2012年广东省广州市中考试题(数学)WORD版 (答案扫描版)
2012年广东省广州市中数学考试题(WORD版 答案扫描版)
2012年广州市初中毕业生学业考试数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的) 1.实数3的倒数是( )。
(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12-=x y(B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。
(A )、156=-a a (B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26 (B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、536 (B )、2512 (C )、49 (D )、433 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc (D )、ac >bc9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形(D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
2012年广东省广州市中考数学试卷
2012年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分在每小题给出的四个选项中只有一项是符合题目要求的)1 实数3的倒数是()A ﹣BC ﹣3D 32 将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A y=x2﹣1B y=x2+1C y=(x﹣1)2D y=(x+1)23 一个几何体的三视图如图所示,则这个几何体是()A 四棱锥B 四棱柱C 三棱锥D 三棱柱4 下面的计算正确的是()A 6a﹣5a=1B a+2a2=3a3C ﹣(a﹣b)=﹣a+bD 2(a+b)=2a+b5 如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A 26B 25C 21D 206 已知|a﹣1|+=0,则a+b=()A ﹣8B ﹣6C 6D 87 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A B C D8 已知a>b,若c是任意实数,则下列不等式中总是成立的是()A a+c<b+cB a﹣c>b﹣cC ac<bcD ac>bc9 在平面中,下列命题为真命题的是()A 四边相等的四边形是正方形B 对角线相等的四边形是菱形C 四个角相等的四边形是矩形D 对角线互相垂直的四边形是平行四边形10 如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A x<﹣1或x>1B x<﹣1或0<x<1C ﹣1<x<0或0<x<1D ﹣1<x<0或x>1参考答案:1-5: BADCC6-10:BABCD二、填空题(本大题共6小题,每小题3分,满分18分)11 已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度12 不等式x﹣1≤10的解集是_________13 分解因式:a3﹣8a=_________14 如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_________15 已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为_________16 如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_________倍,第n个半圆的面积为_________(结果保留π)参考答案:11、1512、x≤1113、a(a-8)14、2 15、-3 16、4;2^(2n-5)π三、解答题(本大题共9小题,满分102分解答应写出文字说明,证明过程或演算步骤)17 解方程组18 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C 求证:BE=CD19 广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是_________,极差是_________(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是_________年(填写年份)(3)求这五年的全年空气质量优良天数的平均数20 已知(a≠b),求的值21 甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3 乙袋中的三张卡片所标的数值为﹣2,1,6 先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标(1)用适当的方法写出点A(x,y)的所有情况(2)求点A落在第三象限的概率22 如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N 在点M的上方(1)在图中作出⊙P关于y轴对称的⊙P′根据作图直接写出⊙P′与直线MN的位置关系(2)若点N在(1)中的⊙P′上,求PN的长23 某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费设某户每月用水量为x 吨,应收水费为y元(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?24 如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D 的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式25 如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°)(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值参考答案:17、x=5 y=-318、证明:⊿ABE ≌⊿ACD(ASA)19、(1)345 ;24 (2)2008 () 343.220、原式=(a+b)/ab=1/a+1/b=根号521、(1) (-7,-2)(-7,1)(-7,6)(-1,-2)(-1,1)(-1,6)(3,-2)(3,1)(3,6)(2)2/922、(1)相交(2)根号6923、(1)y=1.9x(0≤x≤20)另一个范围的是y=2.8x-18(x>20)(2)30吨24、(1)A(-4,0)B(2,0)(2)D1(-1,27/4),D2(-1,-9/4)(3)y=(-3/4)x +3 或y=(3/4)x -325、(1)5根号3(2)取BC中点G,连FG交EC于H、连EG得EG=GC,FDCD是菱形∴∠DFC=∠GFC∵∠CGH=∠CEB=90°∴FG是EC的垂直平分线∴∠GFE=∠GFC∵∠AEF=∠GFE∴∠AFE=∠GFE=∠GFC=∠DFC∴∠EFD=3∠AFE∴k=3(3)设GH=x,则BE=2xCE²=10²-(2x)²=100-4x²,CF²=FH²+CH²=(5-x)²+5²-x²=50-10xCE²-CF²=50-4x²+10x当x=-10/2×(-4)=5/4时有最大值,此时FH=5-x=15/4,CH=√5²-(5/4)²=5√15/4 ∴tan∠FCD=tan∠GFC=CH/FH=√15/3。
2012年广东广州中考数学试题(含答案)
一、选择题(共10小题,每题3分,共30分)1.实数3的倒数是()A.-13 B.13C.-3 D.32.将二次函数2=y x的图象向下平移1个单位,则平移后的二次函数的解析式为()A.2=1y x-B.2=+1y xC.2=(1)y x-D.2=(+1)y x3.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱第3题图第5题图4.下面的计算正确的是()A.6a-5a=1 B.a+2a2= 3a3C.-(a-b) =-a+b D.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD =5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.已知|1|+7+a b-=0,则a+b=()A.-8 B.-6 C.6 D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3348.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a +c<b+ c B.a-c>b-cC.ac<bc D.ac>bc9.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y1=k1x和反比例函数22kyx=的图象交于A (-1,2),B(1,-2)两点,若y1<y2,则x的取值范围是()A.x<-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1D.-1<x<0或x>1二、填空题(共6小题,每题3分,共18分)11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度.12.不等式x-1≤10的解集是_____________.13.分解因式:a2-8a=_____________________.14.如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_____.15.已知关于x的一元二次方程223=0x x k--有两个相等的实数根,则k的值为____________.16.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;2012年广东广州中考数学试题(满分150分,考试时间120分钟)BAyx-3213-32-21-13-2-1O以BC =2为直径画半圆,记为第2个半圆; 以CD =4为直径画半圆,记为第3个半圆; 以DE =8为直径画半圆,记为第4个半圆; ……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_____倍,第n 个半圆的面积为______________.(结果保留π)三、解答题(共9小题,共102分) 17. (9分)解方程组:{=83+=12x y x y -.18. (9分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:BE =CD .19. (10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________,极差是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是_____年(填写年份); (3)求这五年的全年空气质量优良天数的平均数.20. (10分)已知11+=5a ba ≠b ),求()ab a b --()ba ab -的值.21. (12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标,纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况; (2)求点A 落在第三象限的概率.22. (12分)如图,⊙P 的圆心为P (-3,2),半径为3,直线MN 过点M (5,0)且平行于y 轴,点N 在点M 的上方.(1)在图中作出⊙P 关于y 轴对称的⊙P ',根据作图直接写出⊙P '与直线MN 的关系; (2)若点N 在(1)中的⊙P '上,求PN 的长.23. (12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24. (14分)如图,抛物线233384y x x =--+与x轴交于A ,B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.25. (14分)如图,在平行四边形ABCD 中,AB =5,BC =10,F 为AD 的中点,CE ⊥AB 于点E ,设∠ABC=α(60°≤α<90°). (1)当α=60°时,求CE 的长. (2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD =k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.2012年广东广州中考数学参考答案y xOCBA一、选择题二、填空题(共18分,每题3分)三、解答题(共102分)17.53 xy=⎧⎨=-⎩18.证明略19.(1)345,24;(2)2008;(3)343.22021.(1)树状图略,共9种情况;(2)2 922.(1)图略,⊙P'与直线MN相交;(2)PN23.(1)当每月用水量未超过20吨时,y与x间的函数关系式:y=1.9x(0≤x≤20);当每月用水量超过20吨时,y与x间的函数关系式:y=2.8x-18(x>20);(2)30吨24.(1)A(-4,0),B(2,0);(2)点D的坐标(-1,274-)或(-1,94-);(3)334y x=-+或334y x=-25.(1)(2)①存在,k=3;②3。
2012年广东广州中考数学试题(含答案)
一、选择题(共10小题,每题3分,共30分)1.实数3的倒数是()A.-13 B.13C.-3 D.32.将二次函数2=y x的图象向下平移1个单位,则平移后的二次函数的解析式为()A.2=1y x-B.2=+1y xC.2=(1)y x-D.2=(+1)y x3.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱第3题图第5题图4.下面的计算正确的是()A.6a-5a=1 B.a+2a2= 3a3C.-(a-b) =-a+b D.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD =5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.已知|1|+7+a b-=0,则a+b=()A.-8 B.-6 C.6 D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3348.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a +c<b+ c B.a-c>b-cC.ac<bc D.ac>bc2012年广东广州中考数学试题(满分150分,考试时间120分钟)9.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y1=k1x和反比例函数2 2kyx=的图象交于A (-1,2),B(1,-2)两点,若y1<y2,则x的取值范围是()A.x<-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1D.-1<x<0或x>1二、填空题(共6小题,每题3分,共18分)11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度.12.不等式x-1≤10的解集是_____________.13.分解因式:a2-8a=_____________________.14.如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_____.15.已知关于x的一元二次方程223=0x x k--有两个相等的实数根,则k的值为____________.16.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_____倍,第n个半圆的面积为______________.(结果保留π)BAyx-3213-32-21-13-2-1O三、解答题(共9小题,共102分) 17. (9分)解方程组:{=83+=12x y x y -.18. (9分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:BE =CD .19. (10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________,极差是________; (2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是_____年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.20. (10分)已知11+a ba ≠b ),求()ab a b -- ()ba ab -的值.21. (12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标,纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况;(2)求点A落在第三象限的概率.22.(12分)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P',根据作图直接写出⊙P'与直线MN的关系;(2)若点N在(1)中的⊙P'上,求PN的长.23.(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨 2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式; (2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24. (14分)如图,抛物线233384y x x =--+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.25.(14分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于点E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长.(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.2012年广东广州中考数学参考答案一、选择题(共30分,每题3分)二、填空题()三、解答题()17.53x y =⎧⎨=-⎩18.证明略19.(1)345,24;(2)2008;(3)343.22021.(1)树状图略,共9种情况;(2)2922.(1)图略,⊙P '与直线MN 相交;(2)PN 23.(1)当每月用水量未超过20吨时,y 与x 间的函数关系式:y =1.9x (0≤x ≤20);当每月用水量超过20吨时,y 与x 间的函数关系式:y =2.8x -18(x >20);(2)30吨24.(1)A (-4,0),B (2,0);(2)点D 的坐标(-1,274-)或(-1,94-);(3)334y x =-+或334y x =-25.(1)(2)①存在,k =3。
2012年广州中考数学真题卷含答案解析
2012年广州市初中毕业生学业考试数学30A(满分:150分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数3的倒数是()A.-13B.13C.-3D.32.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)23.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.下面的计算正确的是()A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26B.25C.21D.206.已知|a-1|+√7+b=0,则a+b=()A.-8B.-6C.6D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3√348.已知a>b,若c 是任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C .ac<bc D.ac>bc 9.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x 的图象交于A(-1,2)、B(1,-2)两点,若y 1<y 2,则x的取值范围是( )A.x<-1或x>1 B .x<-1或0<x<1 C.-1<x<0或0<x<1 D.-1<x<0或x>1第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠ABC=30°,BD 是∠ABC 的平分线,则∠ABD= 度. 12.不等式x-1≤10的解集是 . 13.分解因式:a 2-8a= .14.如图,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD,△ABD 绕点A 旋转后得到△ACE,则CE 的长度为 .15.已知关于x 的一元二次方程x 2-2√3x-k=0有两个相等的实数根,则k 的值为 . 16.如图,在标有刻度的直线l 上,从点A 开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n 个半圆的面积为 (结果保留π).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分) 解方程组:{x -y =8,3x +y =12.18.(本小题满分9分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.30B20.(本小题满分10分)已知1a +1b =√5(a ≠b),求ab(a -b)-ba(a -b)的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标. (1)用适当的方法写出点A(x,y)的所有情况; (2)求点A 落在第三象限的概率.22.(本小题满分12分)如图,☉P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出☉P关于y轴对称的☉P',根据作图直接写出☉P'与直线MN的位置关系;(2)若点N在(1)中的☉P'上,求PN的长.23.(本小题满分12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?24.(本小题满分14分)如图,抛物线y=-38x 2-34x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C.(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E(4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.25.(本小题满分14分)如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE ⊥AB 于点E,设∠ABC=α(60°≤α<90°). (1)当α=60°时,求CE 的长; (2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k ∠AEF?若存在,求出k 的值;若不存在,请说明理由; ②连结CF,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.2012年广州市初中毕业生学业考试一、选择题1.B由倒数的定义可知,a(a≠0)的倒数是1a,故选B.评析本题考查了倒数的意义,学生很容易混淆倒数和相反数这两个概念,属简单题.2.A根据函数图象的平移规律可得到y=x2-1,故选A.3.D由左视图和主视图可知:几何体是柱体,再由俯视图可知:几何体的底面是三角形,故选D.4.C由同类项的定义可知:选项A中,6a与-5a是同类项,其合并的结果应为a,故A错;选项B 中,a与2a2不是同类项,不能合并,故B错;选项D是单项式与多项式相乘,由乘法法则可知结果应为2a+2b,故D错;选项C由去括号法则可知其正确.5.C因为BC∥AD,DE∥AB,由平行四边形的定义可知:四边形ABED是平行四边形,所以BE=AD=5,从而BC=BE+EC=5+3=8;又因为四边形ABCD是等腰梯形,且BC∥AD,所以AB=CD=4,从而梯形ABCD的周长为4+4+5+8=21,故选C.6.B由于|a-1|+√7+b=0,则根据实数的绝对值和算术平方根的非负性可知|a-1|和√7+b均为0,所以a=1,b=-7,从而a+b=-6,故选B.7.A点C到AB的距离即等于AB边上的高,作出其高CD,在Rt△ABC中,由勾股定理可得AB=√AC2+BC2=√92+122=15,再由S△ABC=12AB·CD=12AC·BC可求得CD=365,故选A.8.B由不等式的基本性质可知:选项A错;当c≥0时,选项C不成立,故C错;当c≤0时,选项D 不成立,故D错;由不等式的基本性质可知选项B正确,故选B.9.C由平行四边形、菱形和正方形的定义及判定可知:A、B、D均错;对于选项C,由于四边形的内角和是360°,故四角相等时均为直角,由矩形判定可知C正确.评析本题考查了正方形、菱形、矩形、平行四边形的判定方法,是一道简单的综合问题,中考常结合起来进行考查,属容易题.10.D当正比例函数y1=k1x和y2=k2x的图象交于两点A(-1,2)、B(1,-2)时,要判断其函数值的大小关系,首先要根据两函数图象的两交点横坐标-1、1和x≠0将x的取值范围划分成六个部分:x<-1、x=-1、-1<x<0、0<x<1、x=1、x>1;其次再结合图象可知:若y1<y2,则-1<x<0或x>1,故选D.二、填空题11.答案15解析由角平分线定义可知∠ABD=12∠ABC=15°.12.答案x≤11解析由不等式基本性质可知x≤11.13.答案a(a-8)解析用提公因式法可分解得到.14.答案2解析 ∵△ABC 是等边三角形,∴BC=AB=6,又BC=3BD,∴BD=2,∵△ABD 绕点A 旋转后得到△ACE,∴CE=BD=2. 15.答案 -3解析 ∵关于x 的一元二次方程x 2-2√3x-k=0有两个相等的实数根,∴Δ=(2√3)2-4·1·(-k)=0,∴k=-3. 16.答案 4;π·22n-5解析 由题意可知:半圆的直径依次扩大2倍,第3个和第4个半圆的直径分别为4和8,其面积分别为2π、8π,所以第4个半圆的面积是第3个半圆面积的4倍.从第1个半圆开始,其直径依次为20、21、22、23、…,第n 个半圆的直径为2n-1,其半径为2n-2,面积为12π(2n-2)2=π·22n-5. 评析 本题考查的是规律探索,其关键是得出第n 个半圆的半径为2n-2,是一道难题.三、解答题17.解析 {x -y =8, ①3x +y =12,②①+②得4x=20,x=5.(4分)把x=5代入①得5-y=8,y=-3.(8分)∴原方程组的解是{x =5,y =-3.(9分)18.解析 在△ABE 和△ACD 中, ∵{∠B =∠C,AB =AC,∠A =∠A,(4分) ∴△ABE ≌△ACD,(7分) ∴BE=CD.(9分)19.解析 (1)这五年的全年空气质量优良天数的中位数是345,极差是357-333=24. (4分,中位数和极差各2分)(2)这五年的全年空气质量优良天数与它前一年相比较,增加数为:2007年是333-334=-1,2008年是345-333=12,2009年是347-345=2,2010年是357-347=10,所以增加最多的是2008年.(7分) (3)334+333+345+347+3575=343.2(天),∴这五年的全年空气质量优良天数的平均数为343.2.(10分)评析 本题是一道统计题,首先要求学生能够正确理解图中数据的意义,考查了学生利用折线统计图分析问题和解决问题的能力,同时考查了中位数、极差、增长率、平均数的求法,属容易题. 20.解析ab(a -b)-ba(a -b)=a 2-b 2ab(a -b)=(a+b)(a -b)ab(a -b)=a+b ab .(5分)又∵1a +1b=√5(a ≠b),∴a+b ab=√5,(8分)∴原式=a+b ab=√5.(10分)评析 本题先化简分式再求值,考查了因式分解、整体思想,属中等题. 21.解析 (1)x:-7、-1、3, y:-2、1、6.(1分) 列表得:xy -7-1 3 -2 (-7,-2) (-1,-2)(3,-2) 1 (-7,1) (-1,1) (3,1) 6 (-7,6)(-1,6)(3,6)或画树状图得:(5分)由表格或树状图可知,A(x,y)的所有情况有9种:(-7,-2)、(-7,1)、(-7,6)、(-1,-2)、(-1,1)、(-1,6)、(3,-2)、(3,1)、(3,6).(8分)(2)若点A 落在第三象限,则x<0,y<0,(9分) ∴只有(-7,-2)、(-1,-2)符合条件.(10分) ∴P(点A 落在第三象限)=29.(12分)22.解析 (1)∵☉P 的圆心为P(-3,2),半径为3,∴☉P 关于y 轴对称的☉P'的圆心P'的坐标为(3,2),半径为3.(2分) ☉P'如图所示,(4分)由作图可知:☉P'与直线MN 相交.(6分) (2)连结PN 、P'N 、PP',并延长PP'与MN 相交于点D. ∵点P 、P'的坐标分别为(-3,2)、(3,2),∴PP'∥x 轴,从而有PD ⊥ND,P'D=5-3=2,PD=5-(-3)=8.(9分) ∴在Rt △P'DN 中,DN=2-P'D 22-22√5.(10分) ∴在Rt △PDN 中,PN=√PD 2+DN 2=√82+(√5)2=√69.(12分) 23.解析 (1)y={1.9x(0≤x ≤20),2.8x -18(x >20).(6分)(2)设该户5月份用水量为x 吨,则 2.8x-18=2.2x.(9分) 解得x=30.(11分)∴该户5月份用水量为30吨.(12分)24.解析 (1)在抛物线y=-38x 2-34x+3中令y=0,得x=-4或2,∴由题知点A 、B 的坐标分别是(-4,0)、(2,0).(2分) (2)抛物线y=-38x 2-34x+3中令x=0,得y=3, ∴点C 的坐标是(0,3).∴S △ABC =12AB ·OC=12×[2-(-4)]×3=9.(3分)抛物线y=-38x 2-34x+3的对称轴为x=-1,则点D 的横坐标为-1,故可设点D 的坐标为(-1,b),作DP ⊥y 轴于点P. ①当点D 在直线AC 上方时,若b>3,则S △ACD =S 梯形AOPD -S △CDP -S △AOC =12(1+4)·b-12(b-3)×1-12×4×3=2b-92,当S △ACD =S △ABC 时,即2b-92=9,b=274;(4分)若b<3,则S △ACD =S 梯形AOPD +S △CDP -S △AOC =12(1+4)·b+12(3-b)×1-12×4×3=2b-92<9. 若b=3,则S △ACD =12×1×3=32<9.∴此时点D 的坐标是(-1,274).(5分)②当点D 在直线AC 下方时,若b<0,则S △ACD =S 梯形AOPD +S △AOC -S △CDP =12(1+4)·(-b)+12×4×3-12(3-b)×1=-2b+92, 当S △ACD =S △ABC 时,-2b+92=9,b=-94;(6分)若b>0,则S △ACD =S △AOC -S 梯形AOPD -S △CDP =12×4×3-12×(1+4)×b-12×(3-b)×1=-2b+92<9; 若b=0,则S △ACD =12×(4-1)×3=92<9.∴此时点D 的坐标是(-1,-94).(7分) 综上,点D 的坐标是(-1,274)或(-1,-94).(8分)(3)设以AB 为直径的圆为☉Q,若直线l 与☉Q 没有公共点时,则以A 、B 、M 为顶点所作的直角三角形只有两个(即分别过点A 、B 作x 轴的垂线与直线l 相交时)或不存在(即直线l 与x 轴垂直时);(9分)若直线l 与☉Q 相交时,则以A 、B 、M 为顶点所作的直角三角形有四个,也即存在四个点M,即:分别过点A 、B 作x 轴的垂线与直线l 相交的两个交点及直线l 与☉Q 相交的两个交点;(10分)故当且仅当直线l 与☉Q 相切(设切点为点N)时,当以A 、B 、M 为顶点所作的直角三角形有且只有三个,即存在三个点M:分别过点A 、B 作x 轴的垂线与直线l 相交的两个交点及切点N.(11分)当切点N 在x 轴上方时,设直线l 与直线x=-1相交于点F,连结QN.∵点A 、B 的坐标分别是(-4,0)、(2,0),∴点Q 的坐标是(-1,0),则☉Q 的半径为3,QE=5,由相切可知:QN ⊥EF,故在Rt △QEN 中,NE=√QE 2-QN 2=√52-32=4.∵∠ENQ=∠EQF=90°,∠QEN=∠FEQ,∴△EQF ∽△ENQ,可得EN QN =EQ FQ ,即43=5FQ ,FQ=154,∴点F 的坐标为(-1,154).(12分)设直线l 的解析式为y=mx+n,分别代入点E(4,0)和点F (-1,154),可求得解析式为y=-34x+3.(13分) 当切点N 在x 轴下方时,由对称性可知:直线l 的解析式为y=34x-3,∴直线l 的解析式为y=34x-3或y=-34x+3.(14分)25.解析 (1)∵CE ⊥AB,∴∠BEC=90°,∴在Rt △BEC 中,sin α=CE BC ,∴CE=BCsin α=10×sin 60°=5√3.(3分)(2)解法一:连结CF 并延长交BA 延长线于点G.(4分)①存在满足要求的k,k=3.∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD=5,AD=BC=10.(5分)∴∠AGF=∠FCD,∠GAF=∠D,又AF=DF,∴△CFD ≌△GFA,得AG=CD=5,GF=FC,又∠CEG=90°,∴EF=GF,∴∠AEF=∠AGF.(6分)∵AG=5=AF,∴∠AGF=∠AFG=∠CFD=∠AEF,又∠EFC=∠AEF+∠AGF=2∠AEF,∴∠EFD=∠EFC+∠CFD=3∠AEF,故k=3.(8分)②设BE=x,则EG=AG+AE=10-x,在Rt △BEC 中,CE 2=BC 2-BE 2=100-x 2.(9分) 在Rt △GEC 中,CG 2=CE 2+EG 2=200-20x.(10分)∴CF 2=(12CG)2=50-5x.(11分)∴CE 2-CF 2=-x 2+5x+50=-(x -52)2+2254.(12分)当x=52时,CE 2-CF 2取最大值,此时CE=5√152,EG=152,(13分)∴tan ∠DCF=tan ∠AGF=CE EG =√153.(14分)解法二:作FN ⊥EC 于点N,连结CF.①存在满足要求的k,k=3.∵CE ⊥AB,FN ⊥EC,∴∠AEC=∠FNC=90°,∴AE ∥FN,∴∠AEF=∠EFN.(4分) ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD=5,AD=BC=10,∴AE ∥FN ∥CD,又AF=DF,∴EN=CN(平行线等分线段定理).(9分)又FN ⊥EC,∴EF=CF,∴∠EFN=∠CFN.∵FN ∥CD,∴∠CFN=∠FCD.∵FD=12AD=5=CD,∴∠FCD=∠CFD,∴∠EFD=∠EFN+∠CFN+∠CFD=3∠EFN=3∠AEF,故k=3.②同解法一.(14分)。
2012年广东省中考数学试卷
2012年广东省中考数学试卷一.选择题(共5小题)1.(2011河南)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.(2012广东)地球半径约为6400000米,用科学记数法表示为()A. 0.64×107B. 6.4×106C. 64×105D.640×104考点:科学记数法—表示较大的数。
解答:解:6400000=6.4×106.故选B.3.(2012广东)数据8、8、6、5、6、1、6的众数是()A. 1 B. 5 C. 6 D.8考点:众数。
解答:解:6出现的次数最多,故众数是6.故选C.4.(2012广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。
解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.5.(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B. 6 C. 11 D.16考点:三角形三边关系。
解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.二.填空题(共5小题)6.(2012广东)分解因式:2x2﹣10x=2x(x﹣5).考点:因式分解-提公因式法。
解答:解:原式=2x(x﹣5).故答案是:2x(x﹣5).7.(2012广东)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。
解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.(2012广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。
解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:509.(2012广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。
2012年广州中考数学试卷及答案(含压轴题详细答案)
2012年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题 (共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 实数3的倒数是( )A .31-B .31C .3-D .32. 将二次函数2x y =的图像向下平移1个单位,则平移后的二次函数的解析式为( )A .12-=x yB .12+=x yC .2)1(-=x yD .2)1(+=x y3. 一个几何体的三视图如图1所示,则这个几何体是( )A . 四棱锥B .四棱柱C .三棱锥D .四棱柱4.下面的计算正确的是( )A .156=-a aB .3233a a a =+C .b a b a +-=--)(D .b a b a +=+22)(5.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD=5, DC=4, DE ∥AB 交BC 于点E ,且EC=3.则梯形ABCD 的周长是( )A .26B .25C .21D .206. 已知071=-+-ba ,则=+b a ( )A .8-B .6-C .6D .87.在Rt △ABC 中,∠C=90°, AC=9 , BC=12.则点C 到AB 的距离是( )A .536B .2512C .49D .4338.已知b a >,若c 是任意实数,则下列不等式总是成立的是( )A .c b c a +<+B .c b c a ->-C .bc ac <D .bc ac >9.在平面中,下列命题为真命题的是( )A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形10.如图3,正比例函数x k y 11=和反比例函数xk y 22=的图象交于)2,1(-A 、),(21-B 两点,若21y y <,则x 的取值范围是 ( )A .1-<x 或1>xB .1-<x 或10<<xC .01<<-x 或10<<xD .01<<-x 或1>x图2ED CBA第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠ABC=30°, BD 是∠ABC 的平分线,则∠ABD=_______度.12.不等式101≤-x 的解集是_______.13.分解因式:a a 83-=_______.14.如图4,在等边△ABC 中,AB=6,D 是BC 上一点.且BC=3BD ,△ABD 绕点A 旋转后的得到△ACE. 则CE 的长为_______.EB A15.已知关于x 的一元二次方程0322=--k x x 有两各项等的实数根,则k 的值为_______. 16.如图5,在标有刻度的直线l 上,从点A 开始. 以AB=1为直径画半圆,记为第1个半圆 以BC=2为直径画半圆,记为第2个半圆 以CD=4为直径画半圆,记为第3个半圆 以DE=8为直径画半圆,记为第4个半圆……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______. (结果保留π)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分) 解方程组:⎩⎨⎧=+=-1238y x y x18.(本小题满分9分)如图6,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C.求证:BE=CDEDCBA19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境局公布的2006~2010这五年的全年空气质量优良的天数,绘制折线图如图7,根据图中信息回答:(1)这五年的全年空气质量是优良的天数的中位数是_______ ;极差是_______ ; (2) 这五年的全年空气质量优良天数与它的前一年相比较,增加最多的是______年(填写年份); (3)求这五年的全年空气质量优良天数的平均数.20.(本小题满分10分)已知511=+b a )(b a ≠,求)()(b a a b b a b a ---的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上的所标的数值分别为7-、1-、3,乙袋中的三张卡片上所标的数值分别为2-、1、6 ,先从甲袋中随机取一张卡片,用x 表示取出的卡片上标的数值,再从乙袋从随机取出一张卡片,用y 表示取出的卡片上标的数值.把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点)(y x A ,的所有情况; (2)求点A 落在第三象限的概率 .22.(本小题满分12分)如图8,⊙P 的圆心为)(2,3-P ,半径为3,直线MN 过点)(0,5M 且平行于y 轴,点N 在点M 的上方.(1)在图中作出⊙P 关于y 轴的对称的⊙P ’,根据作图直接写出⊙P ’与直线MN 的位置关系 ;(2)若点N 在(1)中的⊙P ’上,求PN 的长.23.(本小题满分12分)某城市居民用水实施阶梯收费.每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元。
2012年广东省中考数学试卷(含解析版)
2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=.7.(4分)不等式3x﹣9>0的解集是.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(6分)解方程组:.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n,其中1≤a<10,n为整数.【解答】解:6400000=6.4×106.故选:B.【点评】此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【解答】解:6出现的次数最多,故众数是6.故选:C.【点评】本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(3分)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【专题】2B:探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.7.(4分)不等式3x﹣9>0的解集是x>3.【考点】C6:解一元一次不等式.【分析】先移项,再将x的系数化为1即可.【解答】解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【考点】M5:圆周角定理.【专题】11:计算题.【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.【点评】此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可【解答】解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】L5:平行四边形的性质;MO:扇形面积的计算.【专题】16:压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【考点】4J:整式的混合运算—化简求值.【专题】2B:探究型.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.【点评】本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(6分)解方程组:.【考点】98:解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入法求出y的值即可.【解答】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】KH:等腰三角形的性质;N2:作图—基本作图.【专题】2B:探究型.【分析】(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线即可;(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的定义得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.【解答】解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.【点评】本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】14:证明题;16:压轴题.【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,进而可得出结论.【解答】证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO(ASA),∴AB=CD,∴四边形ABCD是平行四边形.【点评】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解答此题的关键.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【考点】AD:一元二次方程的应用.【专题】123:增长率问题.【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次.【点评】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】31:数形结合.【分析】(1)先把(4,2)代入反比例函数解析式,易求k,再把y=0代入一次函数解析式可求B点坐标;(2)假设存在,然后设C点坐标是(a,0),然后利用两点之间的公式可得=,借此无理方程,易得a=3或a=5,其中a=3和B点重合,舍去,故C点坐标可求.【解答】解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).【点评】本题考查了反比函数的知识,解题的关键是理解点与函数的关系,并能灵活使用两点之间的距离公式.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.【考点】62:分式有意义的条件;6D:分式的化简求值;X6:列表法与树状图法.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可;(3)先化简,再找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)(2)∵使分式+有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2,1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=(x≠±y),使分式的值为整数的(x,y)有(1,﹣2)、(﹣2,1)2种情况,∴使分式的值为整数的(x,y)出现的概率是.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题);T7:解直角三角形.【专题】16:压轴题;2B:探究型.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.【点评】本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B 点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.【解答】解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.【点评】该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.。
广东省广州市中考数学真题试题(带解析)
2012年广东省广州市中考数学试卷解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2012•广州)实数3的倒数是()A.﹣B.C.﹣3 D.3考点:实数的性质。
专题:常规题型。
分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换。
专题:探究型。
分析:直接根据上加下减的原则进行解答即可.解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;故选D.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.( 2012•广州)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b考点:去括号与添括号;合并同类项。
分析:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20考点:等腰梯形的性质;平行四边形的判定与性质。
2012年广东省中考数学试卷(Word版)(含解析)
机密★启用前2012年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2012•广东•1•3′)﹣5的绝对值是()D2.(2012•广东•2•3′)地球半径约为6 400 000米,用科学记数法表示为()3.(2012•广东•3•3′)数据8、8、6、5、6、1、6的众数是()4.(2012•广东•4•3′)如图所示几何体的主视图是()题4图.C D.5.(2012•广东•5•3′)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()6.(2012•广东•6•4′)分解因式:2x2﹣10x= .7.(2012•广东•7•4′)不等式3x﹣9>0的解集是.8.(2012•广东•8•4′)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.题8图题10图9.(2012•广东•9•4′)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(2012•广东•10•4′)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(本大题共5小题,每小题6分,共30分)11.(2012•广东•11•6′)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2012•广东•12•6′)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2012•广东•13•6′)解方程组:.14.(2012•广东•14•6′)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.题14图15.(2012•广东•15•6′)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.题15图四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2012•广东•16•7′)据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(2012•广东•17•7′)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.题17图18.(2012•广东•18•7′)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A 的仰角为26.6°,求小山岗的高AB(结果取整数;参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).题18图19.(2012•广东•19•7′)观察下列等式:第1个等式:a1= = ×(1﹣);第2个等式:a2= = ×(﹣);第3个等式:a3= = ×(﹣);第4个等式:a4= = ×(﹣);…………请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含有n的代数式表示第n个等式:a n= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2012•广东•20•9′)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2012•广东•21•9′)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.题21图22.(2012•广东•22•9′)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).题22图机密★启用前2012年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题共5小题,每小题6分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.D﹣4.(2012•广东•4•3′)如图所示几何体的主视图是()二、填空题(本大题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.28.(2012•广东•8•4′)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.都对9.(2012•广东•9•4′)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.解:根据题意得:.))10.(2012•广东•10•4′)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).﹣πππ三、解答题(一)(本大题共5小题,每小题6分,共30分)0﹣1×1+.13.(2012•广东•13•6′)解方程组:.故此方程组的解为:14.(2012•广东•14•6′)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.EFABD=∠ABC=本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(2012•广东•15•6′)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2012•广东•16•7′)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;17.(2012•广东•17•7′)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.,借此无理方程,y==18.(2012•广东•18•7′)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A 的仰角为26.6°,求小山岗的高AB(结果取整数;参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).=tanAB=20019.(2012•广东•19•7′)观察下列等式:第1个等式:a1 = = ×(1﹣);第2个等式:a2 = = ×(﹣);第3个等式:a3 = = ×(﹣);第4个等式:a4 = = ×(﹣);…………请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);;;;;)×﹣)×﹣)×﹣)×+﹣++﹣+﹣))×五、解答题(三)(本大题共3小题,每小题12分,共36分)20.(2012•广东•20•9′)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.)中的树状图求出使分式有意义的情况,再除以所有情况数即可;)∵求使分式有意义的(∴使分式有意义的()出现的概率是,)∵=)出现的概率是21.(2012•广东•21•9′)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.AD=4x=ABG==;AD=4,×=4×=,AB=+3=22.(2012•广东•22•9′)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).x x时,﹣(,即:=)OC=9=m m﹣时,取得最大值,最大值为=.BC===r=(πAE m mm m﹣时,取得最大值,最大值为=..═×r=,r=(π。
2012年广州市初中毕业生学业数学考试试卷WORD版(附答案)
2012年广州市初中毕业生学业数学考试试卷(含答案)第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的)1.实数3的倒数是( )。
(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12-=x y (B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。
(A )、156=-a a(B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26(B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、536(B )、2512 (C )、49(D )、433 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc (D )、ac >bc9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形 (D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年广州市初中毕业生学业考试
数 学
第一部分 选择题(共30分)
一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的) 1.实数3的倒数是( )。
(A )、3
1-
(B )、
3
1
(C )、3- (D )、3
2.将二次函数2
x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12
-=x y
(B )、 12+=x y (C )、2
)1(-=x y
(D )、
2)1(+=x y
3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱
4.下面的计算正确的是( ) 。
(A )、156=-a a (B )、 2
2
3a a a =+
(C )、b a b a +-=--)(
(D )、b a b a +=+2)(2
5.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26 (B )、
25 (C )、21
(D )、20
6..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6
(D )、8
7. Rt ABC △中,∠C=900
,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、
5
36
(B )、
2512 (C )、4
9 (D )、
4
3
3 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、
ac <bc (D )、ac >bc
9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形
(D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数
x k
y 1
1
=和反比例函数x
k
y 2
2
=的图象
交于A(-1,2)、B (1,-2)两点。
若y 1<y 2,则x 的取值范围是( )。
(A )、x <-1或x >-1 (B )、 x <-1或0<x <1 (C )、-1<x <0或0<x <1
(D )、-1<x <0或x >1
第二部分 非选择题(共120分)
二、填空题(本大题共6小题,每小题3分,满分18分)
11.已知∠ABC=300
,BD 是∠ABC 的平分线,则∠ABD= 度。
12.不等式1-x ≤10的解集是 . 13.分解因式:=-a a 82
.
14.如图4,在等边△ABC 中,AB =6,D 是BC 上一点,且BC =3BD , △ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 . 15.已知关于x 的一元两次方程0322
=--k x x 有两个不相等的根,则k 的值为 . 16.如图5,在标有刻度的直线l 上,从点A 开始,
以AB =1为直径画半圆,记为第1个半圆;
以BC =2为直径画半圆,记为第2个半圆;
以CD=4为直径画半圆,记为第3个半圆;
以DE=8为直径画半圆,记为第4个半圆. ……,按此规律,连续画半圆,则第4个
半圆的面积是第3个半圆面积的 倍。
第n 个半圆的面积为 .(结果保留π)
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)
解方程组:
18. (本小题满分9分)
如图6,点D 在AB 上,点E 在AC 上,AB=AC, ∠B=∠C . 求证:BE=CD .
19. (本小题满分10分)
广州市努力改善空气质量,近年来空气质量明显好转。
根据广州市环境保护局公布的2006-2010这五年各年的全年空气质量优良的天数。
绘制拆线图如图7,根据图中的信息回答:
(1)、这五年的全年空气质量优良的天数的中位数是 .极差是 .
(2)、这五年的全年空气质量优良的天数与它前一年相比较,增加最多的是 年。
(填写年份)
(3)、求这五年的全年空气质量优良的天数的平均数。
20. (本小题满分10分)
21. (本小题满分12分)
甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为317、、--,乙袋中的三
张卡片上所标的数值分别为,、、612-先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值。
把x 、y 分别作为点A 的横坐标与纵坐标。
(1)用适当的方法写出点A(x 、y )的所有情况。
(2)求点A 落在第三象限的概率。
22. (本小题满分12分)
⎩⎨
⎧=+=-12
38y x y x ()的值。
,求已知:)
()(511b a a b b a b a b a b a ---≠=+
如图8,⊙P 的圆心为P (-3,2),半径为3,直线MN 过点M(5,0)且平行于y 轴,点M 在点N 的上方。
(1)、在图中作出⊙P 关于y 轴对称的⊙P ',根据作图直接写出⊙P '与直线MN 的位置关系;
(2)、若点N 在(1)⊙P '上,求PN 的长。
23. (本小题满分12分)
某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过部分则按每吨2.8元收费。
设某户每月用水量为x 吨,应收水费为y 元。
(1) 分别写每月用水量未超过20吨和超过20吨时,的函数关系式。
与x y (2) 若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?
24. (本小题满分14分)
如图9,抛物线
与x 轴交于A 、
B 两点(点A 在点B 的左侧)。
与y 轴交于点C.
(1)、求点A 、B 的坐标;
(2)、设D 为已知抛物线的对称轴上的任意一点。
当△AC D 的面积等于△ACB 的面积时,求点D 的坐标;
(3)、若直线l 经过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式。
25. (本小题满分14分)
如图10,在平行四边形ABCD 中,A B=5,BC =10,F 为AD 的中点。
C E ⊥AB 于点E ,设∠ABC=
α(600≤<α<900).
(1)、当α=600
时,求CE 的长。
(2)、当600
≤<α<900时,
①是否存在正整数k ,使得∠EFD=k ∠A EF ?若存在,求出k 的值;若不存在,请说明理由。
②连接CF ,当CE 2
-CF 2
取最大值时,求tan ∠
DCF 的值。
34
3
832+--=x x y。