(高等数学英文课件)3.2 The Mean Value Theorem and Differential Equations
高等数学名词(中英文)
高等数学名词(中英文)高等数学名词(中英文)第一章函数与极限Chapter1 Function and Limit 集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood右领域right neighborhood映射mappingX到Y的映射mapping of X ontoY 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable 因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function 初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数当x趋于x0时的极限limit of functions as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order等阶无穷小equivalent infinitesimal 函数的连续性continuity of a function增量increment函数在x0连续the function is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数在该区间上连续function is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function 导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives在闭区间[a, b]上可导is derivable on the closed interval [a,b] 切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log- derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error绝对误差absolute error相对误差relative error第三章微分中值定理与导数的应用Chapter3 Mean Value Theorem ofDifferentials and the Application ofDerivatives罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point 临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem 洛必达法则L’Hospital’s Rule0/0型不定式indeterminate form of type 0/0 不定式indeterminate form泰勒中值定理Taylor’s mean value theorem 泰勒公式T aylorformula余项remainder term拉格朗日余项Lagrange remainder term麦克劳林公式Ma claurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward, cancave up凹向下的,向上凸的concave downward’ concave down 拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) mximum极小值local(relative) minimum最小值global(absolute) minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(anti-derivative)积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts 有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an integvals牛顿-莱布尼茨公式Newton-Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution递推公式recurrence formula反常积分improper integral 反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the DefiniteIntegrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry andVector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product 曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface 椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve 空间曲线的参数方程parametric equations of a space curve 螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes 行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions ofSeveral Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order 二阶偏导数second order partial derivative混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential 全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function 曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method 拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line (Curve) Integrals andSurface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area 有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a differential equation常微分方程ordinary differential equation偏微分方程partial differential equation,PDE 微分方程的阶order of a differential equation 微分方程的解solution of adifferential equation 微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation 初值问题initial value problem微分方程的积分曲线integral curve of a differential equation 可分离变量的微分方程variable separable differential equation 隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation 非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant 暂态电流transient state current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linear differential equation of higher order 自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation 串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order lineardifferential equation线性相关linearly dependence线性无关linearly independence二阶常系数齐次线性微分方程second order homogeneous linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency 简谐振动simple harmonic oscillation,simple harmonic vibration 微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linear differential equations with constant coefficientV、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function 分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit 极限的商定律Quotient Rule :商定律M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function 自然指数函数Natural logarithm function 自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule 洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry 罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum 局部极大值与极小值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test 递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem 中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function反三角函数Iterated integral :逐次积分H:Higher mathematics 高等数学/高数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent 导数看成切线之斜率Determinant :行列式Differentiable function 可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in二重积分之变数变换in polar coordinates :极坐标二重积分C:Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system 笛卡儿坐标系Cauch’s Mean Value Theorem 柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum 绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule 梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution 旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数微积分专有名词中英文对照absolutely convergent 绝对收敛absolute value 绝对值algebraic function 代数函数analytic geometry 解析几何antiderivative 不定积分approximate integration 近似积分approximation 近似法、逼近法arbitrary constant 任意常数arithmetic series/progression (AP)算数级数asymptotes (vertical and horizontal)(垂直/水平)渐近线average rate of change 平均变化率base 基数binomial theorem 二项式定理,二项展开式Cartesian coordinates 笛卡儿坐标(一般指直角坐标)Cartesian coordinates system 笛卡儿坐标系Cauch’s Mean Value Theorem 柯西均值定理chain rule 链式求导法则calculus 微积分学closed interval integral 闭区间积分coefficient 系数composite function 复合函数conchoid 蚌线continuity (函数的)连续性concavity (函数的)凹凸性conditionally convergent 有条件收敛continuity 连续性critical point 临界点cubic function 三次函数cylindrical coordinates 圆柱坐标decreasing function 递减函数decreasing sequence 递减数列definite integral 定积分derivative 导数determinant 行列式differential coefficient 微分系数differential equation 微分方程directional derivative 方向导数discontinuity 不连续性discriminant (二次函数)判别式disk method 圆盘法divergence 散度divergent 发散的domain 定义域dot product 点积double integral 二重积分ellipse 椭圆ellipsoid 椭圆体epicycloid 外摆线Euler's method (BC)欧拉法expected valued 期望值exponential function 指数函数extreme value heorem 极值定理factorial 阶乘finite series 有限级数fundamental theorem of calculus 微积分基本定理geometric series/progression (GP)几何级数gradient 梯度Green formula 格林公式half-angle formulas 半角公式harmonic series 调和级数helix 螺旋线higher derivative 高阶导数horizontal asymptote 水平渐近线horizontal line 水平线hyperbola 双曲线hyper boloid 双曲面implicit differentiation 隐函数求导implicit function 隐函数improper integral 广义积分、瑕积分increment 增量increasing function 增函数indefinite integral 不定积分independent variable 自变数inequality 不等式ndeterminate form 不定型infinite point 无穷极限infinite series 无穷级数infinite series 无限级数inflection point (POI) 拐点initial condition 初始条件instantaneous rate of change 瞬时变化率integrable 可积的integral 积分integrand 被积分式integration 积分integration by part 分部积分法intercept 截距intermediate value of Theorem :中间值定理inverse function 反函数irrational function 无理函数iterated integral 逐次积分Laplace transform 拉普拉斯变换law of cosines 余弦定理least upper bound 最小上界left-hand derivative 左导数left-hand limit 左极限L'Hospital's rule 洛必达法则limacon 蚶线linear approximation 线性近似法linear equation 线性方程式linear function 线性函数linearity 线性linearization 线性化local maximum 极大值local minimum 极小值logarithmic function 对数函数MacLaurin series 麦克劳林级数maximum 最大值mean value theorem (MVT)中值定理minimum 最小值method of lagrange multipliers 拉格朗日乘数法modulus 绝对值multiple integral 多重积分multiple 倍数multiplier 乘子octant 卦限open interval integral 开区间积分optimization 优化法,极值法origin 原点orthogonal 正交parametric equation (BC)参数方程partial derivative 偏导数partial differential equation 偏微分方程partial fractions 部分分式piece-wise function 分段函数parabola 抛物线parabolic cylinder 抛物柱面paraboloid :抛物面parallelepiped 平行六面体parallel lines 并行线parameter :参数partial integration 部分积分partiton :分割period :周期periodic function 周期函数perpendicular lines 垂直线piecewise defined function 分段定义函数plane 平面point of inflection 反曲点point-slope form 点斜式polar axis 极轴polar coordinates 极坐标polar equation 极坐标方程pole 极点polynomial 多项式power series 幂级数product rule 积的求导法则quadrant 象限quadratic functions 二次函数quotient rule 商的求导法则radical 根式radius of convergence 收敛半径range 值域(related) rate of change with time (时间)变化率rational function 有理函数reciprocal 倒数remainder theorem 余数定理Riemann sum 黎曼和Riemannian geometry 黎曼几何right-hand limit 右极限Rolle's theorem 罗尔(中值)定理root 根rotation 旋转secant line 割线second derivative 二阶导数second derivative test 二阶导数试验法second partial derivative 二阶偏导数series 级数shell method (积分)圆筒法sine function 正弦函数singularity 奇点slant 母线slant asymptote 斜渐近线slope 斜率slope-intercept equation of a line 直线的斜截式smooth curve 平滑曲线smooth surface 平滑曲面solid of revolution 旋转体symmetry 对称性substitution 代入法、变量代换tangent function 正切函数tangent line 切线tangent plane 切(平)面tangent vector 切矢量taylor's series 泰勒级数three-dimensional analytic geometry 空间解析几何total differentiation 全微分trapezoid rule 梯形(积分)法则。
高等数学(微积分学)专业术语名词、概念、定理等英汉对照
高等数学(微积分学)专业术语名词、概念、定理等英汉对照高等数学(微积分学)是研究变化和运动的数学学科。
它研究的对象包括函数、极限、导数、积分等。
作为一门复杂而抽象的学科,它涉及了大量的专业术语、名词、概念和定理。
本文将对其中的一些重要术语进行英汉对照解释。
微积分学主要研究函数和它们的变化规律。
其中的一些重要概念包括:1. 函数(Function):函数是一种映射关系,它将一个或多个输入值映射到一个输出值。
函数通常用符号 f(x) 或 y=f(x) 表示,其中 x 是自变量,y 是因变量。
2. 极限(Limit):极限是一个函数在某一点或无穷远处的稳定趋势。
它描述了函数在逼近某一数值时的行为。
极限通常用符号 lim 表示。
3. 导数(Derivative):导数描述了函数在某一点的变化率。
它可以用来计算函数在不同点的斜率,以及函数的最大值和最小值。
导数通常用符号 f'(x) 或 dy/dx 表示。
4. 积分(Integral):积分是导数的逆过程。
它可以用来计算函数在一定范围内的累积量,如曲线下的面积。
积分通常用符号∫ 表示。
微积分学中的一些重要定理包括:1. 中值定理(Mean Value Theorem):中值定理描述了函数在某一区间内存在一点,其导数等于整个区间的平均斜率。
它是微积分学中最重要的定理之一。
2. 泰勒定理(Taylor's Theorem):泰勒定理将一个函数表示为多项式的形式,并利用函数在某一点的导数来逼近函数的值。
它在数值计算和近似求解中有广泛应用。
3. 柯西—黎曼方程(Cauchy-Riemann Equation):柯西—黎曼方程描述了复数函数的解析性条件。
它是复变函数论的基础。
4. 应用于定积分的换元法(Substitution Rule for Definite Integrals):换元法是计算定积分的一种常用技巧。
它将一个变量替换为另一个变量,以便简化积分计算。
高等数学英文教材
高等数学英文教材Advanced Mathematics English TextbookIntroduction:Mathematics is a universal language that allows us to explore and understand the intricate patterns and structures of the world. Over the years, advanced mathematics has become increasingly important in various fields such as physics, engineering, and computer science. To effectively teach this subject to a global audience, an English textbook on advanced mathematics is essential. This article aims to provide an overview of the structure and content that a comprehensive advanced mathematics English textbook should encompass.Chapter 1: Real Number System1.1 The Set of Real Numbers- Introducing the concept of real numbers- Defining rational and irrational numbers- Examples and properties of real numbers1.2 Number Line and Ordering- Understanding the number line and its application to real numbers- Comparing and ordering real numbers- Absolute value and its significance1.3 Basic Operations on Real Numbers- Addition, subtraction, multiplication, and division of real numbers- Understanding the rules and properties of these operations- Solving basic equations involving real numbersChapter 2: Functions and Graphs2.1 Introduction to Functions- Defining functions and their role in mathematics- Understanding domain, range, and the vertical line test- Different types of functions (linear, quadratic, exponential, etc.)2.2 Graphical Representations- Sketching and interpreting graphs of functions- Understanding the concepts of symmetry, intercepts, and transformations- Identifying key features of graphs, such as slope and concavity2.3 Operations on Functions- Combining and composing functions- Understanding inverse functions and their applications- Solving equations involving functionsChapter 3: Limits and Continuity3.1 The Concept of Limit- Introducing the notion of limit and its significance- Evaluating limits algebraically and graphically- One-sided and infinite limits3.2 Techniques for Calculating Limits- Working with different types of limits (including trigonometric and exponential limits)- L'Hopital's Rule and other limit theorems- Understanding indeterminate forms3.3 Continuity of Functions- Defining continuity and its properties- Identifying and analyzing discontinuities- Intermediate Value Theorem and its applicationsChapter 4: Differentiation4.1 Introduction to Derivatives- Defining derivatives and their interpretations- Calculation of derivatives using the difference quotient- The concept of instantaneous rate of change4.2 Rules of Differentiation- Derivative rules for elementary functions (power, exponential, logarithmic, and trigonometric functions)- Product, quotient, and chain rules- Implicit differentiation4.3 Applications of Derivatives- Tangent lines, slopes, and rates of change- Optimization problems (maxima and minima)- Curve sketching and concavityChapter 5: Integration5.1 Antiderivatives and Indefinite Integrals- Understanding antiderivatives and their connection to derivatives- Basic techniques for finding indefinite integrals- Evaluating definite integrals using the fundamental theorem of calculus 5.2 Integration Methods- Integration by substitution and by parts- Trigonometric substitutions- Applications to areas and volumes5.3 Differential Equations- Introduction to differential equations and their basic classifications- Solving first-order differential equations- Existence and uniqueness of solutionsConclusion:An advanced mathematics English textbook needs to comprehensively cover key topics such as the real number system, functions and graphs, limits and continuity, differentiation, and integration. The textbook should present these concepts in a clear and concise manner, with relevant examples and applications. By providing a solid foundation in advanced mathematics, this textbook can empower students to tackle complex problems and contribute to various fields that heavily rely on mathematical principles.。
微积分英文课件PPT (6)
The maximum and minimum values of f are called the extreme values of f.
(d,f(d))
c d
(c,f(c))
Definition A function f has a Local maximum (or relative maximum ) at c if
Example : f (x) 3x4 16 x3 18 x2
1 x 4
Example: f (x) cosx
Example: f (x) x2
Example:
f (x) x3
•We have seen that some functions have extreme values, whereas others do not. The following theorem gives conditions under which a function is guaranteed to possess extreme values.
numbers c where f (c) 0 or f (c) does not exist.
Definition:
A critical number of a function f is a number c in the domain of f such that either f (c) 0 or f (c) does not exist.
高等数学课程英文简介汇编
Course SyllabusesCourse Name Higher Mathematics Course CodeHours&Credits160 & 10Majors&Minors Science &Technology Majors Faculty of Mathematics and PhysicsHigher MathematicsCOURSE DESCRIPTION:Prerequisites: satisfactory score on elementary mathematicsCorequisites: NoneHigher Mathematics is designed to serve students majoring in chemical science, computer science and engineering etc. It consists of two parts of a two-semester sequence. The course begins with a rapid review of topics in algebra and trigonometry, which you should be competent in. Part 1, consisting of Chapters 1 to 7, is devoted to single variable differentiation, integration and differential equations. It covers the fundamental concepts and theorems. Part 2, consisting of Chapters 8 to 12, discusses in depth multivariable differentiation, integration, infinite series, vectors and the geometry of space.COURSE OBJECTIVES:Upon completion, students will be able to evaluate limits and continuity, and compute derivatives and integrals of selected functions with single or multivariable, solve some linear differential equations and determine the convergences or divergences of an infinite series. Furthermore, students will be able to utilize the techniques of differentiation and integration together with appropriate technology to solve practical problems and to analyze and communicate results.OUTLINE OF INSTRUCTION:Chapter 1. Functions and LimitsChapter 2. Derivatives and DifferentiationChapter 3. The Mean Value Theorem and Applications of the Derivatives Chapter 4. Indefinite IntegralsChapter 5. Definite IntegralsChapter 6. Applications of IntegralsChapter 7. Differential EquationsChapter 8. vectors and the geometry of spaceChapter 9. Multivariable Functions and Theire DerivativesChapter 10. Multiple IntegralsChapter 11. Integration in Vector FieldsChapter 12. Infinite SeriesTEACHING METHODS:LectureASSESSMENT Items:There will be a midterm, final and two periodical examinationsGRADING:Midterm 10%Final Exam 50%Two periodical Exam 20%(each 10%)Exercises 20%REFERENCE BOOKS:1.Stewart, James. Calculus: Early Transcendentals. 7th ed. Brooks/Cole, CengageLearning 20122.Ross L. Finney. Calculus. 10th edition. Maurice D. Weir and Frank R. Giordano 2010。
高等数学的英文版教材
高等数学的英文版教材Higher Mathematics: An English TextbookIntroductionHigher Mathematics plays a crucial role in the academic curriculum of various scientific and technical fields. It provides students with a solid foundation in mathematical concepts and techniques, enabling them to solve complex problems and conduct advanced research. This textbook, titled "Higher Mathematics: An English Textbook," aims to provide comprehensive and accessible content for students studying higher mathematics in English.Chapter 1: Numbers and Algebra1.1 Number Systems1.1.1 Real Numbers1.1.2 Complex Numbers1.1.3 Rational Numbers1.1.4 Irrational Numbers1.2 Algebraic Expressions1.2.1 Polynomial Expressions1.2.2 Rational Expressions1.2.3 Exponential Expressions1.2.4 Logarithmic ExpressionsChapter 2: Calculus2.1 Limits and Continuity2.1.1 Definition of Limits2.1.2 Properties of Limits2.1.3 Continuity of Functions2.1.4 Intermediate Value Theorem2.2 Differentiation2.2.1 Derivative Definition and Rules 2.2.2 Chain Rule2.2.3 Higher Order Derivatives2.2.4 Applications of Differentiation 2.3 Integration2.3.1 Definite and Indefinite Integrals 2.3.2 Fundamental Theorem of Calculus 2.3.3 Techniques of Integration2.3.4 Applications of Integration Chapter 3: Linear Algebra3.1 Vectors3.1.1 Vector Definition and Properties3.1.2 Vector Operations3.1.3 Dot and Cross Products3.1.4 Vectors in Three Dimensions3.2 Matrices3.2.1 Matrix Notation and Operations3.2.2 Matrix Inversion3.2.3 Determinants3.2.4 Systems of Linear EquationsChapter 4: Differential Equations4.1 First-Order Differential Equations4.1.1 Separable Equations4.1.2 Linear Equations4.1.3 Exact Equations4.1.4 Applications of First-Order Differential Equations 4.2 Second-Order Differential Equations4.2.1 Homogeneous Equations4.2.2 Non-homogeneous Equations4.2.3 Solving with Power Series4.2.4 Applications of Second-Order Differential EquationsChapter 5: Probability and Statistics5.1 Probability5.1.1 Basic Probability Concepts5.1.2 Probability Distributions5.1.3 Conditional Probability5.1.4 Statistical Independence5.2 Statistics5.2.1 Descriptive Statistics5.2.2 Statistical Inference5.2.3 Hypothesis Testing5.2.4 Regression and Correlation AnalysisConclusion"Higher Mathematics: An English Textbook" presents a comprehensive and accessible approach to learning advanced mathematical concepts. Through systematic coverage of topics such as numbers and algebra, calculus, linear algebra, differential equations, and probability and statistics, this textbook equips students with the necessary skills to excel in higher mathematics. With its clear explanations and numerous examples, it serves as an invaluable resource for students pursuing academic and professional careers in science, technology, engineering, and mathematics (STEM) fields.。
(高等数学英文课件)Some exercises of CHAPTER 3
2 y 1 1 x 2
x32y
3,3,1,1
y2x3
目录 上页 下页 返回 结束
P236 44.
Analysis. L x 9 0 0 x 22 5 0 0 1 5 0 x 2 ,x 0 ,1 5 0 .
Lx x 150x 900x2 2500150x2
0
x
150x
900x2 2500150x2
sinbsinaba
Analysis. If a=b, it holds obviously. So we suppose that a is not equals to b, and a<b.
sinbsinaba sinbsina 1
ba
while sinbsinacos,a,b. cos 1
ba
P245 44. Continuous. According to Theorem 10(P130).
目录 上页 下页 返回 结束
P256 58. What can you say about the inflection point
of a cubic curve y a x 3 b x 2 c x d a 0 ? Given
Analysis. yxy2yy0 y y
x 2y
1. yy x2yyx2xy2yy212y
2. yxy2yy0
y y x y 2 y y 2 y y 0
目录 上页 下页 返回 结束
P204 33. Find the slope of the curve at the given value of t .
x2co s2y siny0 ,0 ,.
Analysis. x2cos2ysiny0
《高等数学课件-全英文版(英语思维篇)》
Discover the Fundamental Theorem of Calculus and its significance in integration.
Riemann Sums
Explore Riemann sums as a method for approximating definite integrals.
Functions and Graphs
Types of Functions
Discover the different types of functions and their graphical representations.
Graph Plotting
Learn how to plot and analyze functions using mathematical tools and software.
Differentiation
1
Derivative Definition
Learn the definition and basic rules
Chain Rule
2
of differentiation.
Discover how to differentiate
composite functions using the
Work and Energy
Explore how integration is used to calculate work and energy in various scenarios.
Differential Equations
1
Introduction to Differential
高等数学(微积分学)专业术语名词概念定理等英汉对照
高等数学(微积分学)专业术语名词概念定理等英汉对照目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limi t (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and the Application of Derivatives (3)第四章不定积分Chapter 4 Indefinite Intergrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geomertry and Vector Algebra (4) 第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variables and Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Surface Integral s (6) 第十一章无穷级数Chapter 11 Infinite Series (6)第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达Part 2 English Expression for Theorem,Definition and Formula第一章函数与极限Chapter 1 Function and Limi t (19)1.1映射与函数(Mapping and Function ) (19)1.2数列的极限(Limit of the Sequence of Number) (20)1.3函数的极限(Limit of Function) (21)1.4无穷小与无穷大(Infinitesimal and Inifinity) (23)1.5极限运算法则(Operation Rule of Limit) (24)1.6极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7无穷小的比较(The Comparison of infinitesimal) (26)1.8函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10闭区间上联系汗水的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives ofImplicit Functions and Functions Determined by Parametric Equation andCorrelative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hopital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Product and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals (121)10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) (121)10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) (123)10.3 格林公式及其应用(Green's Formula and Its Applications) (124)10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) (126)10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) (128)10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) (130)10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) (133)11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) (137)11.3 幂级数(power Series). (143)11.4 函数展开成幂级数(Represent the Function as Power Series) (148)11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The UnanimousConvergence of the Series of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series) (152)11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation (155)12.1微分方程的基本概念(The Concept of DifferentialEquation) (155)12.2可分离变量的微分方程(Separable Differential Equation) (156)12.3齐次方程(Homogeneous Equation) (156)12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5全微分方程(Total Differential Equation) (158)12.6可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7高阶线性微分方程(Linear Differential Equation of HigherOrder) (159)12.8常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) (164)12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus V ocabulary 第一章函数与极限Chapter1 Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood领域的半径radius of a neighborhood左领域left neighborhood右领域right neighborhood 映射mappingX到Y的映射mapping of X ontoY 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function 单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于 a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数()f x当x趋于x0时的极限limit of functions () f x as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order 等阶无穷小equivalent infinitesimal函数的连续性continuity of a function增量increment函数()f x在x0连续the function ()f x is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数()f x在该区间上连续function ()f x is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function 导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives()f x在闭区间【a,b】上可导()f x is derivable on the closed interval [a,b]切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log- derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error 绝对误差absolute error 相对误差relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式indeterminate form of type 0/0不定式indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term 麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward, cancave up凹向下的,向上凸的concave downward’concave down拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) mximum极小值local(relative) minimum最小值global(absolute) minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(antiderivative) 积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an integvals牛顿-莱布尼茨公式Newton-Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution 递推公式recurrence formula反常积分improper integral反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector 三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product 曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface 椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve 空间曲线的参数方程parametric equations of a space curve螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes 点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order二阶偏导数second order partial derivative 混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function 曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient 数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values 条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test 交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series 阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system 傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a dirrerential equation 常微分方程ordinary differential equation偏微分方程partial differential equation,PDE微分方程的阶order of a differential equation微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation 初值问题initial value problem微分方程的积分曲线integral curve of a differential equation 可分离变量的微分方程variable separable differential equation 隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order 自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation 串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency 简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficient第二部分定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X , Y 是两个非空集合 , 如果存在一个法则f ,使得对X 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应 , 则称f 为从X 到 Y 的映射 , 记作:f X Y →。
高等数学英文版课件PPT 03 The mean value theorem and curve sketching.ppt
THE TEST FOR CONCAVITY Suppose f is twice differentiable on an interval I. (a) If f "(x) > 0 for all x in I, then the graph of f is concave
x
Example 3 Find the local and absolute extreme values of the function f(x)= x3(x -2)2, -1 3. Sketch its graph.
f(6/5)=1.20592 is a local maximum; f(2)=0 is a local minimum; absolute maximum value is f(3)=27; absolute minimum value is f(-1)=-9. The sketched in Figure 6.
(b) If f ' changes from negative to positive at c then f has a local minimum at c.
(c) If f ' does not change sign at c (that is f ' is positive on both sides of c or negative on both sides), then f has no local extremum at c.
It is similar to prove (b).
f (x2 ) f (x1) 0 or f (x1) f (x2 ).
Example 1 Find where the function f (x) = 3x4 - 4x3 - 12x2 +5 is increasing and where it is decreasing.
高等数学的英文教材
高等数学的英文教材Higher Mathematics English TextbookIntroduction:Higher Mathematics is a fundamental subject in the field of mathematics, which is extensively studied in higher education institutions worldwide. This English textbook aims to provide a comprehensive guide to higher mathematics concepts, theories, and applications.Chapter 1: Real Numbers1.1 Number Systems- Natural Numbers- Integers- Rational Numbers- Irrational Numbers- Real Numbers1.2 Sets and Functions- Set Theory- Functions and their Types- Mapping and Compositions- Inverse FunctionsChapter 2: Limits and Continuity2.1 Definitions and Properties- The Concept of Limits- Limit Laws and Basic Operations- One-Sided Limits- Infinite Limits2.2 Continuity- Definition and Types of Continuity- Intermediate Value Theorem- Discontinuities and Their Classification Chapter 3: Differentiation3.1 Derivatives- Definition and Notation- Rules of Differentiation- Higher Order Derivatives- Implicit Differentiation3.2 Applications of Differentiation- Tangent and Normal Lines- Optimization Problems- Related Rates- Linear ApproximationChapter 4: Integration4.1 Definite Integrals- Riemann Sums- Fundamental Theorem of Calculus- Techniques of Integration- Improper Integrals4.2 Applications of Integration- Area and Volume- Arc Length and Surface Area- Differential Equations- Applications in Physics and Engineering Chapter 5: Sequences and Series5.1 Sequences- Definitions and Notation- Convergence and Divergence- Arithmetic and Geometric Sequences- Limit and Ratio Tests5.2 Series- Types of Series- Convergence Tests- Power Series- Taylor SeriesChapter 6: Differential Equations6.1 First-Order Differential Equations- Separable Equations- Exact Equations- Linear Equations- Bernoulli Equations6.2 Second-Order Linear Differential Equations - Homogeneous Equations- Non-Homogeneous Equations- Boundary Value Problems- Method of Undetermined Coefficients Chapter 7: Multivariable Calculus7.1 Functions of Several Variables- Domain and Range- Limits and Continuity- Partial Derivatives and Gradients- Maximum and Minimum Values7.2 Multiple Integrals- Double and Triple Integrals- Change of Variables- Applications in 3D Space- Surface and Volume IntegralsConclusion:This Higher Mathematics English Textbook provides a structured and comprehensive overview of various concepts and principles in higher mathematics. With its clear explanations, examples, and applications, it aims to enhance students' understanding and problem-solving abilities in this critical subject area.。
高等数学的 英语教材
高等数学的英语教材Higher Mathematics English TextbookIntroduction:Higher Mathematics is an essential subject in college education, providing students with a deeper understanding of mathematical concepts and their applications. To enhance international communication and cater to the needs of English-speaking students, an English textbook for Higher Mathematics is vital. This article aims to explore the importance of a Higher Mathematics English textbook and discuss its potential content.1. The Need for an English Textbook in Higher Mathematics:In today's globalized world, English serves as the lingua franca for academia and professional fields. Therefore, an English textbook for Higher Mathematics is necessary to facilitate communication and broaden the reach of educational resources. It allows non-native English speakers to grasp mathematical concepts more effectively and enables students to access international research and literature.2. Core Content of the Higher Mathematics English Textbook:2.1 Fundamental Concepts:The textbook should begin with an introduction to fundamental mathematical concepts, such as limits, derivatives, integrals, and differential equations. Clear and concise explanations should be provided, along with illustrative examples to enhance understanding.2.2 Applications in Science and Engineering:High-level mathematics plays a crucial role in various scientific and engineering disciplines. The English textbook should include chapters that illustrate the practical application of mathematics in fields like physics, chemistry, engineering, and computer science. Real-life examples and case studies should be incorporated to demonstrate how mathematical principles are used to solve problems and make predictions.2.3 Advanced Topics:The English textbook should also cover advanced topics, including vector calculus, linear algebra, complex analysis, and partial differential equations. These topics are fundamental for students pursuing degrees in mathematics, physics, or engineering. Thorough explanations, along with exercises of various difficulty levels, should be included to ensure a comprehensive understanding of these advanced concepts.3. Pedagogical Features of the Higher Mathematics English Textbook:3.1 Clear and Concise Language:To cater to non-native English speakers, the textbook should use clear and concise language. Complex mathematical terms should be explained thoroughly, and jargon should be avoided as much as possible.3.2 Visual Illustrations:The inclusion of visual aids, such as graphs, diagrams, and charts, can greatly enhance the comprehension of mathematical concepts. These illustrations should be accompanied by clear explanations, ensuring a comprehensive learning experience for students.3.3 Exercises and Solutions:The English textbook should contain a wide range of exercises and problems to reinforce students' understanding and encourage active learning. Solutions or step-by-step explanations should be provided to assist students in self-study and self-assessment.4. Conclusion:In conclusion, the development of an English textbook for Higher Mathematics is crucial in promoting effective communication and expanding educational resources. With clear explanations, practical applications, and comprehensive coverage of core concepts, advanced topics, and pedagogical features, this textbook will provide international students with a valuable resource for studying Higher Mathematics in English. By bridging the language barrier, students will have equal opportunities to excel in this essential academic discipline.。
mean value theorem
mean value theorem平均值定理(MeanValueTheorem),又称函数局部有界定理,是微积分中重要的定理之一。
它指出,在满足一定条件的情况下,一个函数在某一区间上的局部有界,可以提供一定的计算结果。
该定理最先由18世纪英国数学家兼物理学家乔治瓦特(George William Waller)在1797年提出,根据其不同的演绎,该定理也称为瓦特定理(Waller Theorem)。
它的准确的定义是:如果f()为在闭区间[a,b]上连续的函数,则存在一个x,使得满足:f(x) = (f(b)-f(a))/(b-a)这个x称为该函数在[a,b]上的“平均值”。
平均值定理最早由18世纪英国数学家兼物理学家乔治瓦特(George William Waller)提出,它有许多不同的形式,其中一个最常见的是:在某个闭区间上的任一函数的切线有一定的斜率值,并且与该函数的变化有关。
【平均值定理的证明】平均值定理的证明有多种方法,以下给出的是做法一:设[a,b]上的任意函数f(x)为连续函数,f(x)存在,f(x)可导,则存在一个量x∈(a,b),使得:f(x)= lim (f(b)-f(a))/(b-a)可以用数学归纳法根据上述公式,证明平均值定理成立。
证:首先,假设f(x)在[a,b]上是单调增函数,即f(x)>0;令u=f(b)-f(a)那么u=[f(b)-f(a)]*(b-a)>0令u=[f(b)-f(a)]*(b-a)+f(x)*(b-a),根据式子,有:f(x)=f(b)+(f(a)-f(b))*(b-a)/(b-a)=f(b)-(f(b)-f(a))*(b-a)/(b -a)当f(x)在[a,b]上单调减时,f(x)<0,那么u=[f(b)-f(a)]*(b-a)<0令u=[f(b)-f(a)]*(b-a)+f(x)*(b-a)有:f(x)=f(b)+(f(a)-f(b))*(b-a)/(b-a)=f(b)-(f(b)-f(a))*(b-a)/(b -a)显然,无论f(x)在[a,b]上单调递增还是单调递减,f(x)都与u 有关,从而等式的左右两边都小于0,即平均值定理成立。
高数双语课件section3_2.pptx
F ( x) F ( x) F ( x0 ) F ( ) f ( ) , G( x) G( x) G( x0 ) G( ) g( ) where lies between x0 and x .
x
.
SolutionIt is easy to check that the conditions of L’Hospital’s rules are satisfied for the function x sin x and x3. By L’Hospital’s rules, we have
cos x
we have
lim x lnsin
x0
x2 lim
x
lim x0
0.
ln sin 1 x
x
lim
x0
sin x
1 x2
x0 sin x
Thus,
lim (sin x)x e xlim0 xlnsin x e0 1.
x0
Finish.
13
Indeterminate Forms
means So, Finish.
f ( x)
lim
A
xx0 g( x)
f ( )
lim
x x0
g( )
A
.
f (x)
F(x)
f ( )
lim
x x0
g( x)
lim
x x0
G( x)
lim
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令x=0,得
又
故所证等式在定义域
(常数) 上成立.
欲证 x I 时 f (x) C0, 只需证在 I 上 f (x) 0,
且 x0 I , 使 f (x0 ) C0.
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example 3. Find the function
whose derivative is
证: 设 f (t) ln(1 t) ,
中值定理条件, 因此应有
即 因为 故
目录 上页 下页 返回 结束
Relation of Rolle and Lagrange Theorem
目录 上页 下页 返回 结束
例. 设 f (x) C[ 0, π ], 且在 ( 0, π )内可导, 证明至少存
目录 上页 下页 返回 结束
The hypotheses of Theorem 3 are essential. If they fail, the result may not holds.
目录 上页 下页 返回 结束
Example 1. Show that the equation has exactly one real root.
Chapter 3 Applications of Derivatives
3.1 Extreme Values of Functions 3.2 The Mean Value Theorem and Differential
Equations 3.3 The Shape of a Graph 3.4 Graphical Solutions of Autonomous
Differential Equations 3.5 Modeling and Optimization 3.6 Linearization and Differentials 3.7 Newton’s Method
目录 上页 下页 返回 结束
3.2
The Mean Value Theorem and Differential Equations
sinx and whose graph passes through the point (0,2).
Solution.
f x cos x C
Whereas,
That is to say f 0 1 C 2,
thus
f x 3 cos x
目录 上页 下页 返回 结束
例. 证明不等式 x ln(1 x) x (x 0). 1 x
目录 上页 下页 返回 结束
3.2.1 Rolle Theorem 3.2.2 Lagrange Theorem 3.2.3 Differential Equations
目录 上页 下页 返回 结束
3.2.1
Rolle Theorem
目录 上页 下页 返回 结束
Let’s us graph a function which satisfied with…
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
满足: (1) 在区间 [a , b] 上连续; (2) 在区间 (a , b) 内可导 (3) f ( a ) = f ( b )
在( a , b ) 内至少存在一点 使 f ( ) 0.
目录 上页 下页 返回 结束
According to Theorem 1, f has both absolute maximum and minimum values on the closed interval [a,b] .
Solution. 1. It has real root
f x x3 3x 1 lim f x x 2. It has only one real root. c a,b, f c 0 Whereas,
目录 上页 下页 返回 结束
3.2.2
Lagrange Theorem
目录 上页 下页 返回 结束
在一点 ( 0, π ), 使 f ( ) f ( )cot .
提示: 由结论可知, 只需证
即
f (x )sin x x 0
设
F(x) f (x)sin x
验证 F (x ) 在 [ 0, π ] 上满足罗尔定理条件.
3 1, 5, 12(a). P244 15. P245 42, 43, 44.
目录 上页 下页 返回 结束
推论1 若函数 在区间 I 上满足
则
在 I 上必为常数.
证 在 I 上任取两点
格朗日中值公式 , 得
0
f ( ) f (b) f (a) , (a,b)
由 的任意性知,b a 在 I 上为常数 .
目录 上页 下页 返回 结束
例. 证明等式 证: 设
由推论4.1可知
满足: (1) 在区间 [ a , b ] 上连续 (2) 在区间 ( a , b ) 内可导
至少存在一点
使 f ( ) f (b) f (a).
ba
目录 上页 下页 返回 结束
Rolle Theorem
目录 上页 下页 返回 结束
满足: (1) 在区间 [ a , b ] 上连续 (2) 在区间 ( a , b ) 内可导
至少存在一点
使 f ( ) f (b) f (a).
ba
Proof.
1. Continuous on the closed interval [a,b];
2. Differentiable on the interval interior (a,b); 3.
目录 上页 下页 返回 结束
Rolle Theorem