------------- 241 问题描述饮料工业是改革开放以后发展起来的新兴行业,1982年列为国家计划管理产品,当年全国饮料总产量40万吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告设计题目:水箱液位控制系统班级:自动化0901班学号:20092400姓名:刘弟文指导教师:王姝梁岩设计时间:2012年5月7日至5月25日摘要水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。
本次课程设计通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。
首先通过测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。
然后,通过参数试凑法对PID参数的调试,实现了单容水箱液位(上)的单回路控制系统和双容水箱液位的单回路控制系统控制器的设计。
最后通过MATLAB仿真实验,加深了对双容水箱滞后过程已经串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。
关键词:水箱液位控制器PID参数整定串级控制前馈控制目录1 引言 (3)2 课程设计任务及要求 (3)2.1 实验系统熟悉及过程建模 (3)2.2 实现单容水箱(上)液位的单回路控制系统设计 (3)2.3 实现双容水箱液位(上下水箱串联)的单回路控制系统设计 (4)2.4 实现水箱(上)液位与进水流量的串级控制系统设计 (4)2.5 实现副回路进水流量的前馈控制 (5)3 实验系统熟悉及过程建模 (5)3.1 系统结构 (5)3.2 过程建模 (6)3.2.1 进水流量和主管道流量模型 (6)3.2.2 进水流量和上水箱液位模型 (8)3.2.3 副回路流量与上水箱液位数学模型 (9)3.2.4 双容水箱串联进水流量与下水箱液位模型 (11)4 单容水箱液位的单回路控制系统设计 (12)4.1 结构原理 (12)4.2 单容水箱控制器PID参数整定 (13)4.2.1 单容水箱比例系数Kp的整定 (14)4.2.2 单容水箱积分时间参数整定 (14)4.2.3 单容水箱微分时间参数整定 (14)4.3 单容水箱旁路阶跃干扰响应曲线 (15)4.4 单容水箱副回路进水阶跃干扰响应曲线 (16)4.5 干扰频繁剧烈变化的解决办法 (16)5 双容水箱液位的单回路控制系统设计 (17)5.1 双容水箱单回路控制系统原理 (17)5.2 双容水箱控制器PID参数整定仿真实验 (18)5.2.1 比例参数的整定 (18)5.2.2 积分常数参数的整定 (19)5.2.3 微分常数参数的整定 (20)5.3 双容水箱抗干扰能力检验 (20)5.4 双容水箱提高控制质量方法 (21)6 实现上水箱液位与进水流量的串级级控制系统设计 (21)6.1 串级副回路参数整定 (23)6.2 串级主回路参数整定 (24)6.2.1 串级主回路比例参数整定 (25)6.2.2 串级主回路积分参数整定 (25)6.2.3 串级主回路微分参数整定 (26)6.2.4 串级控制系统给定负阶跃响应曲线 (26)6.3 副回路进水流量剧烈变化解决办法 (26)7 副回路进水流量的前馈控制 (27)7.1 副回路进水流量和水箱上液位前馈-反馈复合控制系统 (27)7.2 前馈控制器模型的确立 (27)7.3前馈-反馈复合控制系统PID参数整定 (28)7.4 前馈-反馈复合控制系统不加前馈控制器 (28)8 收获体会和建议 (29)1 引言通过本次课程设计,加深了对自控控制系统理论知识的理解,了解了一些工业生产过程中控制系统设计的过程,结合了所学的理论知识和实际工业应用过程,提高了动手能力。
通过对系统过程的建模及PID参数整定,对自动控制系统设计步骤有了更清晰的步骤。
并发现自己理论知识的不足的地方,在今后的过程中应加强学习自己所缺乏的理论知识。
针对本次课程设计过程对老师们提出一点建议,本次课程设计的程序,界面都是事先做好的。
我觉得下次老师可以把写程序和编界面作为课设的内容,让同学们有机会真正的熟悉设计一套控制系统的过程。
2 课程设计任务及要求2.1 实验系统熟悉及过程建模①描述实验系统的总体结构(结构图及语言描述)。
②利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。
要求写出具体的建模步骤及结果。
③利用实验建模方法建立进水流量和水箱(上)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)。
④利用实验建模方法建立副回路流量和水箱(上)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)。
⑤利用实验建模方法建立双容水箱(上下串联)的进水流量(上水箱进水)和水箱(下)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)。
2.2 实现单容水箱(上)液位的单回路控制系统设计①画出此单回路控制系统的控制原理图及方框图。
详细说明控制系统方框图中的各部分环节所对应的物理意义。
说明该控制系统的控制依据和控制功能。
②采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。
要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。
③控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
④打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
2.3 实现双容水箱液位(上下水箱串联)的单回路控制系统设计①画出此单回路控制系统的控制原理图及方框图。
详细说明控制系统方框图中的各部分环节所对应的物理意义。
说明该控制系统的控制依据和控制功能。
②采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。
要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。
③控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
④打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
2.4 实现水箱(上)液位与进水流量的串级控制系统设计①画出此串级控制系统的控制原理图及方框图,详细说明控制系统方框图中的各部分环节所对应的物理意义;说明该控制系统的控制依据和控制功能;分析该控制系统和液位单回路控制系统相比有哪些变化,这些变化会使得该系统有哪些优势。
②采用经验凑试法调节主、副控制器参数,使控制系统达到满意的控制质量。
要求写出调试控制器参数的具体步骤。
在PID参数调试过程中,记录10组以上的控制系统过渡过程(过渡过程曲线,控制质量指标)来说明你的调试过程,并说明你做参数进一步调整的原因。
③在设定值发生阶跃变化(设定值阶跃增大及设定值阶跃减小)时,观察并记录控制系统的过渡过程(过渡过程曲线,控制质量指标)。
④打开旁路干扰阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中③的控制质量进行对比,分析并说明控制质量变化的原因。
⑤打开副回路进水阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中④的控制质量进行对比,分析并说明控制质量变化的原因。
2.5 实现副回路进水流量的前馈控制①画出此前馈-串级复合控制系统的控制原理图及方框图,详细说明控制系统方框图中的各部分环节所对应的物理意义;说明该控制系统的控制依据和控制功能;分析该控制系统和液位单回路控制系统相比有哪些变化,这些变化会使得该系统有哪些优势。
②试求解前馈控制器的模型。
③采用简化模型代替前馈控制器,利用Matlab仿真软件调节前馈控制器参数,使得副回路进水流量发生剧烈变化时,控制系统达到满意的控制质量。
写出前馈控制器参数的调试步骤,记录与其对应的6组以上的控制系统过渡过程(包括:过渡过程曲线,控制质量指标),充分反映你的参数调试过程。
3 实验系统熟悉及过程建模3.1 系统结构实验室有两套水箱液位系统控制,主管道控制系统是由控制器、调节阀、电磁流量计、上下串联水箱以及水箱液位检测变送器组成。
副管道控制系统由控制器、变频器、涡轮流量计、上下串联水箱以及水箱液位检测变送器组成。
下面以主管道上水箱液位控制系统为例说明控制系统工作过程。
系统有自动和手动模式,如图3-1所示,调节阀为气开阀,水箱液位过程为正过程,控制器为反作用方式。
图3-1 系统结构图模式当设置系统工作方式为自动时,可以设置水箱液位高度r,通过PID控制器的设置,控制调节阀的开度,从而保持水箱的液位高度稳定。
如果出现扰动,通过水箱液位检测器反馈,并与设定值进行比较,如果反馈值大于设定值,则e<0,通过反作用方式控制器,使控制器输出为正,调节阀开度增大,使水箱液位输出增大,保证了液位高度保持稳定值不变。
如果反馈值小于设定值,则e>0,通过反作用方式控制器时控制器的输出为负,减小调节阀的开度,从而使水箱液位减小,同样能保证液位保持稳定值不变。
其调节过程如下:图3-2 水箱液位调节过程系统也可以设置手动模式,此时通过开关切换跳过PID控制器直接对调节阀的开度进行设置。
可以改变进水流量,从而改变水箱液位高度,使液位高度达到新的平衡。
3.2 过程建模控制质量的优劣是工业过程自动控制中最重要的问题,它主要取决于自动控制系统的结构及组成控制系统的各个环节的特性。
为了很好的控制一个过程,需要知道当控制量变化一个已知量时,被控量如何改变并最终将改变多少以及向哪个方向改变、被控量的变化将需要经历多长时间、被控量随时间变化的曲线形状等。
这些均依赖于被控过程的数学模型。
因此,建立被控过程的数学模型是自动控制系统分析与设计中的重要环节。
被控过程的数学模型是指被控过程的输出变量与输入变量之间的函数关系数学表达式。
测取阶跃响应曲线的目的是为了得到表征所测对象的数学模型,为分析、设计控制系统,整定控制器参数或改进控制系统提供必要的参考依据。